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A B S T R AC T

How do the relations used in semantic networks appear in (static)
word embeddings? This dissertation is organized around this question.
In other words, how can the cognitive structure and lexical relations
between concepts be read out from the models trained based on co-
occurrences? In addition to lexical relations proper, several chapters
deal with argument structure. Another feature of the dissertation is
that the tool of linear translation between word embeddings of differ-
ent languages is used, in addition to its original goals (translation itself
and the estimation of the quality of translation pairs) for measuring the
precision of multi-sense word embeddings. Our theoretical framework
is the 4lang semantic network.
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ACH the axiom-concept hypergraph, see Section 2.2.6
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ACT Actions in CD, see Section 2.2.3

AGT Agent, verbal role, see Chapter 5

AI Artificial Intelligence, now technically synonymous to ML.
See Section 2.2.4 for an overview of its history

ALS Alternating Least Squares algorithm, see Section 6.3

AMR Abstract Meaning Representation, see Section 2.4.8

AT The locative case of static location, see Chapter 5

BERT A deep LM architecture, the most famous one, see Section 4.3

BPE Bite-pair encoding, mentioned in Sections 4.2.11.2 and 4.3.2

CAUSE A binary predicate used both by Jackendoff (Section 2.3.5),
and in 4lang (Section 7.3)

CCG Combinatorial Categorical Grammar, mentioned in
Sections 2.4.8 and 2.4.10

CD Conceptual Dependencies, see Section 2.2.3

CED The Collins-COBUILD dictionary (Sinclair 1987), mentioned
in Section 8.2

CG Conceptual Graphs, see Section 2.2.5

CPD Canonical Polyadic Decomposition, see Section 6.3

CS Conceptual Structures, see Section 2.3.5

DAG Directed Acyclic Graph, mentioned in Section 7.1

DAT Dative, verbal role, see Chapter 5

DO Direct Object

DST Dialogue State Tracking, see Section 4.2.10

EFNILEX A computational lexicographic project of the European
Federation of National Institutions for Language

FCA Formal Concept Analysis, see Section 7.1
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see Chapter 5
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GMB Groningen Meaning Bank, see Section 2.4.8

GPT Generative Pre-trained Transformer (Radford et al. 2018)
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HDBScan A hierarchical density-based clustering algorithom
(McInnes, Healy, and Astels 2017)

HLBL Static word embeddings by Mnih and G. E. Hinton (2009)

HNC The Hungarian National Corpus (Oravecz, Váradi, and Sass
2014). We use it in Sections 7.4.2, 7.5 and 8.3

HPSG Head-Driven Phrase Structure Grammar

HS Hierarchical softmax. We experiment with it in Section 7.4.2

KB Knowledge Base, see Section 2.2.9

KR Knowledge Representation, mentioned in Chapter 3

KS14 A benchmark by Kartsaklis and Sadrzadeh (2014), see
Section 6.4.1

LDA Latent Dirichlet Allocation, see Section 4.1.3

LDOCE The Longman Dictionary of Contemporary English
(Section 2.4.1)

LDV Longman Defining Vocabulary, see Section 3.2

LFG Lexical Functional Grammar

LM Language Model, see Section 4.2

LREC Intl Conference on Language Resources and Evaluation

LSA Latent Semantic Analysis, see Section 4.1.3
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architectures (Hochreiter and Schmidhuber 1997)

ML Machine learning
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error (Section 7.5.6)
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the Hungarian NLP conference

MT Machine Translation

NGD Normalized Google Distance, see Section 4.1.5

NLP Natural Language Processing

NMT Neural Machine Translation, see Section 4.3.4

NN Nearest Neighbor, not to be confused with Neural Networks

NP Noun phrase, a concept in structuralist syntax

NSM Natural Semantic Metalanguage, see Section 2.3.3

NSP Next sentence prediction,
one of the pre-training tasks for BERT, see Section 4.3.2

OBL Oblique, verbal role, see Chapter 5

OSub Open Subtitles Corpus, see Sections 7.4.3.2 and 8.1

PAT Patient, verbal role, see Chapter 5

PCA Principlal Component Analysis, see Section 4.1.1

PDT The Prague Dependency Treebank

POS Part-of-speech

POSS Possessive, one of the argument cases
used for relational nouns in 4lang, see Chapter 5

(P)PMI (Positive) Pointwise Mutual Information,
see Sections 4.1.2 and 6.2
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Innumerable roads lead to “knowledge,”
and we try to explore many of them.

— Findler (1979)

1
I N T RO D U C T I O N

1.1 4lang and its role in the thesis 2
1.2 Roadmap 2

Computational representations of word meaning can be categorized
as symbolic or distributional, the main examples for the two families
being semantic networks and neural networks respectively. Both reflect
the structuralist tradition of defining the meaning of words based on
their relations to each other, let the relation be conceptual or the prob-
ability of co-occurrence. In semantic networks, the full meaning of any
concept is the whole semantic network as entered from the concept node
(Collins and Loftus 1975). Distributional models have achieved better
results for decades, but it also has been a problem since the beginnings
to interpret how these models actually work. This thesis contributes
to this question by analyzing how various relations are represented in
static word embeddings. How can the cognitive structure and the lexi-
cal relations between concepts be read out from the models trained on
co-occurrences?

The relations we investigate range from those frequently discussed
in theoretical linguistics like argument relations (e.g. the difference be-
tween a word as a subject or as an object), those that are the backbone
of lexical databases (lexical relations, i.e. binary relations which are
part of the lexical meanings1 of words like hypernymy, antonymy, or
causation); relations that are important from a practical point of view
like translation, and analogical relations (e.g. man is to woman as king
is to what), where the targeted relations can be any conceptually real
one. Word ambiguity can also be called a relation between different
lexemes with the same form, or different uses of the same lexeme, and
this topic will also be discussed.

The phenomena targeted by alternative approaches to semantics are
diverse, ranging from compositionality and the syntax-semantics inter-
face through logical aspects of meaning, to the relation between lin-
guistic meaning and conceptual phenomena. In this classification, our

1 We understand lexical meaning as context-independent conceptual meaning. Seman-
tic networks are among the formalisms to represent this. The problem of separating
world knowledge from linguistic knowledge will be discussed in Section 3.4.
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introduction

interest involves both the compositionality of lexical meaning, and the
syntax-semantics interface.

This thesis offers computational linguistics research submitted to a
theoretical linguistics programme, while we follow a mathematical way
of thinking along with an interest in psycho-linguistics.

Accordingly, we gladly reach for all kinds of models and tools and
consider them to describe the same thing: the lexical representation of
words is inseparable from their conceptual-semantic network.

1.1 4lang and its role in the thesis

Before drafting the organization of this thesis, we should note that
some of our contributions are related to 4lang, a theory and formal-
ism for representing the semantics of natural language, which has been
published along with partial implementation in many research papers
and two books. 4lang will be introduced in detail in Chapter 3, but for
the purposes of this road-map of the thesis, let us sketch the 4lang ap-
proach to the process of defining words by each other. 4lang does not
have a pre-defined set of primitives of definition, but we use the defini-
tion graph, the graph whose nodes are words, and there is an edge dog
Ñ faithful whenever faithful is used in the definition of dog. This graph
is used for computing the defining vocabulary, the set of word which
suffice to define the rest.

The more important 4lang-related contributions of this thesis (Sec-
tions 3.3, 7.2 and 7.3) take derivatives of 4lang – the definition graph,
or a word embedding created from the graph – as input. Besides, the
author of this thesis had a great role in the manual creation of a set
of core definitions for 4lang, but our claims related to this part of the
work will focus on to the problem of thematic roles (Chapter 5). Nev-
ertheless, we would like to help the reader to put the 4lang theory in a
greater context as well. The papers and the books introducing the the-
oretical background of 4lang have assumed that the reader is familiar
with a great bulk of literature covering early semantic networks and
artificial intelligence, cognitive semantics, and early semantic resources.
To make the thesis self-contained, we offer a detailed introduction to
this part on the literature as well (Chapter 2).

1.2 roadmap

The thesis is organized in two parts: background (Part i) and main con-
tributions (Part ii). Both parts discuss symbolic representations first,
followed by distributional ones. Specifically, the background part in-
cludes a chapter on symbolic representations (Chapter 2), 4lang (Chap-
ter 3), and distributed word representations (Chapter 4) each. The
main contributions investigate lexical relations in a very broad sense:
besides lexical relations proper (hypernymy, antonymy, and causality),

2



1.2 roadmap

we include thematic and syntactic relations along with other context-
independent relations between words like word analogies, translation,
and different types of ambiguity. On the distributional side, as we will
see in Section 7.2, for a set of male and female words, such as xking,
queeny, xactor, actressy, etc., the difference between the embedding vec-
tors of words in each pair represents the meaning component of gender.
In our understanding, these systematic vector differences, computation-
ally represented by the so called vector offsets, correspond to semantic
features or lexical relations familiar from hierarchical symbolic lexicons
and semantic networks.

The first two foreground chapters investigate verbs and their argu-
ments. Chapter 5 discusses deep cases in 4lang, i.e. placeholders of
arguments in the meaning representations of predicates, categorized by
semanto-syntactic properties of the argument. Our discussion has been
based both on theoretical principles, and on our experience in creating
a formulaic meaning representation of each item in the defining vocab-
ulary. Our main question is what inventory of deep cases (categories) is
needed for the formulaic definition of each word in the defining vocab-
ulary of a multilingual and radically monosemic semantic formalism.

Still on verb arguments, but moving from the symbolic treatment of
thematic roles to the distributional representation of „syntactic roles”
(i.e. grammatical functions), Chapter 6 investigates the use of differ-
ent automatic association scores and tensor decomposition methods in
the modeling of subject-verb-object triples. The context of this line of
research is collocation extraction.

The remaining two chapters are motivated by the question whether
relations which intuitively exist, and have been recorded by human
labor can also be detected in data-driven distributional representa-
tions, more specifically, static word embeddings (word representations
obtained with shallow neural networks).

Chapter 7 investigates several lexical relations proper along with
word analogies and translation. Going back to Aristotle, word definition
begins with specifying a superordinate concept (e.g. a dog is an animal),
also called the genus (Section 3.1.2). The word for the superordinate
concept is the hypernym, and hypernymy is the topic of our Section 7.1.
Which putative semantic features like the already mentioned gender
are captured by vector space models? What is the geometry of causality
like?

The distributional hypothesis (Z. S. Harris 1954) says that a word
can be described/represented based on how frequently it cooccurs with
every other word. More specifically, the distributional inclusion hypoth-
esis (Weeds and Weir 2003; Chang et al. 2018) says that hypernymy can
be modeled based on that if animal is a hypernym of dog, animal will
be grammatical in every context where dog is. It is less clear whether
animal will appear in every context at least as frequently as dog does.
We test the hypothesis with the tools of sparse coding.

3



introduction

Sparse vectors are vectors most of whose coordinates are zero, and
non-zero coordinates ideally correspond to interpretable properties. It
varies with models whether interpretability follows from the construc-
tion of the vectors, or the interpretation needs to be inferred from
some latent structure. Even in the latter case, sparse representations
tend to be more interpretable than less restricted ones. As far as sparse
attributes (i.e. non-zero coordinates in sparse word representations) cor-
respond to contexts, if follows from the distributional inclusion hypoth-
esis discussed above that hypernymy should boil down to pointwise
comparison. Section 7.1 tests this idea in hypernymy discovery.

Antonymy places words in contrast to those with an opposite mean-
ing (e.g. peace Ø war). Section 7.2) analyses this relation. Section 7.3
investigates causality, which has great importance in philosophy, theo-
retical linguistics, and psychology, while in computational linguistics it
remains a bit exotic.

Analogical question like man : woman :: king : ? (man is to woman
what king is to what?) have been one of the main evaluation paradigms
for static word embeddings. We investigate which morphological and
semantic regularities are represented by linear relations in word embed-
dings of Hungarian, a language with rich morphology and „free word
order” (i.e. the order of the main constituents of the sentence is rela-
tively free).

An important application of static word embeddings has been based
on that vector spaces of difference languages share their structure to
the extent that word translation can be formalized as a linear map-
ping (in the linear algebraic sense). More chapters of this thesis apply
this method for various goals. Besides its original goals – translation
itself, Section 7.4.2, and the quality estimation of translational pairs,
Section 7.5 – we use it to measure the precision of multi-sense word
embeddings as the detectors of word ambiguity (Chapter 8). We test
whether the methods first published for better-resourced languages also
work in medium-resourced languages such as Hungarian, Slovenian, and
Lithuanian.

Still within the translation context, we extend linear mapping to
triangulation, a.k.a. pivot based lexical induction: we test whether
linear mapping can provide a smoother score for triangulated word
translations than previous methods. Intuitively, smoothness means that
some kind of extra noise in the triangulation (more precisely in pivot-
counting) is eliminated by linear translation.

Our last chapter is concerned with one of the greatest problems in
lexical semantics: word ambiguity and, more specifically, homonymy
and polysemy. Static word embeddings, our main tools in the last two
chapters, represent each word form with a single linear algebraic vector.
This implies that a crane will be a thing which lifts blocks of concrete
at some times, and takes care of its chicks at others. (This example is
by Gábor Prószéky.)

4



1.2 roadmap

It can be argued, especially from the engineering point of view, that
the problem has been solved by contextualized word representations
(CWRs, Section 4.3) provided by deep language models. However, the
computational linguist still remains interested in the categorical dis-
tinction whether a word is homonymous, polysemous, or unambiguous.
Coenen et al. (2019) show that the English BERT model, the most pop-
ular contextualized model, maps the word form die at different regions
of the semantic space based on whether it is the German article, the
game tool, or the verb, see Section 4.3.3. The former is an artifact of the
corpus creation, and the latter two are cases of homonymy. However,
Coenen et al. also show that within the verb, BERT also represents how
many people die, in a scale-like fashion. This is a shade of the mean-
ing of the sentence where semantics traditionally draws no distinction
within the meaning of the predicate: the difference is solely attributed
to the argument. There is active research on extracting discrete senses
from CWRs.

Multi-sense (static) word embeddings (MSEs) represent the different
senses of an ambiguous word with different vectors. This means that
they offer an answer to the question how many senses each word has,
but they over-disambiguate: some vectors are redundant or simply con-
tain noise. Chapter 8 offers a method in the linear translation setting
to measure the precision of MSEs as detectors of word ambiguity. More
precisely, we compute two measures, the first of which is trivial: sense
vectors should be translated by the linear mapping correctly. If differ-
ent senses of the same word get mapped to different words in the target
language, these translations are evidence (in the theoretical linguist’s
sense) for the ambiguity of the source word. The second figure of merit
is the ratio of putatively ambiguous words whose different senses are
mapped to different words by the linear model.

The table of contents at the beginning of the dissertation goes down
to sections. There is also a mini table of contents at the beginning of
each chapter. These tables go one step deeper, to subsections.

5



Part I

B AC KG RO U N D

The first three chapters of the thesis give the background
in word representations.
Chapter 2 introduces symbolic word representations, which
encode the meaning of words in an explicit form such as
semantic networks or lexical definitions. Symbolic represen-
tations have been used in natural language processing since
the earliest days of the field and are still used today.
Some of our contributions are related to 4lang, a theory
and formalism for representing the semantics of natural lan-
guage. The more important 4lang-related contributions of
this thesis (Sections 3.3, 7.2 and 7.3) take derivatives of
4lang — the definition graph, or a word embedding cre-
ated from the graph — as input. Besides, the author of this
thesis had a great role in the manual creation of a set of
core definitions for 4lang, but our claims related to this
part of the work will focus on to the problem of argument
structure (Chapter 5). Chapter 3 introduces 4lang itself.
Chapter 4 gives a relatively complete account of distribu-
tional word representations, which capture the meaning of
words based on their distributional patterns in a large text
corpus. Distributional representations have become increas-
ingly popular in recent years due to their effectiveness in a
wide range of natural language processing tasks. This chap-
ter provides an overview of the different types of distribu-
tional representations, including count-based methods and
neural network-based methods.





Definition and word meaning need not have anything to do with
grammaticalization or grammatical behavior. This is a fairly

uninteresting claim about the relation between language and thought.

— Pustejovsky (1995)
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2.1 roadmap of the chapter

Some contributions of this thesis, Sections 3.3, 7.2 and 7.3 and es-
pecially Chapter 5, are related to the 4lang theory and formalism for
representing the semantics of natural language, which has been devel-
oped in the Human Language Technologies Research Group Budapest.
The papers and the books introducing the theoretical background of
4lang have assumed that the reader is familiar with a great bulk of
literature on early semantic networks, artificial intelligence, cognitive
semantics, and early semantic resources. In this first background chap-
ter we would like to help the reader to navigate in this greater context of
symbolic meaning representation. We provide an in-depth exploration
of semantic networks and lexical resources, two critical tools for com-
putational lexical semantics in the symbolic approach. We aim to offer
a comprehensive overview of the evolution of semantic networks and
lexical resources, from early developments to the most recent state-of-
the-art approaches.

2.1 roadmap of the chapter

The chapter is divided to three sections: one on early semantic networks,
cognitive semantics, and modern lexical semantics each. The relevance
of the former two is that they were very instructive for 4lang. We also
need to reflect on the relation of 4lang to modern resources, especially
regarding to the argument label system.

2.1.1 Roadmap: Early semantic networks (2.2)

One of the main contributions of this thesis (Chapter 5) proposes a set
of verb argument roles in the 4lang semantic network. Other impor-
tant 4lang-related contributions of this thesis (Sections 3.3, 7.2 and 7.3)
take derivatives of 4lang, especially the definition graph and a word
embedding created from the graph as input. As a background for these
contributions, Sections 2.2.1 and 2.2.2 give the basics of semantic net-
works, while Section 2.2.6 introduces considerations about the so called
definition graph. The three sections in between review works that are
more closely related to early artificial intelligence than to linguistics
and that have had a strong impact on 4lang.

the teachable language comprehender We start the
chapter with The Teachable Language Comprehender (Section 2.2.1),
arguably the most seminal work on semantic networks. It is particu-
larly instructive that Quillian (1969) emphasizes the recursive nature
of the network, which corresponds to the similar nature of word def-
inition, which becomes the focus of this thesis in Section 3.3. When
writing the manual definitions, we built on the tradition of Aristotle’s
genus and differentia specifica, which is why it appears so many times
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in the introductory chapters (besides Section 2.2.1, in Sections 2.2.8
and 3.1.2).

Though I have no related claim, my way of thinking was also in-
fluenced by what our group, the Human Language Technology (HLT)
group at SZTAKI, thought and implemented about pieces of informa-
tion from different sources (Nemeskey et al. 2013): the meaning of the
words („global”); what we know about one entity in the given situation
(„active”); as well as a naive theory of a semantic field (e.g. we respect
the things which are above us). Quillian is the forefather in this area
as well. This section is where attribute-value matrices are mentioned
for the first time in the dissertation (the other one is Section 2.2.4),
which we also used in Nemeskey et al. (2013). The group also took the
concept of inheritance from Quillian (Recski 2016b).

spreading activation In Chapter 5, we propose meaning defi-
nitions for the defining vocabulary of 4lang, and categorize the place-
holders of the representations of the arguments within the definition
of a predicate in a thematic role fashion. In our theory, this system
of linking is complemented with a spreading activation mechanism for
selectional preferences. Section 2.2.2 summarizes Collins and Loftus
(1975)’s detailed treatment of the latter device. Besides, I take from
this article the important sentence that „the full meaning of any con-
cept is the whole network as entered from the concept node.” Here is
the first mention of that there can be several link types in a seman-
tic network. One of the main features of 4lang is that there are only
three types of arrows. In this area, we usually refer to Woods (1975),
discussed in Section 2.2.4.

eleven verb-types The greatest added value of 4lang’s man-
ual definitions, compared to the definitions extracted from monolin-
gual dictionaries, probably lies in the fact that ditransitive (i.e. three-
participant) verbs are represented by binary lexical relations (predi-
cates). This is also discussed in one of the earliest 4lang articles (Kor-
nai 2012). Specifically, among the deep cases proposed in Chapter 5 –
in addition to the basic principles that, for example, even nouns can
have multiple cases – the dative is probably the most interesting. The
two verb classes exemplified by give and say are usually attributed to
Schank (1972) as ptrans and mtrans (Section 2.2.3). Gábor Prószéky,
in his referee report on Recski (2016b), wrote that Schank is particu-
larly relevant to 4lang, since both systems “put the considerations of
the conceptual world to the fore, sometimes combining elements that
are different from a linguistic point of view, and treat them uniformly.”
(translation mine)

Perhaps the most flourishing example of the proliferation of link
types in computational linguistics is also Schank, who not only dif-
ferentiates the lines and the heads of the arrows with solutions that
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push the boundaries of the printing technology of the time, but also
implicitly suggests that horizontal and vertical arrows are different.

what’s in a link? Woods (1975) pointed out that „Links have
been used to represent many different levels, e.g. implementation point-
ers, logical relations, semantic relations (e.g. “cases”), and arbitrary
conceptual and linguistic relations.” While in the field of syntactic anal-
ysis, 4lang a builds on the most common formalism (Section 3.7), and
thus is in line with the theoretical linguistics tradition, we do not sepa-
rate pragmatics (inferences) from semantics. This important theoretical
question is discussed here for the first time in the dissertation.

conceptual graphs J. Sowa (1976) places our topic in the
broadest context beyond computational linguistics proper: knowledge
representation and logic. The latter is particularly important for a dis-
sertation on semantics.

the naive physics manifesto Hayes (1979) provides a very
detailed theory for the definition of word meaning, what predicates to
introduce and how to anchor their meaning. Moreover his examination
is based on an axiom-concept graph similar to our definition graph (Sec-
tion 1.1), which is very instructive for Section 3.3. Our research group
follows a simpler principle both in maul and in dictionary-based auto-
matic (Recski 2016a, 2018; Recski, Borbély, and Bolevácz 2016; Ács,
Nemeskey, and Recski 2017) vocabulary reduction: we usually define
rare words using more frequent ones.

Besides, it is the first time – the other one is Section 2.3.4 – that the
abstract/naive locative approach is mentioned, which is an important
feature of the manual 4lang definitions. „To really capture the notion
of ’above’, you probably have to go into analogies to do with e.g. inter-
personal status: Judge’s seats are raised; Heaven is high, Hell is low; to
express submission, lower yourself, etc.” Hobbs (2008, summarized in
our Section 2.2.7) begins to implement the program outlined by Hayes
(abstract core theories of commonsense knowledge).

kl-one The Aristotelian genus and differentia specifica mentioned
in connection with Quillian appear in Brachman and Levesque (1985)
as super-concepts and local restrictions.

cyc Cyc aimed to construct a comprehensive knowledge base of com-
mon sense knowledge. One of the eternal topics of semantics is which
words can be defined as a conjunction of properties. The fist appear-
ance of this question in this thesis is Section 2.2.9. Besides, before and
after that 4lang reinvents also come from the partial event slots in
Cyc, ‘before’, ‘during’ and ‘after’.

11
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2.1.2 Roadmap: Cognitive semantics (2.3)

Section 2.3 introduces Katz and Fodor (1963)’s seminal paper on seman-
tic features along with a line of semantic research that Kornai (2010a)
describes as “the less formally stated, but often strikingly insightful
work in linguistic semantics” exemplified by the work of Wierzbicka
(1985, Section 2.3.3), Lakoff, Fauconnier, Langacker (1987), Talmy (1988,
Section 2.3.4), Jackendoff (1990, Section 2.3.5), and others “often broadly
grouped together as ‘cognitively inspired’ ”. (References to sections in
the present thesis added.) In Baroni and Lenci (2010)’s reflection, cog-
nitive science and linguistics typically represent concepts as clusters
of properties (see our Section 2.3.5): noun properties known as qualia
roles (Section 2.3.7), verb selectional preferences and argument alter-
nations (Section 2.3.6), event types, and “topical” relatedness between
words, e.g. the relation between dog and fidelity.

semantic markers and distinguishers Tibor Szécsényi
(personal communication) asked whether the lexical representation of
words includes their conceptual/semantic network. Section 3.4 will dis-
cuss the philosophically grounded delineation of lexical and world knowl-
edge, but here we note that the approach of the present thesis is more
closely related to that of data science, which uses all kinds of models and
tools, and considers them to describe the same thing. Katz and Fodor
(1963)’s seminal article discusses this common target of description for
the case of word meaning. Just as Quillian is the father of the formal
side of semantic nets, the linguistic information stored in these repre-
sentations goes back to Katz and Fodor. The paper proposes a universal
set of semantic markers and distinguishers similar to 4lang concepts.
The dissertation is about whether these kind of semantic features also
appear in static word embeddings.

case grammar By calling our thematic placeholders of arguments
deep cases, we strongly committed ourselves to Fillmore (1968). Al-
though I mention Gruber (1965) and Ostler (1979) in the dissertation
without further discussion, their influence is also indisputable. The the-
ory is now part of the university curriculum with concepts like seman-
tic roles (Agt, Pat, Dat, Loc), linking, alternations with permanent
roles, semantic type (e.g. live), case frames, and linguistic tests (Vendler
1967).

natural semantic metalanguage Tibor Szécsényi’s pre-op-
ponent report summarizes my background chapter on symbolic systems
as „how words are related to other words, more precisely the concepts
denoted by words to the concepts denoted by other words” (emphasis
mine). Indeed, although in principle we deal with concepts, our data is
about words, so the two are practically synonymous for us. This princi-
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ple is is part of Wierzbicka’s notion of natural semantic metalanguage
(NSM), and it can be briefly stated as „there is no (separate) metase-
mantics”, the symbols (predicates/terms/etc.) are drawn from among
the words of the object language, and their meaning is the meaning of
the corresponding word itself. In particular, every semantically primi-
tive meaning can be expressed by a word, morpheme, or fixed phrase
in every language.

In 4lang, this is clearly true for unaries (e.g. person, move) and more
or less also for binaries (e.g. at, cause, -er). Goddard and Wierzbicka
(1994, 1.1.5) suggests to derive the NSM for each language separately,
while 4lang denotes concepts intended to be language-independent with
English words. In the dissertation, we cite an example of the danger of
the opposite approach from the authors of Cyc (which is otherwise dis-
cussed in Section 2.2.9): „what a human can read into laysEggsInWater(x).
Wierzbicka (1972) (more precisely, my section is based on Goddard and
Wierzbicka (1994)) of course discuss(es) what consequences this has for
primitives and the syntax of definitions. What we have already seen
with Schank, and is also adopted by 4lang, arises again: words (mor-
phemes, etc.) can have the same meaning even if the part of speech,
the scope of use, or the polysemy pattern is different.

force dynamics in language and cognition The naive
worldview already mentioned in relation to Hayes, which is also in-
tended to be captured by the manual 4lang definitions, is explained
in the greatest detail by Talmy (1988): there is a parallel between the
way we talk about physical and psychosocial things. Force dynamics is
one of the basic conceptual categories that languages use to structure
and organize meaning. Naive physics (unlike scientific physics) is asym-
metric: motion and rest, strong and weak. Naive time and space are
segmented – again only in opposition to the scientific theory.

conceptual structures 4lang was influenced by Jackendoff
(1972, 1983)’s theory in several ways. Following Jackendoff’s example
of the famous kill: cause to die (=AGT cause [=PAT[die]]), we have
put: cause to (be) at, (=AGT cause [=PAT at =TO]). In the all-
caps cause, which plays a key role in the elimination of ditransitives,
the reader familiar with semantics will discover the primitive concep-
tual predicate of conceptual structures (CS), although there is some
difference: Jackendoff needs these primitives primarily because of the
so-called ontological categories. For him, the semantic type of the ar-
guments of each predicate is strictly regulated. In 4lang, on the other
hand, there are no semantic types.

While in 4lang, the thematic role of an argument does not need to
be predictable from its CS position, I was greatly influenced by the
feature of CS that the thematic roles correspond to the configurations
of the conceptual tree: As Chomsky defines the subject as the NP of
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the rule S Ñ NP VP, in semantics for all verbs expressing ptrans,
we see the scheme =AGT cause [=PAT at =TO], and for mtrans
verbs, we see the scheme =AGT cause [=DAT know = pat].

Jackendoff also mentions that each semantic field has its own specific
inference patterns, which is the naive theory of the given field. CS is
also the predecessor of 4lang in the representation of argument fusion
and selection constraints as unification.

english verb classes and alternations The basic prin-
ciple of Levin (1993)’s verb classes is the formulation of distributional
semantics for verbs: We can infer the meaning of the verb from the
expression possibilities of the arguments (and adjuncts) and vice versa.
This is most closely related to our Chapter 6, but it is related to all my
theses, either because of the verbs or the distributional models.

the generative lexicon My first discussion of polysemy is
in Section 2.3.1, but in connection to the motivating question of my
cross-lingual word sense induction project (Chapter 8), i.e. the types
of polysemy, the generative lexicon – a rich and flexible representation
of lexical semantics – cannot be avoided either.

Besides, Pustejovsky (1995)’s theory gives the deepest account of the
lexical content. It represents four kind of structures: argument, event,
qualia, and inheritance structure. The argument structure of 4lang is
discussed in Chapter 5, while Recski (2016b) discusses inheritance in
much detail. Our event structure is very simple (before, after and
unmarked). The qualia structure (the components, the shape, the pur-
pose, and the creation of things) is described by the definitions them-
selves – no further constraints apply to this in 4lang.

2.1.3 Roadmap: Modern lexical resources (2.4)

computational lexicography for nlp Many useful re-
sources have appeared in the last three decades for computational lex-
icography, but we start with Boguraev and Briscoe (1989)’s Chapter 1
on machine-readable dictionaries, which is still instructive today: the
content of the entries; the defining vocabulary and the problems arising
in practice (ambiguous defining words used in a different meaning than
they should be used in definitions, adjectives, idioms); the grammar of
the definitions. In the field of the latter, for example, we noticed that
or is often used in the definitions not because disjunction is needed to
represent the meaning of many words, but rather it serves to give both
a narrower and a broader description of the same thing.

The greatest part of Section 2.4 presents standard resources still in
use today. The broadest context of my work is frames (Section 2.4.2).
WordNet (Section 2.4.3) is the bread and butter in computational se-
mantics. Our main criticism of it is that it over-disambiguates. I gave
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an example of this during the presentation of Makrai (2013): the six
meanings of stomach. I also used it in connection with antonymy (Sec-
tion 7.2) and causation (Section 7.3).

The good thing about verb resources is the same as that about stan-
dards: there are so many to choose from. The main difference is in the
granularity of the argument labels: FrameNet (Section 2.4.4) uses verb-
specific tags, PropBank (Section 2.4.6) in principle uses only two core
arguments consistently, and VerbNet (Section 2.4.5) has a granularity
between the two. It is important that PropBank is used by AMR (Sec-
tion 2.4.8), the computational semantic formalism with the largest com-
munity, which, like 4lang, represents linguistic meaning with rooted,
directed, edge- and node-labeled graphs, and abstracts away from syn-
tactic differences. 4lang is between VerbNet and PropBank in terms
of granularity.

In addition to granularity, the other feature to consider is language
dependence, though the universality of a tool does not necessarily de-
pend on how the developers intended it. AMR, for example, claims to
be an English-specific framework, yet it is perhaps the most popular
universally as well.

ConceptNet (Section 2.4.7) captures general knowledge about words,
e.g. that the purpose of a net is to catch fish, which constitutes most
of the manual definitions of 4lang, and what Pustejovsky would call
qualia structure. Since semantic analysis always preceded by syntactic
analysis, I also consider it important to present the Enhanced English
Universal Dependencies (Section 2.4.9) dwelling at the border of the
two levels of language.

Although we touch on many issues in the overview of various se-
mantic representations, in Section 2.4.10 we give a shallower but even
broader draw of the aspects, summarizing Abend and Rappoport (2017)
and Koller, Oepen, and Sun (2019). Finally, in Section 2.4.10.4, we also
provide a short discussion of Minimal Recursion Semantics and event
logic.

2.2 early semantic networks

2.2.1 The Teachable Language Comprehender

Quillian proposed a spreading-activation theory of human semantic pro-
cessing, and tried to implement it in computer simulations of memory
search, comprehension, and priming. In the description of the mem-
ory of the seminal Teachable Language Comprehender (TLC), Quil-
lian (1969) defines text comprehension as relating assertions made or
implied in some text to information previously stored as part of the
comprehender’s general knowledge of the world. Assertions in the text
and permanent world knowledge are represented in TLC by the same
format. TLC aims to understand general English texts without specific
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Figure 1: Associative links (Quillian 1968)

(mathematical or visual) reasoning rather than working in a restricted
universe like SHRDLU (Winograd 1972). Here we describe the repre-
sentation format of assertions, but not e.g. the syntactic component
(consisting of so called form test) and the teaching protocol.

Figure 1 shows the memory unit representing client. The graph rep-
resents that a client (represented by the first tuple) is a person who em-
ploys a professional. The second tuple represents the (generic) employ-
ment event, whose patient is the professional. The third tuple modifies
the previous one. This modification correspond to that the employment
is done by the client.

Information is encoded as either a unit or as a property. Units (square
brackets) represent objects and events, while properties (parentheses)
encode predications. Both brackets and parentheses are ordered lists of
pointers (asterisks) to other units or properties. The first pointer in a
unit leads to some other unit referred to as that unit’s superset. The
remaining elements, if any, point to properties. Similarly to what we see
with semantic markers and distinguishers (Section 2.3.1), the superset
and these properties are analogous to the Aristotelian genus and differ-
entia specifica, respectively, with the development that memory units
in TLC represent not only lexical items but also specific entities along
with what is asserted about them at some point of text comprehension:

[A] concept is always represented in our format by point-
ing to some generic unit, its superset, of which it can be
considered a special instance, and then pointing to proper-
ties stating how that superset must be modified in order to
constitute the concept intended. (Quillian 1968)

Properties are attribute-values pairs including traditional dimensions
such as pcolor, whiteq and dependency pairs (a theory by Tesniére

16



2.2 early semantic networks

(1959), formalized by Hays (1964)) such as pon, hillq or pemployed,
professionalq. The first element points to the attribute and the sec-
ond to the value. These two obligatory elements are followed optionally
by any number of pointers to other properties. The semantic content
of attribute-value pairs is exemplified using young client where correct
comprehension involves to “supply the fact that this client’s ‘age’ is
being judged young, which is not explicit in the text”.

The network is responsible for inheritance between concepts, the com-
putation of semantic relatedness, disambiguation, and anaphora resolu-
tion with a mechanism that gave rise to the whole theory of spreading
activation in computational linguistics, to which we turn now.

2.2.2 Spreading activation

Simply put, spreading activation is a heuristic variant of shortest path
search or breadth-first search in edge-weighted semantic networks with
the psychological motivation of modeling semantic memory search and
priming. Nemeskey et al. (2013) report spreading activation experi-
ments in the 4lang framework. This subsection describes Collins and
Loftus (1975)’s elaboration of Quillian’s theory (shedding light on sev-
eral misconceptions and offering additional assumptions). Collins and
Loftus wanted to give an account of psycholinguistic experiments of
their time. In their interpretation, “the full meaning of any concept is
the whole network as entered from the concept node”, quite reminiscent
of the structuralist view on word meaning.

Collins and Loftus extend Quillian’s theory of semantic memory
search and semantic priming in order to deal with a number of psy-
chological experiments. Priming is a phenomenon whereby exposure to
one stimulus influences a response to a subsequent stimulus, without
conscious guidance or intention. Earlier exposure to a word influences
the response time to a later exposure. The resulting theory can also
be considered as a model of human semantic processing in a computer.
They argue that the adequacy of a psychological theory should not be
measured solely by its ability to predict experimental data: a theory
should produce the behavior that it purports to explain.

2.2.2.1 Quillian’s theory of semantic memory

In their first section, Collins and Loftus try to correct a number of
the common misconceptions of the original theory. While Quillian’s
theory was developed as a program for a digital computer, Collins and
Loftus elaborate it in psychological terms. People’s concepts contain
indefinitely large amounts of information, less and less relevant in a
specific situation. Concepts (particular senses of words or phrases) can
be represented as a node in a network, with properties of the concept
represented as labeled relational links. Collins and Loftus specify some
properties of the links:
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• Links usually go in both directions between two concepts.

• Links have a level of criteriality, which are numbers indicating
how essential each link is to the meaning of the concept. The
criterialities in two directions can be different.

• The full meaning of any concept is the whole network as entered
from the concept node.

• There are the following kinds of links:
– superordinate (is-a) and subordinate links,
– modifier links,
– disjunctive sets of links,1

– conjunctive sets of links, and
– a residual class of links, which allowed the specification of

any relationship where the relationship (usually a verb rela-
tionship) itself was a concept.

• Links could form paths of any length.

Priming affects links as well as nodes.
Spreading activation means that search in memory for concepts in-

volves traversing in parallel (simulated in the computer by a breadth-
first search) along the links from the node of each concept specified by
the input words. The words might be parts of a sentence or stimuli in an
experimental task. At each node reached in this process, an activation
tag is left that specifies the starting node and the immediate prede-
cessor. If the so called intersection node between the two nodes has
been found, the path that led to the intersection can be reconstructed
by following the tags back to both starting nodes. The path is finally
evaluated to decide if it satisfies the constraints imposed by syntax and
the context.

Collins and Loftus discuss common misinterpretations concerning
Quillian’s theory. The goal of this section is not to decide these ques-
tions, just to show what specific problems arise if one wants to ap-
ply spreading activation. The questions may be answered on empirical
grounds. There is no difficulty for Quillian’s theory in adapting to either
solution to the problems below.

• There is a stronger and a weaker version of the cognitive economy
principle: “all properties are stored only once in memory and must
be retrieved through a series of inferences for all words except
those that they most directly define”, vs “every time one learns
that X is a bird, one does not at that time store all the properties
of birds with X in memory” (just possibly some subset of the
properties).

1 4lang, the semantic network we will introduce in the next chapter, has no disjunction
of edges.
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• “All links are equal.” In Quillian’s original theory, there were crite-
riality tags on links, as we described earlier. Links were assumed
to have different accessibility (i.e. strength or travel time). The
accessibility of a property depends on how often a person thinks
about or uses a property of a concept. Whether criteriality and
accessibility are treated as identical or different is a complex issue.

• Memory search (to make a categorization judgment) proceeds
from the instance to the category, and not the other way round.
I.e. in a categorization task, response time is measured for a sub-
ject to decide whether or not a particular instance (e.g., car) is a
member of one or more categories (e.g., flower or vehicle).

• “Search rate is slower in proportion to the number of paths that
must be searched.” vs “Independent parallel search is like a race
where the speed of each runner is independent of the other run-
ners” which was a common assumption in psychology.

• Other misconceptions concern whether the network is a rigid hi-
erarchy, or whether the theory predicts it will always take less
time to compare concepts that are close together in the semantic
network.

2.2.2.2 The extended theory

In their next section, Collins and Loftus extend the theory with several
assumptions to apply it to some psychological experiments (also trans-
forming the theory from computer terms to quasi-neurological terms):
Local Processing Assumptions, Global Assumptions About Memory
Structure and Processing, and Assumptions About the Semantic Match-
ing Process, i.e. the categorization tasks, which asks “Is X a Y ?”. This
process occurs in many aspects of language processing, such as match-
ing referents, assigning cases, and answering questions.

2.2.2.3 Defining and characteristic features

In the last section, Collins and Loftus deal with the aspects of semantic
processing where the model of Smith (1974) is the major competitor
to Quillian’s theory. Smith represents concepts as bundles of seman-
tic features of two kinds: defining and characteristic features. Defining
features are those that an instance must have to be a member of the
concept, and features can be more or less defining. Characteristic fea-
tures are those that are commonly associated with the concept, but
are not necessary for concept membership. (The latter correspond to
Aristotle’s propria – e.g. man is the only animal that can laugh – and
4lang’s defaults.)

Categorization (decisions like “Is a car a flower?”) consists of two
stages. In Stage 1, all features are investigated, both characteristic and
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defining. If the match is above a positive criterion, the subject answers
“yes”; if it is below a negative criterion, the subject answers “no”; and
if it is in-between, the subject makes a second comparison, which is
based on just the defining features. If the instance has all the defining
features of the category, the subject says “yes”.

The distinction between defining and characteristic features has an
inherent difficulty, pointed out “throughout the ages”, that there is no
feature that is absolutely necessary for any category.

There is for living things a biologists’ taxonomy, which
categorizes objects using properties that are not always
those most apparent to the layman. Thus, there are arbi-
trary, technical definitions that are different from the lay-
man’s ill-defined concepts, but this is not true in most do-
mains. There is no technical definition of a game, a vehicle,
or a country that is generally accepted.

. . .
The decision that a ‘wren‘ is not a ‘sparrow‘ would be

made because they are mutually exclusive kinds of birds.
They are both small songbirds, and it is hard to believe that
many people know what the defining features of a sparrow
are that a wren does not have. The fact that there are cases
where people must use superordinate information to make
correct categorization judgments makes it unlikely that they
do not use such information in other cases. (Collins and
Loftus 1975)

If categorization consists of comparing features between the instance
and the category, then it should not matter whether the instance or
category is presented first, but experimental data indicates that there
is an asymmetry.

Another experiment that might show difficulties with the defining fea-
ture model is a categorization task of birds and animals on the one hand,
and mammals and animals on the other. Deciding that bird names are
in the category ‘bird’ is faster than that they are in the category ‘an-
imal,’ whereas people are slower at deciding that mammal names are
in the category ‘mammal’ than in the category ‘animal’.

A final argument against defining features is that people have incom-
plete knowledge about the world: we often do not have stored particular
superordinate links or criterial properties. Any realistic data base for
a computer system will have this same kind of incomplete knowledge.
The strongest criticism of the Smith (1974) model is that it breaks
down when people lack knowledge about defining features. By viewing
superordinate links as highly criterial properties, Quillian’s extended
theory encompasses a revised version of Smith’s model as a special
case of a more general procedure.

Levelt, Roelofs, and Meyer (1999) mention two other arguments
against defining words as bundles of features. When a word’s semantic

20



2.2 early semantic networks

features are active, then the feature sets for all of its hypernyms or
superordinates are active. Still, there is no evidence that speakers tend
to produce hypernyms of intended targets. The other argument is the
apparent lack of a semantic complexity effect: words with more com-
plex feature sets are not harder to access than simple ones (measured
in reaction time).

2.2.3 Eleven verb-types

Most of the preceding two sections concerned the formalism and the
search heuristic implementing spreading activation. Now we turn to
the semantic content of networks. The first model we investigate is
Conceptual Dependency (CD, Schank (1972)).

CD was used by many computer programs of the time that under-
stood English (MARGIE, the Script Applier Mechanism, and the Plan
Applier Mechanism). From a linguistic point of view, CD is a meaning
representation formalism which is inter-lingual, independent of para-
phrase, and appropriate for drawing inferences.

In CD, the process of syntactic parsing is simultaneous with that of
drawing some types of inferences. Schank (1973) distinguishes inference
from logical deductions (i.e. those applied in automatic theorem prov-
ing). “The intent of inference-making is to ‘fill out’ a situation which
is alluded by an utterance [and to tie] pieces of information together
to determine such things as feasibility, causality and intent of the ut-
terance.” While deductions are highly directed from axioms to some
well-defined goal, inferences “are generally made to see what they can
see”.

CD is a deep representation: the representation of a sentence includ-
ing buy a book should include two actions of transfer (one whose object
is the book and the other whose object is the price) and the (roles
of) participants in these actions. Default arguments (e.g. the object
of the verb drink is an alcoholic beverage) are also subsumed, though
Schank notes that the presence of this default in many languages may
be an artifact of shared culture, not that of the underlying (language-
independent) concept. Semantic arguments are meant broadly, e.g. the
representation of hit should include the instrument. Assertions in CD
graphs have a measure of confidence attached to them.

We describe the formalism of CD in some more detail as it has been
very influential. There are conceptual categories:

• concepts of things that produce a picture (PP) of a real world
item in the mind of the hearer, usually expressed by (common or
proper) nouns,

• actions (ACTs) that are mostly expressed by verbs, and

• attributes modifying the former two (PA and AA, respectively).
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The possible dependencies between concepts are specified by concep-
tual (relation) rules. Links may be modified for tense. To formulate
dependency rules, verbs are “mapped into a conceptual construction
that may use one or more [. . . ] primitive ACTs in certain specified re-
lationships plus other objects and states”. Probably the most famous
of these fourteen primitive ACTs are the three types of transfer, trans-
fer of abstract relations, e.g. ownership or control (atrans), that of
physical objects (ptrans), and that of information (mental transfer,
mtrans). These are related to the deep dative case DAT in 4lang, see
Section 5.4.2.2. In CD, there are four cases: objective, recipient,
directive, and instrumental.

Schank (1973) also discusses inferences that are independent of the
specific language. Understanding the sentence John told Mary that he
wants a book involves the default inference that John wants the books
for mtrans (i.e. for reading), and hearers of this sentence make the
inference so spontaneously that they do not even remember whether
this ACT was explicitly stated. Another example of the many types
of inferences discussed are those about the reasons for actions (motiva-
tions of agents). The base for such inferences is constituted by so called
belief patterns, sequences of causally-related ACTs and states that are
shared by many speakers within a culture.

2.2.4 What’s in a link?

The history of artificial intelligence (AI, and, consequently, that of
knowledge representation and connectionism) consists of summers and
winters. Based on the Contents section of the Wikipedia page, this
history can be summarized as follows:

• The birth of artificial intelligence (1952–1956)

• The golden years (1956–1974)

• The first AI winter (1974–1980)

• Boom (1980–1987): expert systems, knowledge,
fifth generation computers, and connectionism

• Bust: the second AI winter (1987–1993)

• Application in industry and specific isolated problems (1993–2001)

• Deep learning, big data and artificial general intelligence (2000–present)

Hubert Dreyfus argued that human intelligence and expertise depend
primarily on unconscious instincts rather than conscious symbolic ma-
nipulation. Early approaches to artificial common-sense reasoning may
seem so naive to the contemporary reader that we are not surprised that
winters (periods with disappearing enthusiasm and funding) came. The
problems were made explicit by Woods (1975) dealing with the theoret-
ical underpinnings of network representations and the semantics of the
networks (nodes and links) themselves. He pointed out that despite the
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many publications and demo systems, there was no theory of semantic
networks, and existing networks were inadequate for the representa-
tions of many linguistic phenomena. Links were used to represent what
Brachman and Levesque (1985) call many different levels, e.g. imple-
mentational pointers, logical relations, semantic relations (e.g. “cases”),
and arbitrary conceptual and linguistic relations.

In section 2, Woods discusses what semantics is, and whether it can
be separated or even distinguished from syntax on the one hand and
inference or “thought” on the other. In his terms, linguistics renders dis-
ambiguated representations to sentences, while philosophy maps these
to truth values. Retrieval and inference are not part of semantics, nor
is pure disambiguation among syntactic parses, even if this is based on
selectional restrictions and so-called semantic features. A system needs
a separate semantic module for the justification calling it semantic.

The most characteristic notion in a semantic network is that of a link
that may model human associations. Semantic representations need to
be precise, formal, unambiguous, and logically adequate.2 Woods dis-
cusses the problems of the existence of canonical forms, the connection
between attribute-value matrices and networks, relations of more than
two arguments (e.g. x is ‘between y and z’)3, and most importantly the
logical type of nodes. Woods’ Section 4 discusses two problems that are
difficult for AI, restrictive relative clauses, intensional entities (repre-
sentations of entities without commitment to existence or distinctness),
and quantification. Solutions to these problems in the 4lang theory are
offered in Kornai (2023), though they have not yet been implemented.

2.2.5 Conceptual Graphs

We continue with Conceptual Graphs (CG, J. Sowa (1976)), a “two-
dimensional form of logic”, that connects semantic networks discussed
so far to the broader discipline of knowledge representation and logic.
An excellent introduction is offered in John F Sowa (1992).

CG is a knowledge representation language designed as a synthesis
of semantic networks; “logic-based techniques of unification, lambda
calculus, and Peirce’s existential graphs; linguistic research based on
Tesniere’s dependency graphs and various forms of case grammar and
thematic relations; and data-flow diagrams and Petri nets, which pro-
vide a computational mechanism for relating conceptual graphs to ex-
ternal procedures and databases.” The result is an expressive system of
logic with a direct mapping between natural languages and e.g. expert

2 Logic is one of the main disciplines for meaning representation besides semantic
networks and vector-space models. In this chapter, we assume familiarity with first
order and intentional logic, and do not go into details, as this is not necessary for
the main chapters.

3 The representation of high arity predicates by binary ones is one of the main char-
acteristics 4lang, see the elimination of “deep ditransitives” in Section 3.1.3.
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Figure 2: CS graph for A cat chased a mouse John F Sowa 1992, p.80

systems. By combining Peirce’s contexts with the dependency graphs,
CG provides a formalism that can represent Schank’s scripts.

As exemplified in Figure 2, CG represents concepts by rectangular
nodes and dependency relations (“conceptual” relations) by circular
ones as a typed (a.k.a. sorted) version of logic. (As we have already
seen, Schank’s graphs show conceptual relations as various kinds of
arrows instead of these labeled circles.)

2.2.6 The naive physics manifesto

Hayes (1979) proposes the construction of a formalization of a portion
of common-sense knowledge about the everyday physical world (objects,
shape, space, movement, substances, time, etc.) along with a theory of
meaning. The main characteristics of the proposed theory are

• thoroughness, i.e. coverage,

• fidelity: the theory should be reasonably detailed,

• density: the ratio of facts to concepts needs to be fairly high
(i.e. the units have to have lots of slots), and

• uniformity: a common formal framework (language, system, etc.)
so that the inferential connections between the different parts
(axioms, frames,. . . ) can be clearly seen. It is methodologically
important to allow the use of a variety of formalisms in sub-areas,
but idiosyncratic formalisms should be systematically reducible
to the basic formalism, and be regarded as ‘semantic sugar’.

In this section, we introduce sections 3 to 6 of Hayes (1979). For
modern advances in this direction, see Hobbs (2008), which we discuss
in Section 2.2.7.

2.2.6.1 The axiom-concept graph: clusters and density

A naive physics formalization consists of many assertions and sym-
bols (i.e. tokens: relation symbols, function and constant symbols) –
or: frame headers, slot names, etc.; or: node and arc labels, etc. The
meaning of the tokens is defined by the structure of the formalization,
by the pattern of inferential connections between the assertions. The
formalization is dense, if for each token, there are many axioms in-
volving it, which pin down the meanings of the tokens. This view of
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meaning differs profoundly from the view which holds that tokens in a
formalization are words in a natural language.

The axiom-concept hypergraph (ACH) consists of nodes correspond-
ing to tokens of the formalization; and arcs corresponding to axioms:
an arc links the tokens that it uses. The formalization is dense if the
ACH is highly connected. Hayes does not expect density to be uniform:
there will be more dense clusters of concepts. Identifying these clusters
is one of the most important and difficult tasks. E.g. what happens
with liquids, is part of the liquids cluster, not part of some theory of
‘what-happens-when’: causality is not a cluster. Cluster identification
is hard, since a large conceptual structure can be entered anywhere. If
it seems hard to say anything very useful about the concepts, that can
mean that one has entered the graph at a locally sparse place, rather
than in a cluster. This thesis analyses a similar graphical representation
of the 4lang semantic network and the connected components of the
graph in Section 3.3.

Clustering is hierarchical: e.g. the collection of concepts to do with
three-dimensional shape and orientation (‘above’, ‘below’, ‘tall’, ‘fat’,
‘wide’, ‘behind’, ‘touching’, ‘resting on’, ‘angle of slope’, ‘edge’ (of a
surface), ‘surface’ (of a volume), ‘side’, ‘vertical’, ‘top’, ‘bottom’, which
have many internal relationships) must appear significantly in concep-
tual frameworks that underlie visual perception and locomotion, de-
scribing assemblies, the theory of liquids, and that of physical actions
and events.

Hierarchical organization is a point where we disagree with Hayes:
while the lexical relations this thesis is about could theoretically be
organized in a hierarchy, we think that such an organization is disad-
vantageous from a practical point of view, as different contrast will
show up in different branches of the hierarchy, and even the relations
that appear in more branches may enter in different vertical order.

2.2.6.2 The a{c ratio and reductionist formalizations

The ratio of axioms to concepts (the a{c ratio) will be large for a dense
axiomatization. Any interesting axiomatization will have a{c greater
than one; but there are interesting axiomatizations in which a{c will
be very close to 1. E.g. in the Zermelo-Fraenkel set theory, c “ 2 (the
concepts are ‘P’ and ‘set’) and a “ 8. This theory enables one to de-
fine many concepts (e.g. the integers; the rationals; the reals), and the
desired properties of these concepts (e.g. the principle of induction for
integers or the continuity of the real line) follow from the structure of
these definitions, and the axioms as theorems of the axiomatization.
The axiomatic approach to naive physics which Hayes proposes is dif-
ferent. Set theory is reductionist in the extreme: it is extraordinarily
sparse. By adding definitions to a reduced theory, a{c tends asymptot-
ically to unity. The resulting ACH has one very small cluster at the
center, surrounded by a cloud of nodes each linked radially. This reduc-
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tionist graph is quite a different ‘shape’ from the connected, clustered
graph of a dense axiomatic theory. Hayes believes that there is no such
small, reductionist theory for common sense reasoning.

Many approaches in the artificial intelligence literature, make a re-
ductionist assumption or ‘semantic primitives’, exemplified by the work
of Wilks (1977) and Schank (1975). The number of primitives is about
90 in Wilks, and 14 in Schank. Schank and his students associated in-
ference molecules with the 14 primitive action-tokens, which play the
same sort of central organizing role that the set axioms do. The de-
sired properties of e.g. buying or giving follow from their definitions,
and the meaning given to the primitives by the core theory. Hayes
criticizes Wilks for merely presenting a list of tokens with a brief de-
scription, i.e. the semantic primitives being English words. A reduction-
ist, semantic-primitives based approach to meaning may be adequate
for some subtasks, but in real human language understanding at some
point we will have to represent detailed knowledge of the world.

2.2.6.3 Meanings, model theory, and fidelity

If the meanings of tokens are not specified by definitions, then how? A
token means a concept to the extent that the formalization enables a
sufficient number of inferences to be made whose conclusions contain
the token. But Hayes assumes that a formalization has an adequate
model theory as well, i.e. tokens have extension. Hayes highlights the
widespread delusion of confusing a formal description of a model found
in the textbooks with the actual model. If axiomatization has a very
much simpler model than the intended one, then the tokens mean no
more than they mean in the simple model. This is what Hayes means by
‘fidelity’. E.g. an adequate formalization of a blocks world will be such
that any model of it must have an essentially three-dimensional struc-
ture. Fidelity is how closely the simplest model resembles the intended
one.

A related problem is that the meaning of a token depends upon
the entire formalization, a change to any part of the formalization can
change every other part. People with different formalizations in their
heads may understand the same token in different ways. Find a sub-
stance and a set of circumstances such that I would call it ‘water’ and
you would not! It is even possible when our beliefs about water (i.e. all
the assertions which actually contain the token ‘water’) are identical.
The difference may lie in some related concept (such as viscosity, or
drinkability) which we understand differently. It may not even be pos-
sible to say exactly which tokens we differ on. One of the good reasons
for choosing naive physics to tackle first is that there seems to be a
greater measure of interpersonal agreement here.

If you change the meaning of ‘water’, the change in the meanings
of other tokens is less, the further away the token is from ‘water’. As
a working hypothesis, you may identify this distance with shortest-
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path distance in the ACH hypergraph. Thanks to this distance-dilution
effect, it seems a reasonable strategy to, first, work on clusters more or
less independently. You can introduce concepts, which occur in some
other cluster, fairly freely, assuming that their meaning is reasonably
tightly specified there. E.g. in considering liquids, I needed to talk about
volumetric shape: our concept of a horizontal surface would hardly
be complete if we had never seen a large, still body of water — but
we assume of a fairly autonomous theory of shape. The ‘definitions’
view of meaning is theoretically wrong, but a good method. Finally,
Hayes talks about the body and sensory input. As any consistent first-
order axiomatization has a model with only symbols, ‘motor tokens’ —
symbols which describe bodily movements — should directly be related
to the body.

2.2.6.4 Thoroughness and closure

One way to have a high a{c ratio, it might seem, would be to keep c

small: find some small, self-contained groups of concepts which could
be formalized in total isolation to a reasonable degree of fidelity. But
in a typical situation, one quickly needs to introduce tokens, and in
order to pin down their meanings, yet more concepts. The proliferation
of tokens seems to be getting out of hand. If one thinks of exploring
the ACH, one needs a sense of direction, to stay within the current
cluster. During the formalization process, the proliferation must slow
down eventually. The ‘thoroughness’ requirement is to go on until this
slows down, when our collection of concepts has closed upon itself, so
that all the things one wants to say in the formalization can be said
using the tokens which have already been introduced. This means we
have spanned the entire graph, and need only to add new arcs, filling
out the graph until its density is sufficient to capture the meanings of
its tokens. Hayes’s program is to get a formalization which is closed
and has high fidelity (so, high density): then it must also be thorough.

To achieve greater fidelity, one will need greater thoroughness. E.g. to
really capture the notion of ‘above’, you probably have to go into analo-
gies to do with interpersonal status: (Judge’s seats are raised; Heaven
is high, Hell is low; to express submission, lower yourself, etc.) Imagine
a world in which the ‘status’ analogy was reversed. That is a possible
model of naive physics, but not of common sense. A formalization can-
not be deep without being broad, and must be deep to be dense: so
a dense formalization must be deep and broad. The cluster hierarchy
mentioned before depends upon the fidelity, the level of detail. The pro-
gramme of tackling naive physics in isolation is based on the belief that
there is a level of detail at which naive physics forms a close cluster in
a rich but tractable level of detail.
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Composite Entities perfect, empty, relative, secondary, similar, odd
Scales step, degree, level, intensify, high, major, considerable
Events constraint, secure, generate, fix, power, development
Space grade, inside, lot, top, list, direction, turn, enlarge, long
Time year, day, summer, recent, old, early, present, then, often
Cognition imagination, horror, rely, remind, matter, estimate, idea
Communication journal, poetry, announcement, gesture, charter
Persons leisure, childhood, glance, cousin, jump
Microsocial virtue, separate, friendly, married, company, name
Bio breed, oak, shell, lion, eagle, shark, snail, fur, flock
Geo storm, moon, pole, world, peak, site, sea, island
Material World smoke, shell, stick, carbon, blue, burn, dry, tough
Artifacts bell, button, van, shelf, machine, film, floor, glass, chair
Food cheese, potato, milk, bread, cake, meat, beer, bake, spoil
Macrosocial architecture, airport, headquarters, prosecution
Economic import, money, policy, poverty, profit, venture, owe

Table 1: Concepts in Hobbs (2008)

2.2.7 Deep Lexical Semantics

Now we turn to Deep Lexical Semantics (Hobbs 2008), motivating it
from a more recent perspective. HellaSwag (Zellers et al. 2019) tests pre-
trained deep language models like BERT (Section 4.3) with questions
like which of the alternatives below finishes the short text A woman is
outside with a bucket and a dog. The dog is running around trying to
avoid a bath. She... the most appropriately.

1. rinses the bucket off with soap and blow dry the dog’s head.

2. uses a hose to keep it from getting soapy.

3. gets the dog wet, then it runs away again.

4. gets into a bath tub with the dog.

The good answer is 3. Models struggle with this task. The authors
note that while the wrong endings are on-topic, with words that relate
to the context, humans consistently judge their meanings to be either
incorrect or implausible. These problems suggest that for understand-
ing, we need something beyond the meaning of the words, and their
probability in different sentence contexts. We saw in Section 2.2.6 that
Hayes (1979) suggested the construction of a formalization of a portion
of common-sense knowledge about the everyday physical world along
with a theory of meaning. Deep Lexical Semantics (Hobbs 2008) is a
further step in this direction.

Hobbs (2008) took a basic core of the about 5000 most frequent
synsets in WordNet; categorized these into sixteen broad categories,
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e.g. time, space, scalar notions, composite entities, and event structure;
and sketched out the structure of some of the underlying abstract core
theories of commonsense knowledge (see Table 1). The latter includes
the basic predicates in terms of which the most common word senses
need to be defined or characterized; axioms that link the word senses
to the core theories; and a kind of “advanced lexical decomposition”,
where the “primitives” into which words are “decomposed” are elements
in coherently worked-out theories. Hobbs (2008) focuses on the 450
synsets that are concerned with events and their structure.

Hobbs has very similar principles to Hayes (1979): We must have
underlying theories and axioms that link these to words. Concepts and
axioms include domain-dependent knowledge, of course, but 70-80% of
the words in most texts, even technical texts, are words in ordinary
English. Hobbs chooses the core theory of scales, which will provide ax-
ioms involving predicates such as ‘scale’, ‘<’, ‘subscale’, ‘top’, ‘bottom’,
and ‘at’. These are abstract notions that apply to partial orderings as
diverse as heights, money, and degrees of happiness.

Some lexical and world knowledge can be acquired automatically,
e.g. the correlation between “married” and “divorced”. The correspond-
ing predicate-argument structures may also be acquired, along with
which way the implication goes and with what temporal constraints.
But consider a more complex relation to illustrate his axiomatization
method, that of a range. In Hobbs’s view, it is feasible to manually ax-
iomatize the meanings of several thousand words, what can achieve the
desired complexity and reliability of the core theories and the linking
axioms.

Section 3 describes the following core theories that are crucial in
characterizing event words:

• Eventualities and their Structure: states and events,

• Set Theory (modeled in a standard fashion),

• Composite Entities, including the predicate ‘partOf‘ and the figure-
ground relation ‘at‘,

• Scales: partial orderings, monotone functions, the construction of
composite scales, the characterization of qualitatively high and
low regions of a scale (related to distributions and functionality),
and constraints on vague scales,

• Change of State

• Cause. Recall that Hayes (1979) explicitly warned against trying
to formalize causality, saying that what happens e.g. with liquids,
is part of the liquids cluster, not part of some theory of ‘what-
happens-when’.
In Hayes view, causality is characterized by two properties: If ev-
ery eventuality in a causal complex happens, the effect happens;
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and everything in the causal complex is relevant to the effect in a
way that can be made precise. Hobbs’s approach to causality in-
cludes force-dynamic notions (Section 2.3.4) like enable, prevent,
help, obstruct, attempts, success, failure, ability, and difficulty.

• Events. Changes of state and causality compose into more com-
plex events: conditional, iterative, cyclic, and periodic events.
This part of the theory is linked with several well-developed on-
tologies for event structure.

• a well-developed theory of time,

• a rather sparse theory of space, and

• a large number of theories explicating a commonsense theory of
cognition,

• the predicates ‘possess‘ and ‘remain‘ would be explicated in a
commonsense theory of economics.

2.2.8 kl-one: super-concepts and local restrictions

We have already seen a computational formalizations of the Aristotelian
genus versus differentia specifica: in the form of supersets and properties
in Quillian (1969)’s semantic memory. The next section will discuss se-
mantic markers and distinguishers in Katz and Fodor (1963)’s approach
to meaning decomposition as well. A third example is kl-one (Brach-
man and Levesque 1985), where concepts are described by their sub-
suming concepts (their super-concepts), their local internal structure
expressed in roles (which describe relationships like properties or parts)
and structural descriptions, which express the interrelations among the
roles.

A Concept must have more than one super-concept (if
there are no local restrictions), differ from its super-concept
in at least one restriction, or be primitive. A Concept with
no local restrictions is defined as the conjunction of its
super-concepts. Super-concept serves as a proximate genus,
whereas the local internal structure expresses essential dif-
ferences, as in classical classificatory definition (Sellars 1917).
The network structure formed by the subsumption relation-
ships between Concepts [is] a taxonomy. (Brachman and
Levesque (1985), emphasis added)

kl-one instigated first-class status for “Roles” a.k.a. slots. We con-
clude this description of kl-one with contexts. Individual concepts,
i.e. concepts that uniquely describe individuals, are associated to some
context. Assertions about co-reference and existence are also always
relative to some context so as not to affect the taxonomy of generic
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knowledge. Context provides the mechanism for reasoning about hypo-
theticals, beliefs, and desires.

2.2.9 Cyc

Most of the problems discussed in Section 2.2.4 have not been solved
to this day, and though expert systems in specific domains brought a
second summer in AI, the second winter also arrived due to brittleness
outside these narrow domains. The drop in reputation and funding was
a sign of the need to represent commonsense knowledge, the wisdom
of a kindergarten child in a knowledge base (KB). Cyc (Lenat and
Guha 1990) is an early example of effort in this direction. In retrospect,
their success lies between the two extremes they formulated as at least
providing some insight into issues involved in ontology population with
“an indication as to whether the symbolic paradigm is flawed” and
the more optimistic one that “no one in the early twenty-first century
even considers buying a machine without common sense”. For 4lang,
Cyc is relevant especially for the status of primitives, see Section 3.2.
While there is a related open resource, and even the framework is not
much older than WordNet (Section 2.4.3), its impact on 4lang is rather
theoretical, so we discuss it here, among the early works that laid down
the principles of semantic networks rather than in Section 2.4, where
modern lexical resources are introduced.

Lenat and Guha (1990) organize their paper along the three tasks
in building a KB: the (logical) language (CycL), the procedures for
manipulating knowledge, and populating the KB. The authors frame
understanding as including “beliefs, knowledge of others’ [. . . ] limited
awareness of what we know, various ways of representing things, [and]
knowledge of which approximations (micro-theories) are reasonable in
various contexts”. In our description of Cyc we concentrate on its as-
pects with the greatest impact on 4lang, the language and the database,
rather then inference.

The two systems are already similar in their methodologies: the core
of the Cyc ontology was built manually, and it was extended in the 80s
by knowledge entered in primarily automatic fashion.

We developed our representation language incrementally
as we progressed with [the task of knowledge encoding].
Each time we encountered something that needed saying
but was awkward or impossible to represent, we augmented
the language to handle it. Every year or two we paused and
smoothed out the inevitable recent “patchwork.” (Lenat and
Guha 1990)

The language is summarized as frame-based and embedded in a more
expressive predicate calculus framework along with features like repre-
senting defaults or reification (allowing one to talk about propositions
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in the KB). As for the inference machine, they abandon the AI tradi-
tion of a single, very general mechanism (e.g. resolution) for problem
solving and prefer special data structures and algorithms for problems
of varying complexity as done in traditional computer science.

The main difference between the Cyc KB and 4lang is that we distin-
guish the core vocabulary from the broader one, while this distinction
is not made in the Cyc KB where, though many of the one or two
million assertions are general rules, some are specific facts dealing with
particular entities and events (e.g. famous people and battles.)

A great heritage of 4lang from Cyc is the use of non-monotonic
reasoning: most assertions are default beliefs and the addition of new
facts can cause them to be retracted. Cyc is also similar to present day
question answering systems in that inference is based upon a (quickly
identified) small subset of relevant sentences.

Though Cyc is strongly typed (as opposed to the type-free 4lang), it
offers us many insights. Lenat and Guha frequently use “set-theoretic
notions to talk about collections, but these collections are more akin
to what W. Quine (1969) termed natural kinds, e.g. dog or lemon, that
are usually assumed not to be completely definable as intersections of
more primitive classes. Collections are organized in a generalization-
specialization hierarchy” (Brachman and Levesque 1985).

Cyc handles time and actions analogously to space: time and events
are substances. “One could take a glob of peanut butter and separate
out all the peanut chunks, and these alone do not form a glob of peanut
butter. [. . . ] The substancehood principle applies only to pieces larger
than the granule of that substance.” ‘Walking’ is a type of temporal
substance by the same token.

As there are “orthogonal ways of breaking down a physical object,
there [are two] orthogonal ways of breaking down an action:” actors
and subEvents. There are separate categories of slots that are used in
order to relate actors to actions and subEvents to events. To put it
so simply that may seem brutal from a strongly typed point-of-view,
but excellent for 4lang purposes: actor slots are roles like performer,
victim, and instrument and sub-event slots are ‘before’, ‘during’ and
‘after’ the action. The later are the predecessors of the 4lang concepts
representing event structure with the same names (except for ‘during’
which is unmarked in 4lang), and can also be compared to the pre-
and post- procedures (conditional execution) and when- (side effects)
in kl-one (see the previous section).

2.3 cognitive semantics

Recall the overview of this section in Section 2.1.2.
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2.3.1 Semantic markers and distinguishers

We start this section with the standard model of the featural decom-
position of lexical meaning due to Katz and Fodor (1963). The paper
describes its aim as the organization of facts contributed by diverse
fields including philosophy, linguistics, philology, and psychology. The
first part of the paper describes the domain, the descriptive and ex-
planatory goals, the mechanisms, and the empirical and methodological
constraints upon a semantic theory. They want to find a balance of
strict formalism (developed some years later in Montague Grammar)
and great explanatory power (like traditional lexicography). The input
to their semantic model is a sentence analyzed by a recursive composi-
tional grammar, in modern terms, a parse tree. These authors require
a semantic theory be capable of recognizing (and resolving) ambiguity,
paraphrase, and anomaly (e.g. The paint is silent) but other aspects
like the computation of truth values is deferred.

The difference between syntax and semantics is that the latter may
rely on context, mainly linguistic one (the dialog), and to a restricted
degree, extra-linguistic one (world knowledge). Their notion of world
knowledge subsumes facts like ‘buildings do not jump’, which is needed
for comprehending the sentences Joe jumped higher than the Empire
State Building and Joe jumped higher than you differently. The theory
should “interpret discourses just so far as the interpretation is deter-
mined by grammatical and semantic relations which obtain within and
among the sentences of the discourse.”

The components of the proposed semantic theory include the dictio-
nary (the same module we will call the lexicon) and one that could
be called a word-sense disambiguation method in present-day terms.
The most important part of this theory is the structure of dictionary
entries. Besides part-of-speech (POS) specification and, optionally, ex-
plicit cross-references to synonyms, dictionary entries consist of sense
characterizations like that in Figure 3. The key notion is that of the se-
mantic markers (in parenthesis, e.g. pHumanq) that represent relations
between meanings of the same polysemous word and between different
dictionary entries. Distinguishers (in brackets) assigned to a lexical
item are intended to reflect what is idiosyncratic about its meaning.
This distinction is analogous (Kornai 2019, Chapter 5) to the Aris-
totelian notion of genus (a mirror is a ‘plain surface‘) and a differentia
specifica (. . . that ‘reflects‘). The unenclosed elements are grammatical
“markers” (features). Semantic markers play a role in disambiguation,
selectional restrictions, and, in a limiting case of selectional restrictions,
the detection of semantic anomaly. The formalism also allows restric-
tions for the arguments of the items, e.g. xpFemaleqy in the represen-
tation of one of the senses of honest designates that the corresponding
meaning of honest applies only to arguments with the pFemaleq marker.
In the concluding section, the authors mention that there may exist a
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bachelor

noun

(Animal)

(Male)

[young fur seal
when without a
mate during the
breeding time]

(Human)

[who has the
first or lowest

academic degree]

(Male)

[young knight
serving under

the standard of
another knight]

[who has
never married]

Figure 3: The sense-characterization of bachelor by Katz and Fodor (1963)

universal inventory of semantic markers from which the markers of each
particular language are drawn, a goal 4lang (the semantic representa-
tion framework that we introduce in the next chapter) shares with this
theory.

2.3.2 Case Grammar

One of the main chapters of this thesis (Chapter 5) introduces the
semantic roles used in 4lang, the concept network of the research group
the author belongs to. Our system has been heavily influenced by Case
Grammar (Fillmore 1968), which this section introduces.

Our introduction is based on Palmer, Gildea, and Xue (2010, Chapter
1), who investigate semantic roles (semantic relations and predicate-
argument structure) and the controversies surrounding them. They
start with the example that from a sentence like John threw a ball
to Mary in the park, an NLP system should identify a throwing event,
John as the Agent or Causer of the event, Mary as the Recipient, the
ball as the item being thrown, and the location of the throwing event.
The linguistic theory of mapping from the syntactic analysis of the
sentence to the underlying predicate argument structures is known as
Linking. On the syntactic side, we have alternations like John broke
the window/The window broke with the same semantic role (or concep-
tual relation) in both sentences. (In the example, it would typically be
labeled as the Patient.)

Case Grammar originated with Fillmore’s paper on “deep” cases,
i.e. semantically typed verb arguments (Fillmore 1968). The theory in-
volves types of nouns with different types of cases, e.g. the Agentive and
Dative roles are most likely to be of type animate. Argument frames
specify the number, type and obligatory/optional nature of roles asso-
ciated with a verb. Linguists developed tests for determining whether
two noun phrases have the same case. For instance, members of a con-
junction have the same case. Representing alternative role assignments
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(e.g. Mother is cooking the potatoes/The potatoes are cooking/Mother
is cooking) by the same deep cases can result in a more compact lex-
icon. Even like and please can be considered semantically equivalent,
distinguished only by their preferred mappings. Within the semantic
domain, generalizations can be exploited in the form of commonalities
e.g. between the Agentive cases and the Objective cases of actions such
as hitting, breaking, and cutting.

The inventory of roles differ between flavors of the theory, only the
Agent and the Patient being relatively straightforward. The Agent is
the initiator of the action, the doer, typically acting deliberately or on
purpose. The question What did X do? can be applied, with X being
the Agent. The Patient, on the other hand, is being acted upon. It is
likely to change state as a result of the Agent’s actions. The questions
What happened to Y ? or What did X do to Y ? would apply.

2.3.3 Natural Semantic Metalanguage

Lenat and Guha (1990) formulate one of the greatest problems remain-
ing in modern semantic networks as follows.

Programs often use names for concepts such as predi-
cates, variables, etc., that are meaningful to humans exam-
ining the code; however, only a shadow of that rich mean-
ing is accessible to the program itself. For example, there
might be some rules that conclude assertions of the form
laysEggsInWater(x), and other rules triggered off of that
predicate, but that is only a fragment of what a human can
read into laysEggsInWater (Lenat and Guha 1990)

A solution to the problem of arbitrary node-labels has been offered
outside of the computational realm, by the Natural Semantic Meta-
language (NSM) approach (Wierzbicka 1972) that we introduce fol-
lowing the first two chapters in a more recent collection (Goddard and
Wierzbicka 1994), “the first attempt ever to empirically test a hypothet-
ical set of semantic and lexical universals across a number of genetically
and typologically diverse languages” with “parallel and strictly compa-
rable answers to the [questions of] a shared set of concepts, forming the
common conceptual foundation of all cultures”.

The principles of the work are specified in their Section 1.1 and
enumerated below. Goddard includes a discussion of the opinion of the
main semanticist of the century on these principles.

1. Semiotic Principle. “A sign cannot be reduced to or analyzed into
any combination of things which are not themselves signs”. God-
dard lists some examples of what meaning cannot be decomposed
to: reference or denotation, truth conditions, neurophysiological
data, and usage. This principle is opposite to the goal of this
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thesis that searches for connections between symbolic representa-
tions and distributional ones.

2. Decomposition into discrete terms without (circularity and) res-
idue. Exhaustive analysis distinguishes NSM from componential
analysis which attempts to capture only systematic oppositions
or “Katz and Jackendoff, who both believe that for many words
an unanalysable residue of meaning remains” (the Distinguishers,
recall Section 2.3.1). Commitment to discrete terms distinguishes
NSM from scalar notations, the topic of Chapter 7.

3. Semantic Primitives Principle. There exists a finite set of unde-
composable meanings and semantic primitives have an elemen-
tary syntax whereby they combine to form ‘simple propositions’.
While this is a key point of the collection, 4lang does not require
the elements of the core/defining vocabulary to be primitive.

4. NSM approach. “The proper metalanguage of semantic represen-
tation is [. . . ] a minimal subset of ordinary natural language.”
Goddard lists examples for positions taken in the literature re-
garding the problem of the (meta-)semantics of the representa-
tional elements.

• Proposals which represent primitives by obscure technical
terms like symbols borrowed from logic (D, @) or those like
Schank’s pact, cact and tact that need explanation in or-
dinary English (e.g. ‘physical act’, ‘communication act’ and
‘transfer act’, respectively).

• Predicates in generative semantics, like cause, not, be-
come and alive whose intended meanings were not (ex-
actly) those of the English words, but were more ‘abstract’

• Katz (1987) uses semi-technical labels to identify the ‘con-
ceptual components’ of e.g. the English word chase: ‘Ac-
tivity’, ‘Physical’, ‘Movement’, ‘Fast’, ‘Direction’, ‘Toward
location of’, ‘Purpose’, ‘Catching’. It has to be made clear
what we gain by formalization as opposed to natural syntax.

5. “The NSMs derived from various languages will [. . . ] have the
same expressive power.”

6. The linguistic exponents of semantically primitive meanings in
different languages can be placed into one-to-one correspondence
(modulo differences like allolexy and POS membership), thus they
share a common set of combinatorial properties.

7. Strong Lexicalization Hypothesis. Every semantically primitive
meaning can be expressed through a word, morpheme or fixed
phrase in every language. Exponents may be homonyms with
different POSs or bound morphemes. Goddard follows Chomsky
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(1965) in distinguishing formal universals concerning the princi-
ples by which sense-components are combined to yield the mean-
ings of lexemes from substantive universals concerning the iden-
tity of semantic components. The collection tests the thesis of
the most extreme form of substantive universalism that “there is
a fixed set of semantic components, which are lexicalized in all
languages”.

In the NSM approach, words (morphemes, etc.) can be identical in
meaning despite different POS, ranges of use, or patterns of polysemy.
Differences in the range of use does not invalidate the claim of seman-
tic equivalence, as far as it is caused just by lexical blocking or social
and cultural factors. The project has introduced canonical contexts to
specify the sense of each polysemous words that should be used in ex-
plications, and the contexts in which the proposed meaning is expected
to be found.

As admitted in the last chapter, the greatest problem with the NSM
approach is polysemy as basic, everyday words are particularly likely
to be polysemous because of Zipf’s law. They require polysemy always
to be justified on language-internal grounds, and to prove that a word
is polysemous, one has to demonstrate that the putative senses call for
distinct reductive paraphrase explications or syntactic frames (and dis-
tribution). We note that patterns of polysemy show similarities among
languages (Youn et al. 2016).

Similarly to 4lang, NSM has to reconcile the existence of language-
specific morphosyntactic categories with the claim that the semantic
metalanguage is isomorphic across languages, e.g. in the natural seman-
tic metalanguage based on Latin, volo would never occur without an
explicit subject. We will discuss this problem in Chapter 5.

Goddard and Wierzbicka (1994, Section 2.2) investigates The Pro-
posed Primitive Inventory in the groups shown in Table 2. Albeit we
are not interested in whether an element is primitive, it is useful to
discuss how the core definitions in 4lang handle the areas where these
groups have proved indispensable in NSM.

2.3.4 Force dynamics in language and cognition

Talmy (1988) draws the attention to what he calls force dynamics: lin-
guistic, psychological, and social phenomena related to physical ones,
like the exertion of force, resistance to such exertion and the overcoming
of such resistance, blockage of a force and the removal of such block-
age, etc. Talmy offers a framework that also includes letting, hindering,
helping. The theory builds upon the parallelisms between how we refer
to physical and psychosocial matters.

In English, force dynamics is present in different grammatical cat-
egories: closed-class words (conjunctions, prepositions, modals), open-
class lexical items, semantics of course (physical force psychological
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Substantives I, you, someone, something, people
Mental predicates think, say, know, feel, want
Determiners/quantifiers this, the same, other, one, two, many, all
Actions/events do, happen
Meta-predicates no, if, can, like, because, very
Time/place when, where, after, before, under, above
Partonomy/taxonomy have parts, kind of
Evaluators/descriptors good, bad, big, small

Table 2: Primitives of Natural Semantic Metalanguage in groups.

and social interactions, psychosocial “pressures”), and discourse (pat-
terns of argumentation, discourse expectations and their reversal). The
theory brings these together into systematic relationships.

Talmy attributes his method to “cognitive semantics” or “cognitive
linguistics”, which analyzes the cognitive process and its surface lin-
guistic realizations together. Force dynamics is among the fundamental
notional categories that languages use to structure and organize mean-
ing, while they exclude other notional categories from playing this role.
For cognitive semantics, it is important, how the linguistic structuring
relates to perceptual modalities and reasoning, space, time, and visual
perception, or, in this case, physics and psychology. The paper goes
from conceptually basic physics dynamics to psychological and social
interactions, the grammatical category of modals, discourse factors (ar-
gumentation), and other cognitive and conceptual domains.

The simplest force dynamics model consists of the following:

• two forces, and an Agonist and an Antagonist. The salient issue
is whether the Agonist is able to manifest its force.

• The Agonist is toward action or toward inaction. The Antagonist
opposes the Agonist.

• The relative strengths of the Agonist and the Antagonist is a
third parameter.

• The result is either action or inaction.

More complex force-dynamic patterns change through time: a stronger
Antagonist can come in or go out, or the balance of forces can shift.

An additional kind of pattern is in which the Antagonist remains
away. Corresponding to each of the steady-state patterns introduced
so far, there is a secondary steady-state pattern with the Antagonist
steadily disengaged. E.g. where the Antagonist is stronger, we have the
patterns for the Antagonist letting the Agonist to move or rest.
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There are alternatives of Foregrounding different subsets of the fac-
tors, e.g. making the Agonist, the Antagonist, or the result the gram-
matical subject or the object.

Examples with a weaker Antagonist: with the Agonist as the subject:
despite, although, with the Antagonist as subject: hinder, help, leave
alone.

Psychodynamics generalizes notions of physical pushing and blocking
to wanting and refraining; psychological ‘pressure’, and ‘pushing’. The
self may be divided to an Agonist and an Antagonist, where the Agonist
represents the desires, and the Agonist’s role is suppression. In language,
this is extended to physical entities without sentience such as wind, a
dam, or a rolling log. A psychological component is normally included
and understood as the factor that renders the stronger participant. The
body has an intrinsic tendency toward rest, requiring animation by the
psyche.

Two additional factors are the phase along a temporal sequence, and
‘factivity’: the occurrence or non-occurrence of portions of the sequence
and the speaker’s knowledge about this. With the Antagonist as subject:
try involves focus at the initial phase without knowledge of its outcome,
while succeed and fail focus on a known occurring or non-occurring
outcome.

The force dynamics in discourse (argumentation and expectations)
is based on the metaphor of an argument space: each point can oppose
or reinforce another point, and each encounter can move the argument
state closer to or further from one of the opposing conclusions.

The last part of the paper compares conceptual models of physics
implicit in language to the real physical theory. One great difference is
the asymmetry between the privileged Agonist and the Antagonist so
natural in language-based conceptualizing, which has no counterpart
in physical theory. The real theory is based on objects’ impetus in mo-
tion, while the naive theory assumes a tendency to come to rest. In
modern physics, stationariness is not a distinct state but is simply zero
velocity. In language either the Agonist or the Antagonist has greater
relative strength, while in physics, two interacting objects must be ex-
erting equal force. The linguistic expression of causation has a tripartite
structure: a static prior state, a discrete state-transition, and a static
subsequent state. This is based on the notion of an ‘event’: a portion
conceptually partitioned out of the continuum of occurrence, which is
autonomous, without causal processes during its occurrence. Blocking
and letting, resistance and overcoming, some of the most basic force-
dynamic concepts, have no principled counterpart in physics, because
these concepts depend on the ascription of entityhood to a conceptually
delimited portion of space, and the entity’s intrinsic tendency toward
motion or rest.
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2.3.5 Conceptual Structures

“I think that an overview of the ideas about the nature of argument
structures and the mechanisms that lead from semantic argument struc-
tures to syntactic arguments”, which will be investigated in Chapter 5,
“must not miss Ray Jackendoff’s proposal, which evolved in many arti-
cles and books since cca. the mid-1980s; if only because the notion of the
lexical conceptual structure to be distinguished from the semantic struc-
ture is also relied on by those who otherwise propose different mapping
mechanisms from that of Jackendoff (e.g. the Levin–Rappaport pair).
Jackendoff (1990) is a relatively early (and, thankfully, fairly easy to
understand) review of his views. You don’t have to ‘learn’ this, but get-
ting to know the basic ideas (it is enough to just go through the first
60 pages) can, in my opinion, get everyone to rethink new perspectives”
(András Komlósy, personal communication, translated from Hungarian
by thesis author).

“Building on ideas about semantics first expounded by Gruber (1965),
Jackendoff (1972, 1983) elaborated significantly on the notion of cases
by treating them as arguments to a set of primitive conceptual pred-
icates such as go, be, stay, let, and cause.” (Palmer, Gildea, and
Xue 2010)

go can be used to describe changes of location, possession, or state,
in any situation where both a “before state” and a different “after state”
can be defined. It basically takes three arguments, the object undergo-
ing the change and the before and after locations, possessors, or states.
(4lang, the semantic representation framework we introduce in the next
chapter, does not use and explicit go predicate, but it shares cause,
before, and after with CS.) Later versions introduced subtypes of
primitive predicates that add more information, e.g. the manner of a
motion. Jackendoff ’s intent was not to provide detailed representations
of all of meaning but, to focus on the mapping between syntax and se-
mantics. The remainder of this section discusses the theory based on
Jackendoff (1990).

2.3.5.1 Ontological categories or conceptual parts-of-speech

Instead of a division of formal entities into logical types like constants,
variables, predicates, and quantifiers, the theory of Conceptual Struc-
tures (CS) sorts constituents to a few major ontological categories (or
conceptual parts-of-speech) like Thing, Event, State, Action, Place,
Path, Property, and Amount.

Each major syntactic constituent maps into a conceptual constituent:
NP correspond to Thing-constituents, the PP to a Path-constituent,
and the entire sentence to an Event. The converse of this correlation
does not hold, e.g. many conceptual constituents of a sentence’s mean-
ing are completely contained within lexical items. The mapping be-
tween conceptual and syntactic categories is many-to-many but it is
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subject to markedness conditions. Each conceptual constituent has an
argument structure feature, which allows for recursion of conceptual
structure and hence an infinite class of possible concepts.

2.3.5.2 Localism

A second cross-categorial property of conceptual structures goes back
to the localistic theory. The formalism for encoding concepts of spatial
location and motion can be abstracted/generalized to many other se-
mantic fields. Many verbs and prepositions appear in more semantic
fields and in intuitively related paradigms.

Many implicative properties of verbs (such as factive, implicative,
and semifactive) follow from generalized forms of inference rules devel-
oped to account for verbs of spatial motion and location. Each semantic
field has its own particular inference patterns, e.g. in the spatial field,
one fundamental principle stipulates that an object cannot be in two
disjoint places at once. It follows that an object that travels from one
place to another is not still in its original position. In the field of in-
formation transfer, this inference does not hold. A similar conceptual
structure may apply to different parts-of-speech, as exemplified by the
parallelism between the iteration of actions and the plural of things,
or the bounded/unbounded distinction among verbs (event/process,
telic/atelic) and the count/mass distinction among nouns.

2.3.5.3 Preference Rule Systems

CS involves something similar to prototype theory or fuzzy set theory:
Verbs have more “fuzzy truth conditions”: climb = move up & grasp,
see = gaze & realize. An event which satisfies both conditions at once, is
more stereotypical. An example from an other part of speech is nouns
that denote form and function as two conditions (e.g. book). When
one lacks information about the satisfaction of the conditions, they are
invariably assumed to be satisfied as default values.

2.3.5.4 Argument Structure and Thematic Roles

the status of thematic roles CS has a notion of thematic
roles which has greatly influenced 4lang. In Jackendoff (1990)’s ap-
proach, thematic roles are structural configurations in CS (See his Sec-
tion 2.2.).

DO(John,CAUSE(HAVE(Bill,book)))

E.g. the traditional Source/Goal, “the object from/to which motion
proceeds”, can be structurally defined as the argument of the Path-
function from/to. Agent is the first argument of the Event-function
cause, and Experiencer is an argument of some function having to do
with mental states.
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The list of a verb’s arguments can be constructed simply by extract-
ing the indices from the verb’s lexical conceptual structure. The hi-
erarchy of thematic roles is “cca. provided” by the relative depth of
the embedding of the indices in the conceptual structure. Each kind of
argument position plays a distinct role in rules of inference.

Not only NPs receive thematic roles. For instance, green is a Goal
in The light changed from red to green., and shut up is a Goal in Bill
talked Harry into shutting up., not the thematic role for a subordinate
clause, as suggested in Lexical Functional Grammar. Clauses can occur
in various thematic roles, just as Things can.

There’s no “default” thematic role in the sense that Objective is
“default” or “neutral” in Fillmore (1968): in CS, an NP must correspond
to a specific argument position in conceptual structure and therefore
must have a specific thematic role. Even Theme or Patient, which have
been taken to be such a default role, have a specific structural definition.

argument fusion and selectional restrictions In CS,
and similarly in 4lang, a verb’s lexical representation can include infor-
mation about a participant which is not even syntactically expressed.
In order for a sentence to be understood, this fine CS must exist. Se-
lectional restrictions are explicit pieces of information that the verb
supplies about its arguments. Formally, they correspond to the concep-
tual structure that occurs within an indexed conceptual constituent.

CS is a unification-based system: if two conceptual structures con-
tain incompatible information, (if the offending features are sisters in
a taxonomy of mutually exclusive possibilities, such as Thing/Prop-
erty/Place/Event/etc. or solid/liquid/gas) their fusion is anomalous.
4lang does not implement such hard constraints.

E.g. the transitive verbs drink and butter both mean “cause some-
thing to go someplace”. They differ semantically in what they stipulate
about the Theme and the Path. The direct object of butter is the Goal,
and the Theme is completely specified by the verb, while the direct
object of drink is the Theme, and the Path is (almost) completely spec-
ified by the verb. It is part of the meaning of order that the recipient (or
Goal) of an order is under obligation to perform the action described by
the complement clause, and that of promise that the issuer (or Source)
of a promise undertakes an obligation to perform the action described
by the complement.

CS has many ways of expressing conceptual structure within argu-
ments of the verb (which is part of the verb’s meaning): the positions of
the indices (which is analogous to 4lang’s deep cases, i.e. the way the
verb links its arguments to syntactic structure), selectional restriction,
and and implicit arguments.

multiple thematic roles for a single np Chapter 3 of
Jackendoff (1990) investigates the q-Criterion, i.e. that each subcatego-
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rized NP (plus the subject) corresponds to exactly one argument po-
sition in conceptual structure, and that each open argument position
in conceptual structure is expressed by exactly one NP. In Jackendoff’s
view, the q-Criterion must be weakened, e.g. because of transaction
verbs such as buy, sell, exchange, and trade, where there are two giving
actions (that of the merchandise and the money), and the seller and
the buyer have two semantic roles apiece; or chase, where both the
Agent and the Patient move. We will see that deep cases in 4lang are
closer to the surface: buy has an agentive subject, while its source is
unspecified for animacy, even if it gives money voluntarily. In contem-
porary computational systems, we can assume a sentence analyzed for
syntactic dependency, and the task of deep cases is to mediate between
the dependency annotation and the semantic representation.

unifying lexical entries Chapter 4 in Jackendoff (1990) in-
vestigates argument structure alternations, where the alternatives can
be captured by the same lexical entry. 4lang goes the same path. Op-
tional modifiers (of place, time, and manner) are not encoded anywhere
in the lexical entry. The problem of causatives (The box slid/Bill slid
the box down the stairs) is solved following the Unaccusative Hypothe-
sis.

A more special example is climb with three syntactic frames: null
complement, direct object, or PP. CS wants to account for the differ-
ence that only the direct object entails that the subject reaches the top.
4lang disregards such differences, not in order to codify such a coarse
level of mental representation, but as an engineering shortcut. More
productive lexical processes, e.g. passive participles from verbs can be
expressed in terms of manipulations on the argument indices. In 4lang,
passives are already handled by the dependency parse. Jackendoff also
discusses verbs with some spatial feature in their meaning (point, sur-
round, cover, support) which would go beyond the limits of the present
thesis.

some further conceptual functions Section 5.2 in Jack-
endoff (1990) investigates verbs of manner of motion like curl, writhe,
or dance. These are less interesting for our present purposes, as the
working method of 4lang is to define manually only some defining
vocabulary, which can be used to define all other words automatically.

While this topic is beyond the scope of the present thesis, we quote
some ideas by Jackendoff on conceptual clause modification. Jackendoff
offers a partial taxonomy of functions that convert a State or Event
into a restrictive modifier of another State or Event (syntactically: sub-
ordinating conjunctions that turn sentences into restrictive modifiers).

• Cause (why?) has logically two types: reason, represented with
from, a variant of the usual from; and purpose, goal, or rationale
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(the intention may be the speaker’s or attributed to the Agent),
represented with for, a variant of to or toward.

• In accompaniment (Bill came with Harry) there is a mutual de-
pendence between Bill’s coming and Harry’s, and Bill is “fore-
grounded”. This asymmetrical relation is “more than conjunction
but less than causation”.

• Exchange, reward or punishment are voluntary acts of social cog-
nition, based on assessment in legal and economic systems, which
is worth a separate satus in cognitive semantics.

More of these subordinators are similar to spatial functions both in their
morphology and the inferences associated with them. Cross-linguistic
study is important here, of course: if the same apparently idiosyncratic
fact appears in language after language, something is being missed.
Conversely, if an apparently principled English fact is violated in other
languages, the principle must be questioned.

featural elaborations of spatial functions Jackend-
off aims at a featural decomposition of verb meaning. E.g. he introduces
a feature opposition in spatial location, say Location versus Contact (or
˘contact) which is present in the prepositional system, where on and
against contrast with in, next to, alongside, above, and in the verb lex-
icon, where stroke, scratch, rub, and brush, unlike some other verbs,
specify motion while in continuous contact with the object. 4lang, in
contrast, tries to capture words with other words instead of features.

the action tier and the analysis of causation Sec-
tion 7.1 in Jackendoff (1990) decomposes thematic roles to two dimen-
sions: The Action Tier distinguishes the Actor and Patient, while the
thematic tier (Theme, Source, and Goal) deals with motion and loca-
tion. Thus What happened to Pat? or What did Agt do to Pat? is
orthogonal to What moves where?.

2.3.6 English Verb Classes and Alternations

As another source of semantic knowledge, Levin (1993) points out that
the expression and interpretation of arguments is to a large extent deter-
mined by the verb’s meaning. The introduction of the book exemplifies
this with break, cut, hit, and touch. Each verb shows a distinct pattern
with respect to three alternations, the middle alternation (This bread
cuts easily.), the conative construction (cut at), and the body-part al-
ternation (Margaret cut Bill on the arm.). There are other verbs that
show the same pattern of behavior: Break Verbs: break, crack, rip, shat-
ter, snap, Cut Verbs: cut, hack, saw, scratch, slash, Touch Verbs: pat,
stroke, tickle, touch, and Hit Verbs: bash, hit, kick, pound, tap, whack.
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Levin’s analysis is based on relevant meaning components. The body-
part possessor ascension alternation needs ‘contact’, while the conative
alternation needs both ‘motion’ and ‘contact’. Touch is a pure verb of
contact, hit is a verb of contact by motion, cut is a verb of causing a
change of state by moving something into contact, and break is a pure
verb of change of state. This explains which verb participates in which
alternation.

These phenomena are manifested across languages by verbs of the
same semantic types. To the extent that languages are similar, the same
meaning components – and hence the same classes of verbs – figure in
the statement of regularities concerning the expression of arguments.
The classes have a range of properties in common, including the possible
expression and interpretation of their arguments, and the existence of
certain morphologically related forms.

The meaning component analysis is related to “semantic bootstrap-
ping” models of child language acquisition built on the assumption that
a word’s syntactic properties are predictable from its meaning. Meaning
components identified via the study of semantic/syntactic correlation
show considerable overlap with those posited in language acquisition.

Levin investigates intricate and extensive patterns of syntactic be-
havior: the subcategorization frame of a verb, diathesis alternations,
morphological properties and extended meanings.

Part I of the book introduces diathesis alternations that are relevant
to lexical knowledge, subdivided into groups on the basis of the syn-
tactic frames involved: transitivity alternations, alternate expressions
of arguments (mostly within the verb phrase), alternations that permit
“oblique” subjects, and a variety of other types. Part II presents a large
number of semantically coherent classes of verbs4. Levin tries to strike
a balance between breadth and depth of coverage. He ignores verbs tak-
ing sentential complements except when they show interesting behavior
with NP or PP complements; verbs derived by productive morpholog-
ical processes, such as zero-derivation, prefixation (un-, de-, dis-, re-,
etc.) or suffixation (-ify, -ize, -en, etc.); and inherent lexical aspect of
verbs (aktionsart). It is left as an open research question whether a
complete hierarchical organization of English verb classes is possible
or even desirable.

4 Put; Remove; Send and Carry; Exert Force: Push/Pull; Change of Possession; Con-
tribute; Learn; Hold and Keep; Concealment; Throw; Contact by Impact; Hit; Poke;
Contact: Touch; Cut; Combine and Attach; Separate and Disassemble; Color; Im-
age Creation; Illustrate; Creation and Transformation; Engender; Calve; Verbs with
Predicative Complements; Perception; Psych-Verbs (Psychological State); Desire;
Judgment; Assessment; Search; Social Interaction; Communication; Sounds Made
by Animals; Ingest; Involve the Body; Groom and Bodily Care; Kill; Emission; De-
stroy; Change of State; Lodge; Existence; Appearance, Disappearance, and Occur-
rence; Body-Internal Motion; Assume a Position; Motion; Avoid; Linger and Rush;
Measure; Aspectual Verbs; Weekend; Weather
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2.3.7 The generative lexicon

Both traditional and most computational lexicons (the latter will be
discussed in Section 2.4) tend to have very fine-grained sense distinc-
tions, and the relations between different senses are mostly not rep-
resented. Pustejovsky (1995) call these resources sense enumeration
lexicons (SELs), and proposes the generative lexicon (GL) as an alter-
native, where lexemes have richer structure, and the virtually infinite
semantic types a lexeme may have arise in context, by co-composition
with the similarly flexible representations of other words, similarly to
how infinitely many sentences are generated from a finite lexicon by
recursive generative grammars in syntax. While the core of the GL is
organized among semantic types, and is thus less interesting in the con-
text of 4lang, the theory has many features worth studying from our
more association-based point of view as well.

GL builds on a classification of word polysemy to homonymy and
polysemy proper, or, in Weinreich (1964)’s terms, contrastive and com-
plementary ambiguity. Contrastive ambiguity (i.e. homonymy) is the co-
incidence of unrelated meanings, while complementary ambiguity (pol-
ysemy) refers to logically related word senses, manifestations of the
same basic meaning in different contexts, possibly different parts of
speech. Whether homonymic senses are historically related or accidents
of orthographic and phonological blending, is largely irrelevant for the
purposes of lexicon construction and the synchronic study of meaning.
The two types of ambiguity also differ in whether the disambiguation of
co-occurring words help each other: homonymy works so that once the
context or domain for one item has been identified, the ambiguity of
the other items is also constrained (contextual priming). This does not
hold for sense narrowing in polysemy, where one sense may be entailed
by the other sense. Pustejovsky mentions classes of (complementary)
polysemy where the senses correspond to different semantic types like
Count/Mass (lamb), Container/Containee (bottle), Gap/Frame (door,
window), Product/Producer (newspaper, Honda), Plant/Food (fig, ap-
ple), Process/Result (examination, merger), Place/People (city, New
York), and Change-state/Create (bake).

Pustejovsky (1995, Section 3) goes further to define logical polysemy
as a complementary ambiguity where there is no change in lexical cate-
gory, and the multiple senses of the word have overlapping, dependent,
or shared meanings.

Pustejovsky lists three arguments showing the inadequacies of SELs
for semantic description and that to maintain compositionality, we
must enrich the representations of the lexical items:

• The Creative Use of Words, that words assume new senses in
novel contexts,
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• The Permeability of Word Senses, that Word senses are not atomic
definitions but overlap and make reference to other senses of the
word, and

• The Expression of Multiple Syntactic Forms, that a single word
sense can have multiple syntactic realizations.

GL involves four levels of lexical representation: argument, event,
qualia, and inheritance structure.

Argument structure specifies the number and type (semantic and
syntactic) of arguments a predicate takes. This is by far the best under-
stood of the four levels in generative linguistics (e.g. Chomsky’s Theta-
Criterion, Lexical Functional Grammar (Bresnan 1978, 2001)), and ar-
gument structure is also the strongest determinant or constraint on the
acquisition of verb meaning by children. Pustejovsky distinguishes four
types of arguments (illustrated for verbs), true obligatory arguments
subject to the theta criterion; default arguments that are necessary
for the logical well-formedness of the sentence, but may be left unex-
pressed on the surface; shadow arguments, e.g. incorporated semantic
content (the instrument of kick or butter); and (true) adjuncts that are
associated with verb classes and not with the representation individual
verbs, including temporal or spatial modifiers. The categorization of
arguments induces a corresponding categorization of verb alternations
as well: those that result in the expression of true arguments versus
which involve the expression of optional ones.

Event structure is for the representation of information related to
Aktionsarten and event type, in the sense of Vendler (1967): event type
(state, process, and transition) and subeventual structure. Besides the
relation between an event and its subevents, GL involves overlap and
inclusion of subevents as well, and one of the subevents may be the
head of the event. In 4lang, as we already mentioned in Section 2.3.5,
there are three potential subevents, the unmarked (present) one, the
one represented under an after node, and represented under before.

Qualia structure is the set of properties or events associated with
a lexical item which best explain what that word means, such as its
constituent parts, purpose and function, mode of creation, etc. More
formally, these aspects are

• constitutive, the relation between an object and its constituent
parts (e.g. “text in a novel is characteristically a narrative or
story, while a dictionary is by definition a listing of words”), its
material, and also what this object is part of.

• formal: orientation, magnitude, shape, dimensionality, color, po-
sition;

• telic: purpose and function, how we use a thing, or the purpose
that an agent has in performing an act. Direct telic, e.g. beer is
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Figure 4: Qualia structure of novel.

made in order that it will be drunk, is distinguished from instru-
ments, e.g. knives are made to cut with them; and finally,

• agentive specifies how things come into being, a mode of explana-
tion that will distinguish natural kinds from artifacts (e.g. cookies,
cakes, and bread are typically baked);

see Figure 4. The model is inspired in part by Moravcsik (1975)’s in-
terpretation of Aristotle’s modes of explanation. The qualia structure
plays an important role in how we understand sentences, e.g. by know-
ing that the telic of movie is watch, we understand John enjoyed the
movie in the way that he enjoyed watching it.

The last one of the four levels, inheritance identifies how a lexical
structure is related to other structures in the type lattice.

The four levels are connected by generative devices providing for the
compositional interpretation of words in context. Though, unlike 4lang,
GL is a strongly typed model, and these devices (e.g. type coercion
and shifting, selective binding and co-composition) play the role of
fitting items in novel type environments, the basic idea that predicate-
argument binding can refer to subevents in the semantic representation
is a feature shared with 4lang.

While Pustejovsky criticizes the lexical semantic literature for over-
emphasizing the role of verbs, their classes and alternations, he also
devotes a chapter to this topic, more concretely causation. The point
is that members of alternations, e.g. the transitive and the intransitive
variant of a verb, are generated from the same item in GL.

2.4 modern lexical resources

Usage seems to be inversely proportional to representational
complexity. — (Russell and Norvig 2002)

The final section of this chapter mostly introduces modern lexical
resources, which serve as the basis of any kind of supervised NLP re-
search. Every experiment reported in the main part of the thesis relied
on one of them.
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2.4.1 Computational lexicography for NLP

While it is neither especially modern nor a lexical resource, we start
with a reflection on the Introduction chapter of Boguraev and Briscoe
(1989), because it is very closely related to the methods used in the
4lang project, the semantic network that we will introduce in the next
chapter. This book dates from the dawn of corpus linguistics, and the
chapter discusses lexical resources, both their theoretical role and ap-
plications in traditional linguistics and NLP-based systems. This book
analyses The Oxford Advanced Learner’s Dictionary of Contemporary
English (LDOCE), which is also important for 4lang, because both
our hand-written definitions and automatically extracted representa-
tions heavily relied on it. Traditional lexicons contain tens or hundreds
of thousands of lexical items, and computational lexicography and lexi-
cology have developed disciplines with their own workshops and confer-
ences. While NLP has established new lexical knowledge bases (KBs)
for a wide variety of researchers and applications, reusing existing lexi-
cal resources offers further room for improvement. Machine readable
dictionaries (MRDs) represent a considerable tradition where much
work has already been done, however difficulties arise because these
resources are produced for human use, and they may make inconve-
nient assumptions, and rely on the users’ linguistic and common sense
knowledge which machines do not have. The book has made a great
influence on 4lang, as both lines of research strive to make informa-
tion in MRDs accessible for machine use, and evaluate and improve
computational semantic systems and linguistic theories based on these
resources. The decades since Boguraev and Briscoe (1989) have proven
that lexicons derived from MRDs for machine use are different from
conventional dictionaries in how they organize and represent informa-
tion, but the same dictionary database (DB) can be used for both
automated and human use. Some reoccurring themes of the book are
the division between lexical semantics and pragmatic knowledge, the
border between rules and the lexicon, and the acquisition of POS and
subcategorization information with syntactic features.

2.4.1.1 The nature of a dictionary entry

In Boguraev and Briscoe (1989)’s view on the lexicon vs. rules division,
a general-purpose dictionary DB should be as inclusive and theoreti-
cally uncommitted as possible. E.g. either one assumes a rule of re-
prefixation or one needs to list elements like reissue, reclaim and repay.

The entries in most dictionaries distinguish ‘homographs’ of a word
form when it serves as noun, verb or some other POS. Entries start
with the form (headword, spelling, hyphenation, phonetic variants, al-
lomorphs, stress) and information on the distributional behaviour (ei-
ther with a simple word class tag, e.g. in The Collins English Dictionary,
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or with elaborate subcategorization information, e.g. in LDOCE, or in
The Collins COBUILD English Language Dictionary).

Regarding the content, dictionaries tend to provide definition(s), ex-
amples, cross references; grammar and stylistics of usage; synonyms,
antonyms, related words; a picture, etymology; and derived words, com-
pound terms, idiomatic or common phrases, expressions and colloca-
tions. LDOCE also provides semantic notions in the form of so called
subject and box codes, which specify the semantic field (e.g. politics,
religion, language) and selectional restrictions (e.g. the verb sandwich
prefers an abstract or human subject). The language of dictionary def-
initions tends to be of a restricted form. In LDOCE, the vocabulary
is restricted to approximately 2200 words used mainly in their most
common sense, which theoretically would cut down circularities (but
see the next paragraph). Unfortunately, derivational morphology is ap-
plied to these words in a rather liberal way. Representation is made
difficult by the fact that there is a continuum between the minimal se-
mantic knowledge implied by the use of a particular word (word sense)
and the special (or expert) knowledge relevant to its use in the context
of a specific domain.

2.4.1.2 Reliability and utility of MRDs

The preface to the published version of the Longman Defining Vocab-
ulary (LDV) claims that ‘a rigorous set of principles was established
to ensure that only the most ‘central’ meanings of [a controlled vo-
cabulary of] 2000 words, and only easily understood derivatives, were
used’. ‘Body’ is part of the definitional vocabulary and has as its central
(1) meaning “the whole of a person”. However, Boguraev and Briscoe
(1989) point out that parliament is defined as “a law-making body”,
utilizing the meaning of body (5) “a number of people who do some-
thing together”. To make things worse, about 30 non-LDV words are
used in definitions, e.g. aircraft is used 267 times.

Besides the already mentioned liberal use of derivatives (‘container’
is used for the definition of box2(1), even though only the verb contain
is considered to be primitive), circularity (container Ø box) also arises.
Another related problem is the use of phrasal verbs made up from verbs
and particles taken from the restricted vocabulary but, of course, with
a non-compositional meaning.

In another chapter of Boguraev and Briscoe (1989), Vossen, Meijs,
and Broeder (1989) derive a syntactic typology for the structures of
the meaning descriptions of each of the major parts-of-speech (POS)
in a dictionary. The typology combines hyponyms and adjectives, with
subject field, speech register, and sociolect codes.
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2.4.1.3 Connectionism, word ambiguity, and knowledge

The final chapter of the book, (Wilks et al. 1989) investigates the re-
lation between connectionism and word ambiguity. The authors real-
ize that connectionism shares properties with compositional semantics,
and they do not expect to distinguish representations for particular
word senses, but to be simply different aspects of a single non-symbolic
representation, and to correspond (if to anything) to a selection of dif-
ferent weighted arcs. They advocate weighted symbolic representations.
This view applies to issues of word sense for compositional semantics
(discreteness of word senses vs. continuity and vagueness).

The position in the chapter is that the inseparability of knowledge
and language goes far, and knowledge for certain purposes should be
stored in text-like forms. The authors compare the semantic structure
of dictionaries to the underlying organization of knowledge representa-
tions, and observe similarities: computational semantics converges with
knowledge acquisition and computational lexicography. The chapter in-
vestigates whether it is right to assume the notion of a word ‘sense’
directly from traditional lexicography and MRDs. (The answer is yes.)
Another question is whether a dictionary is a strong enough knowledge
base. Not directly, but its content can be made explicit by additional in-
formation. Collecting the initial information (bootstrapping) is needed
from the dictionary itself or some external resource.

2.4.2 Frame semantics

Jurafsky (2014) introduces frames as a rather general representation
that expresses the background contexts or perspectives by which a
word or a case role could be defined. The name came from the pre-
transformationalist (1974) view of sentence structure as consisting of
a frame and a substitution list. Frames were also called scripts or
schemata.

In Kornai (2008, Section 5.3)’s reflection, the original intention was
to use scripts as repositories of commonsense procedural knowledge:
what to do in a restaurant, what happens during a marriage ceremony,
etc.; represent the actors fulfilling roles, e.g. that of the waiter or the
best man; and decompose the prototypical action in a series of more
elementary sub-scripts such as ‘presenting the menu’ or ‘giving the
bride away’. Kornai relates scripts to “linguistically better motivated
models”, in particular discourse representation theory, whose scope is
more modest, being concerned primarily with the introduction of new
entities (the owner, the best man). Scripts have also influenced studies
of rituals.

Turning to Jurafsky (2014)’s account of verbal case frames, Fillmore
was also inspired by lists of slots and fillers used by early information
extraction systems, but his version of this idea was more linguistic. The
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motivating example was the Commercial Event frame (buy, sell, cost,
pay, charge). Frames could represent perspectives on events, e.g. sell vs
pay. Alternative senses of the same word might come from their drawing
on different frames. The perspective-taking aspect of frame semantics
influenced framing in linguistics and politics.

2.4.3 WordNet

Probably the most popular lexical NLP resource is the (English Prince-
ton) WordNet (Miller 1995). As we will discuss Hungarian as well in
Section 7.4, the Hungarian WordNet (Miháltz et al. 2008)5 has to be
mentioned as well. WordNet follows the lexicographic tradition of treat-
ing POSs separately, and words are grouped by semantic equivalence
to 117 000 synsets with a definition (“gloss”) each, and, in most of the
cases, sentences illustrating the use of the words in the set. WordNet
disambiguates word forms to many senses (synsets) to account for fine
distinctions in their usage. This opposes to the monosemic approach
4lang follows, see our discussion in Kornai and Makrai (2013) as well.
An aspect of WordNet which is more instructive for 4lang is its inven-
tory of binary relations.

Palmer, Gildea, and Xue (2010, Section 1)’s introduction to linguis-
tic theories and semantic representations of roles “ends where it began,
with Charles Fillmore”. In this and the following two sections, we intro-
duce a couple of verb-related resources. Palmer, Gildea, and Xue (2010,
Section 2) describe these resources as having differing goals, and yet
being surprisingly compatible. They differ primarily in the granularity
of the semantic role labels. FrameNet labels the arguments of approve
as Grantor and Action. PropBank uses very generic labels such as Arg0,
Arg1, . . . . VerbNet, on the third hand, has several alternative syntactic
frames and a set of semantic predicates. VerbNet marks the PropBank
Arg0 as an Agent and the Arg1 as a Theme. The three resources can
be seen as complementary.

2.4.4 FrameNet

Based on Fillmore’s Frame Semantics (Section 2.4.2), FrameNet (Baker,
Fillmore, and Lowe 1998) describes a particular situation or event along
with its participants. Semantic roles are called Frame Elements (FE),
and they are defined for each semantic frame. The predicate is called
Lexical Unit (LU). All LUs in a semantic frame share the same set
of FEs. FEs are fine-grained semantic role labels, e.g. the Apply-heat
Frame includes a Cook, Food, and a Heating Instrument.

A frame can also have adjectives and nouns such as nominalizations.
FEs are classified in terms of how central they are: core (conceptually

5 https://github.com/dlt-rilmta/huwn
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necessary for the Frame, roughly similar to syntactically obligatory),
peripheral (such as time and place; roughly similar to adjuncts) or
extra-thematic (not specific to the frame and not standard adjuncts but
situating the frame with respect to a broader context, e.g. The cottage
still looks very much the same from the outside. (Ruppenhofer et
al. 2006)).

Lexical items are grouped together without consideration of similar-
ity of syntactic behavior, resulting in rich, idiosyncratic descriptions.
E.g. buy and sell both belong to the semantic frame ‘Commerce_buy‘,
which involves a Buyer and Seller exchanging Money and Goods. Buyer
and Goods are core FEs for this frame while Seller and Money are Non-
Core FEs. Other Non-Core FEs include Duration (the length of time
the Goods are in the Buyer’s possession), Manner, Means, Place, Rate,
and Unit, the unit of measure for the Goods.

2.4.5 VerbNet

VerbNet (Kipper et al. 2008) is midway between PropBank and Frame-
Net in lexical specificity, but it is more similar to PropBank with its
close ties to syntactic structure. VerbNet consists of hierarchically ar-
ranged verb classes, extended from the Levin classes (see Section 2.3.6):
Levin has 240 classes, with 47 top level classes and 193 second and third
level. Original Levin classes constitute the first few levels in the Verb-
Net hierarchy, with each class subsequently refined. VerbNet has added
almost 1000 lemmas as well as 200 more classes. There is now a 4th
level of classes and several additional classes at the other three levels.

VerbNet adds to each Levin class an abstract representation of the
syntactic frames with explicit correspondences between syntactic posi-
tions and the semantic roles (e.g. break: Agent REL Patient, or Patient
REL into pieces). An argument list in VerbNet consists of semantic
roles (Agent, Patient, Theme, Experiencer, etc., 24 in total), and selec-
tional restrictions on the arguments, expressed using binary predicates
that describe the participants during stages of the event.

VerbNet has class-specific interpretations of the semantic roles; 3,965
verb lexemes with 471 classes; links to similar entries in WordNet,
OntoNotes groupings, FrameNet, and PropBank; and coherent syntac-
tic and semantic characterization of the classes, which facilitate the
acquisition of new class members.

Each VerbNet class contains a set of syntactic frames. Constructions
such as transitive, intransitive, prepositional phrases, resultatives, and
a large set of diathesis alternations listed by Levin are represented by
the corresponding semantic roles (such as Agent, Theme, and Location),
the verb, other lexical items required for a construction or alternation,
and semantic restrictions (such as animate, human, and organization).
Syntactic Frames specify which prepositions are allowed, and the syn-
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tactic nature of the constituent (NP, PP, finite and nonfinite sentential
complements).

Semantic predicates denote the relations between participants and
events in the form of a conjunction of semantic predicates, such as
motion, contact or cause, and startpeq, endpeq and duringpeq, to
indicate when the semantic predicate is in force.

2.4.6 PropBank

PropBank consists of an annotated corpus (to be used as training data)
and a lexicon. Semantic role labels are chosen to be quite generic and
theory neutral, Arg0, Arg1, etc. The same semantic role is kept across
syntactic variations. The lexicon lists, for each broad meaning of each
annotated verb, its frameset, i.e. the possible arguments in the predicate
and their labels (its “roleset”), all possible syntactic realizations, and
a set of verb-specific guidelines for annotators. PropBank is similar in
nature to FrameNet and VerbNet although it is more coarse-grained,
and more focused on literal meaning – as opposed to metaphorical
usages and support verb constructions – than FrameNet.

PropBank defines semantic roles on a verb-by-verb basis:

• Arg0 is generally a prototypical Agent (Dowty 1991) while

• Arg1 is a prototypical Patient or Theme.

• There are no consistent generalizations for the higher numbered
arguments, e.g. Arg2 can be beneficiary, goal, source, extent or
cause.

• There are several more general ArgM (Argument Modifier) roles
that can apply to any verb, and which are similar to adjuncts,
e.g. LOCation, EXTent, ADVerbial, CAUse, TeMPoral, MaNneR,
and DIRection.

These generic labels make high inter-annotator agreement possible.
A roleset corresponds to a distinct usage of a verb. It is associated with
a set of syntactic frames, the frameset.

There is a verb-specific descriptor field for each role, such as baker for
‘Arg0’ in bake, for use during annotation and as documentation, without
any theoretical standing. The neutral, generic labels facilitate mapping
between PropBank and other more fine-grained resources such Verb-
Net and FrameNet, as well as Lexical-Conceptual Structure or Prague
Tectogrammatics.

Most rolesets have two to four numbered roles, but as much as six
can appear, in particular for certain verbs of motion. PropBank lacks
selectional restrictions, verb semantics, and inter-verb relationships.

Verb-Specific labels have their limitations. Inter-verb labels make in-
ferences and generalizations based on role labels possible, because some
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encoded meaning is associated with each tag, which helps in training au-
tomatic semantic role labeling systems. Researchers using PropBank as
training data for the most part ignore the “verb-specific” nature of the
labels, and instead build a single model for each numbered argument.
This is feasible, because Arg0/Arg1 constitute 85% of the arguments,
ArgMs are also labeled quite consistently. Arguments Arg2-Arg5 are
highly overloaded, and performance drops significantly on them.

2.4.7 ConceptNet

The most relevant comparison for 4lang, the basically word-level mean-
ing representation framework we will introduce in the next chapter, is
ConceptNet (Liu and Singh 2004). ConceptNet is a knowledge graph,
i.e. it connects words and phrases with labeled edges. It is designed to
represent the general knowledge involved in understanding language in
the form of relations between words such as ‘A net is used for catching
fish’; ‘Leaves is a form of the word leaf’; ‘The word cold in English
is studený in Czech’; or ‘O alimento é usado para comer’, i.e. ‘Food
is used for eating’. In version 5.5 (Speer, Chin, and Havasi 2017), this
piece of knowledge has been collected from many sources that include
expert-created resources, crowd-sourcing, and games with a purpose.

The authors combine ConceptNet with word embeddings (Section 4.2)
to get understanding that they would not acquire from distributional
semantics alone, nor from narrower resources such as WordNet or DB-
Pedia. The word embedding has been trained using a generalization
of the retrofitting method (Faruqui et al. (2015), see Section 4.2.10).
They demonstrated results on (i) intrinsic evaluations of word related-
ness, which was a popular way of evaluating word embeddings before
the introduction of contextualized word representations (Section 4.3),
and on (ii) applications of word vectors, including solving SAT-style
analogies.

In the remainder of this section, we describe the ConceptNet repre-
sentation based on Speer and Havasi (2012, Section 3). Assertions in
ConceptNet can be seen as edges that connect the concepts (words or
phrases) corresponding to its nodes. Assertions can be justified by other
assertions, knowledge sources, or processes. Predicates (i.e. edge labels)
can be interlingual relations, such as IsA or UsedFor (see Table 3); or
automatically-extracted relations that are specific to a language, such
as is known for or is on. Processes that read knowledge from free text,
will produce relations that are not aligned with multilingual relations.
These unaligned relations specify the language and a normalized form,
e.g. A bassist performs in a jazz trio translates to a /c/en/perform_in
relation.

Negation in ConceptNet is a bit tricky. Conjunctions of assertions
come with a positive or negative score, where a negative weight means
we should conclude that the assertion is not true. The negation of a
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Relation Sentence pattern

IsA NP is a kind of NP.
UsedFor NP is used for VP.
HasA NP has NP.
CapableOf NP can VP.
Desires NP wants to VP.
CreatedBy You make NP by VP.
PartOf NP is part of NP.
Causes The effect of VP is NP|VP.
HasFirstSubevent The first thing you do when you VP is NP|VP.
AtLocation Somewhere NP can be is NP.
HasProperty NP is AP.
LocatedNear You are likely to find NP near NP.
DefinedAs NP is defined as NP.
SymbolOf NP represents NP.
ReceivesAction NP can be VP.
HasPrerequisite NP|VP requires NP|VP.
MotivatedByGoal You would VP because you want VP.
CausesDesire NP would make you want to VP.
MadeOf NP is made of NP.
HasSubevent One of the things you do when you VP is NP|VP.
HasLastSubevent The last thing you do when you VP is NP|VP.

Table 3: The interlingual relations in ConceptNet, with example sentence
frames in English. Table from (Speer and Havasi 2012)
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conjunction with a high negative score is not necessarily true either: it
may in fact be nonsensical or irrelevant. To represent a true negative
statement, such as Pigs cannot fly, ConceptNet 5 uses negated relations
such as /r/NotCapableOf.

2.4.8 Abstract Meaning Representation for Sembanking

Now we turn to one of the most popular meaning representation frame-
works, Abstract Meaning Representation (AMR, Banarescu et al. (2013)).
The original paper illustrates the AMR method with a syntactic ana-
logue. Syntactic treebanks have had tremendous impact on natural
language processing. Whole sentence parsing unified separate tasks
(e.g. base noun identification) and their evaluations. Now smaller tasks
are naturally solved as a by-product of whole-sentence parsing, and in
fact, they are solved better than when they used to be approached in
isolation. By contrast, a decade ago semantic annotation used to be
balkanized with separate annotations for named entities, co-reference,
semantic relations, discourse connectives, temporal entities, etc. Each
annotation had its own associated evaluation, and training data was
split across many resources. The idea behind AMR has been to unify
the semantic landscape.

The authors wrote down the meanings of thousands of English sen-
tences in simple, whole-sentence semantic structures. AMR and the
tools associated with it have the following principles:

• Rooted, directed, edge-labeled, leaf-labeled graphs, which are easy
for people to read, and for programs to traverse. This traditional
format is equivalent to feature structures, conjunctions of logical
triples, directed graphs, and Penman inputs. The latter is used
for human reading and writing. The root of an AMR represents
the focus of the sentence or phrase.

• AMR trees abstract away from syntactic idiosyncrasies, attempt-
ing to assign the same AMR to sentences that have the same
basic meaning, e.g. he described her as a genius, his description
of her: genius, and she was a genius, according to his description
are assigned the same tree.

• Extensive use of PropBank framesets (see Section 2.4.6). For ex-
ample, AMR represents bond investor using the frame invest-01,
even though no verbs appear in the phrase.

• Agnostic about how to analyze/generate.

• Heavily biased towards English, originally not an interlingua.
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2.4.8.1 AMR Content

In neo-Davidsonian fashion, AMR introduces variables (or graph nodes)
for entities, events, properties, and states. Leaves are labeled with con-
cepts: (b / boy) refers to an instance (called b) of the concept ‘boy’.
Relations link entities: (d / die-01 :location (p / park)) means
there was a death d in the park p. When an entity plays multiple roles
in a sentence, AMR employs re-entrancy in graph notation (nodes with
multiple parents) or variable re-use in Penman notation.

Concepts are either English words (boy), PropBank framesets (want-01),
or special keywords. The latter include special entity types (date-entity,
world-region, etc.), quantities (monetary-quantity, distance-quantity,
etc.), and logical conjunctions (and, etc.). There are approximately 100
relations:

• Frame arguments, following PropBank conventions. :arg0, :arg1,
. . . , :arg5

• General semantic relations: :accompanier, :age, :beneficiary, :cause,
:compared-to, :concession, :condition, :consist-of, :degree, :des-
tination, :direction, :domain, :duration, :employed-by, :example,
:extent, :frequency, :instrument, :li, :location, :manner, :medium,
:mod, :mode, :name, :part, :path, :polarity, :poss, :purpose, :source,
:subevent, :subset, :time, :topic, :value

• Relations for quantities. :scale, :quant, :unit,

• Relations for date-entities. :day, :month, :year, :weekday, :time,. . .

• Relations for lists. :op1, :op2, :op3, :op4, :op5, :op6, :op7, . . . ,
:op10

• The inverses of all relations, e.g. :arg0-of,

• Every relation has an associated reification, which is used when
we want to modify the relation itself.

AMR’s hundred relation types are in contrast with the sparse in-
ventory of 4lang, the semantic network we will introduce in the next
chapter. In graphs, 4lang uses 0-, 1-, and 2-arrows, see Section 3.1.3,

but the difference between 4lang and AMR is less severe
than it may appear at first blush, since the overwhelming
majority of AMR relations like :employed-by are simply
treated as ordinary transitive predicates in 4lang . . . Considerable
technical differences remain, e.g. 4lang does not counte-
nance overt semantic passives like ‘employed by’. (Kornai
et al., manuscript)

The authors give examples of how AMR represents various linguistic
phenomena. AMR handles some level of derivational morphology. Be-
sides nominalizations that refer to a whole event or a role player in an
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event, -ed adjectives frequently invoke verb framesets, e.g. acquainted
with and -able adjectives often invoke the AMR concept possible, but
not always.

Most prepositions simply signal semantic frame elements, but they
are kept if they carry additional information. Cases when neither Prop-
Bank nor AMR has an appropriate relation, e.g. The man was sued in
the case are solved like this:

(s / sue-01
:arg1 (m / man)
:prep-in (c / case))

named entities. Any concept in AMR can be modified with a
:name relation. There are standardized forms for about 80 named-entity
types, e.g. person or country. Multiple forms of a concept are not nor-
malized (US versus United States), nor are semantic relations inside a
named entity analyzed. This offers a uniform treatment to titles, ap-
positives, and other constructions.

reification The sentence The marble was not in the jar yesterday
is represented as

(b / be-located-at-91
:arg1 (m / marble)
:arg2 (j / jar)
:polarity -)
:time (y / yesterday))

If AMR would not use the reification, we would run into trouble, e.g.

(m / marble
:location (j / jar
:polarity -)
:time (y / yesterday))

cannot be distinguished from the representation of yesterday’s marble
in the non-jar. Some reifications are standard PropBank framesets (e.g.,
cause-01 for :cause, or age-01 for :age).

2.4.8.2 Limitations of AMR

AMR does not represent inflectional morphology and universal quan-
tification, it does not distinguish between real events and hypothetical,
future, or imagined ones, e.g. in the boy wants to go, want-01 and go01
have the same status, and noun compounds do not have a systematic
representation, e.g. history teacher and history professor translate to

(p / person :arg0-of (t / teach-01 :arg1 (h / history)))
and
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(p / professor :mod (h / history))
respectively, because profess-01 is not an appropriate verb. It would
be reasonable in such cases to use a NomBank (Meyers et al. 2004)
noun frame.

2.4.8.3 Creating AMRs

The AMR Editor allows rapid, incremental AMR construction. To as-
sess inter-annotator agreement, as well as automatic AMR parsing,
AMR developed the Smatch metric and an associated script that mea-
sure the overlap between two AMRs by viewing each AMR as a con-
junction of triples. Smatch takes the variable mapping that yields the
highest F-score.

2.4.9 Enhanced English Universal Dependencies

4lang, the meaning representation formalism we will introduce in the
next chapter, is a semantic model, and the division of labor princi-
ple suggests that a semantic project should defer the task of syntactic
analysis to existing tools. Interfacing with syntax remains an impor-
tant problem. Kovács, Gémes, Kornai, et al. (2022) discuss how more
recent 4lang graphs are created from the Universal Dependencies (UD)
representation created by Stanza (Qi et al. 2020). This section intro-
duces recent developments in syntactic analysis which is relevant for
semantics.

In creating so-called enhanced++ English Universal Dependency graphs,
Schuster and Manning (2016) are motivated by that many shallow nat-
ural language understanding tasks use dependency trees to extract rela-
tions between content words. They revisit and extend these dependency
graph representations in light of the Universal Dependencies initiative,
and provide an enhanced and an enhanced++English UD along with
a converter from basic UD trees to these latter two kinds of graphs,
which are part of Stanford CoreNLP and the Stanford Parser.

The authors point out that the usage of the Stanford Dependencies
(SD) representation falls into two categories: syntactic and a shallow
semantic representations. Syntactic tasks proper, such as source-side
reordering for machine translation or sentence compression, require a
syntactic tree: a sound syntactic representation is more important than
the relations between individual words. These trees need to be strict
surface syntax trees. For shallow semantic tasks on the other hand,
such as biomedical text mining, open domain relation extraction, or
unsupervised semantic parsing, the relations between content words
are more important than the overall tree structure. These tasks use
collapsed or so called CCprocessed SD representations, which may be
general graphs instead of trees, and may contain additional and aug-
mented relations. E.g. in Fred started to laugh, the relation between
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the controlled verb laugh and its controller, Fred is made explicit in
the CCprocessed SD representation.

The enhanced UD representation has the following features:

• There are additional relations and augmented relation names.

• Augmented modifiers: The collapsed SD graphs also include the
preposition in the relation name. This helps to disambiguate the
type of the modifier. All nominal modifiers (nmod) also include
the preposition in their names. The same is true for more com-
plex PPs which are either analyzed as adverbial clause modifiers
(advcl) or as adjectival clause modifiers (acl). Conjunct relations
are augmented, e.g. conj:and.

• Governors and dependents are propagated to clauses with con-
joined phrases.

• Subjects of controlled verbs are linked.

2.4.9.1 The enhanced++ UD representation

The enhanced++ UD representation is more interesting for natural lan-
guage understanding systems that try to extract relationships between
entities, e.g those in open domain relation extraction, or relationships
between objects in image descriptions.

partitive noun phrases are phrases such as both of the girls,
in which both of the acts semantically as a quantificational determiner.
In the basic UD representation, however, both is the head while both
girls is headed by girls. In order to obtain a similar analysis for these
phrases, enhanced++ UD changes the structure of the basic dependency
trees, which is not allowed according to the guidelines for enhanced
dependency graphs. They treat the first part of the phrase as a quan-
tificational determiner, promote the semantically salient NP to be the
head of the partitive, and analyze the quantificational determiner as a
flat multiword expression that is headed by its first word. The quantifi-
cational determiner is attached using the special relation det:qmod.

light noun constructions such as a panel of experts or a
bunch of people are treated similarly.

multiword prepositions such as the house in front of the
hill traditionally contain a relation between house and front, and front
and hill. Here the enhancement++ lies in representing the relation
between house and hill.

conjoined prepositions such as I bike to and from work
also pose some challenges. Ideally there is an nmod:to as well as an
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nmod:from relation: bike to work and bike from work are conjoined
by and. CCprocessed Stanford Dependencies representation introduced
copy nodes which enhanced++ UD adapts. The intended meaning can
be illustrated as ‘I bike and bikep0q to and from work, respectively’.

conjoined prepositional phrases such as She flew to Bali
or to Turkey should encode that the two nmod:to relations are con-
joined by or. For these reasons, enhanced++ UD also analyze such
clauses with copy nodes.

enhanced++ UD attaches both the referent of a relative pronoun di-
rectly to its governor, and the relative pronoun to its referent with a
referent (ref) relation. E.g. the analysis of The boy who lived includes
both ++boy ref who and ++boy nsubj lived.

enhanced++ UD does not propagate object or nominal modifier rela-
tions in clauses with conjoined verb phrases such as the store buys and
sells cameras because of many cases such as she was reading or watching
a movie, where movie is not the object of reading. In contrast to AMR
(Section 2.4.8), enhanced++ UD does not distinguish between comita-
tive and instrumental: AMR requires semantic role labeling, which is
very hard.

enhanced++ UD is limited regarding generalized quantifiers and con-
trolled verbs, such as Everybody wants to buy a house

Everybody nsubj:xsubj buy,

where the UD graph encodes approximately Everybody wants that
everybody buys a house. The graph for Everybody sleeps or is awake ap-
proximately encodes Everybody sleeps or everybody is awake. Another
imitation regards whether a conjoined subject (Sue and Mary are car-
rying a piano) should be interpreted distributively or collectively, which
depends on world knowledge and the context.

2.4.10 The State of the Art in Semantic Representation

In this filnal section of the chapter, we follow two recent papers in
overviewing semantic representation schemes. Finally, in Section 2.4.10.4,
we shortly discuss a framework with and emphasis on quantification.

Abend and Rappoport (2017) clarify the general goals of research on
semantic representation (except for vector space models), and compare
them with syntactic schemes.

The paper discusses the goals of semantic representations (SRT), the
components, (predicate-argument relations, discourse relations and log-
ical structure), the concrete SRT schemes and annotated resources, the
criteria for evaluation, and the relation to syntax. They focus on the
level above the words, i.e. the meaning relationships between lexical
items, rather than the meaning of the lexical items themselves. The

62



2.4 modern lexical resources

main differences between SRTs are the formalism, the interface with
syntax, the ability to abstract away from formal and syntactic vari-
ation, the level of training required for annotators, and the level of
cross-linguistic generality.

In Abend and Rappoport’s view, SRTs should be paired with a (com-
putationally efficient) method for extracting information from them
that can be directly evaluated by humans. Applications include infer-
ence, as in textual entailment or natural logic; supporting knowledge
base querying; and defining semantics through a different modality, im-
ages, or embodied motor and perceptual schemas. (They defer emotions
and sentiment.)

2.4.10.1 Semantic Content

As we have seen in Section 2.4.2, events (sometimes called frames,
propositions or scenes) include the predicate (main relation, frame-
evoking element), arguments (participants, core elements) and secondary
relations (modifiers, non-core elements). There are ontologies and lexi-
cons of event types (also a predicate lexicon), which categorize semanti-
cally similar events evoked by different lexical items. FrameNet, defines
frames as schematized story fragments evoked by a set of conceptu-
ally similar predicates. The Richer Event Descriptions framework is
another event resource.6. This notion of events should not be confused
with events as defined in Information Extraction and event coreference,
such as a political or a financial event.

SRTs differ in which nominal and adjectival predicates are covered.
Recent versions of PropBank cover eventive nouns and multi-argument
adjectives. FrameNet covers all these, and also covers relational nouns
that do not evoke an event, such as “president”. SRTs may represent
arguments that appear outside sentence boundaries, or do not explicitly
appear anywhere in the text.

Core and non-core arguments are distinguished semantically rather
than distributionally. Core arguments are whose meaning is predicate-
specific and are necessary components of the described event, while
non-core arguments are predicate-general. FrameNet defines core ar-
guments as conceptually necessary components of a frame, that make
the frame unique and different from other frames; and peripheral ar-
guments, which introduce additional, independent or distinct relations,
e.g. time, place, manner, means and degree.

Semantic roles in FrameNet are shared across predicates that evoke
the same frame type, e.g. “leave” and “depart”; PropBank roles are
verb-specific, and the set was extended by subsequent projects such as
AMR; and VerbNet and subsequent projects use a closed set of abstract
semantic roles for all predicate arguments, such as agent, patient and
instrument.

6 Citations can be found in the original Abend and Rappoport (2017).
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Abend and Rappoport discuss temporal relations in details. This
kind of analysis may mean timestamping according to time expressions
found in the text, or by predicting their relative order in time. The main
resources are TimeML, a specification language for temporal relations;
and annotated corpora by the TempEval series of shared tasks. The
theory goes back to scripts, schematic, temporally ordered sequences
of events associated with a certain scenario, e.g. going to a restau-
rant (Section 2.4.2). Causal relations between events have applications
(including planning and entailment) and annotation schemes, also inte-
grated with TimeML-style temporal relations. The internal temporal
structure of events has been less frequently tackled, but Moens and
Steedman (1988) defined an ontology for the temporal components,
e.g. a preparatory process (e.g., “climbing a mountain”) and its culmi-
nation (“reaching its top”). Statistical work on this topic is unfortu-
nately scarce but involves aspectual classes, and tense distinctions.

Spatial Relations have their cognitive theories and applications in
geographical information systems or robotic navigation. The task of
Spatial Role Labeling with its shared task SpaceEval subsumes the
identification and classification of places, paths, directions, and motions,
and their relative configurations.

In the papers running example, Although Ann was leaving, she gave
the present to John., the leaving and the giving events are sometimes re-
lated through ‘concession’, evoked by “although”. Discourse analysis
is useful but overlooked for summarization, machine translation and in-
formation extraction. Resources include the Penn Discourse Treebank,
which classifies the relations between discourse units using high-level
relation types like temporal, comparison and contingency; and
finer-grained ones such as justification and exception. This tree-
bank focuses on local discourse structure. The RST Discourse Treebank
puts more focus on higher-order discourse structures and deeper hier-
archical structures.

Attila Novák (personal communication) drew the attention in his pre-
review to Discourse Representation Theory (DRT, Kamp, Genabith,
and Reyle (2011)). Parsing to Discourse Representation Structures, a
formal meaning representation introduced by DRT, is a complex task,
comprising other NLP tasks, such as semantic role labeling, word sense
disambiguation, co-reference resolution, and named entity tagging. We
also learn from the introduction at nlpprogress7 that DRSs show ex-
plicit scope for certain operators, which allows for a more principled
and linguistically motivated treatment of negation, modals and quan-
tification, as has been advocated in formal semantics.

A narrower but better studied field is the segmentation of scien-
tific papers into parts like background and discussion. Some schemes,
e.g. the Groningen Meaning Bank (Basile et al. 2012) and UCCA (see
Section 2.4.10.2) support cross-sentence semantic relations.

7 http://nlpprogress.com/english/semantic_parsing.html#drs-parsing
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Logical structure, i.e. quantification, negation, coordination and their
associated scopes are important in applications that require mapping
text into an executable language, such as a querying language or robot
instructions, and in recognizing entailment relations. We will shortly
discuss an example representations framework in Section 2.4.10.4. Ap-
proaches to inference and entailment include Recognizing Textual En-
tailment, and Natural Logic with different annotation principles and
resources.

2.4.10.2 Semantic Schemes and Resources

• As we saw in Section 2.4.8, AMR has predicate-argument rela-
tions, including semantic roles (adapted from PropBank) that
apply to a wide variety of predicates (including verbal, nominal
and adjectival predicates), modifiers, co-reference, named entities
and some time expressions, but currently no relations above the
sentence level. It is English-centric, which results in an occasional
conflation of semantic phenomena realized similarly in English,
and difficulties with invariance across translations. Abend and
Rappoport illustrate this with the pair of sentences I happened
to meet Jack in the office and I asked to meet Jack in the office,
which have similar syntactic forms. When translating the sen-
tences to German, the divergence between the semantics of the
two sentences is clear: in the first one “happened” is translated
to an adverb: Ich habe Jack im Büro zufällig getroffen, and in the
second asked is translated to a verb: Ich habe gebeten, Jack im
Büro zu treffen.

• Universal Conceptual Cognitive Annotation (UCCA, Abend and
Rappoport (2013)) is a cross-linguistically applicable scheme for
semantic annotation, building on typological theory, primarily on
Basic Linguistic Theory. It includes argument structures of var-
ious types and relations across languages, but no semantic role
information. UCCA distinguishes between primary and aspectual
verbs, e.g. happen to, and it supports annotation by non-experts.

• Universal Decompositional Semantics (UDS) provides semantic
role annotation, word senses, and aspectual classes (e.g., ˘realis)
collected through crowd-sourcing. UDS uses feature bundles e.g.
+volition and +awareness instead of agent.

• The Prague Dependency Treebank (PDT) Tectogrammatical Layer
(PDT-TL) represents argument structure (including semantic roles),
tense, ellipsis, topic/focus, co-reference, word sense disambigua-
tion, and local discourse information.

• There are schemes based on Categorial Combinatory Grammar.
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• HPSG-based Schemes use feature bundles. Annotated corpora
and manually crafted grammars exist for multiple languages along
with broad-coverage Semantic Dependency Parsing shared tasks
and corpora.

• OntoNotes has multiple inter-linked layers of annotation, bor-
rowed from different schemes.

universality. Besides remarkable cross-lingual resources like Ba-
belNet, UBY (Gurevych et al. 2012), and Open Multilingual WordNet,
semantic role labeling (SRL) schemes and AMR have also been studied
for their cross-linguistic applicability. PropBank and FrameNet have
been translated to multiple languages, and there are SRT schemes that
set cross-linguistic applicability as main criteria, e.g. UCCA, and the
LinGO Grammar Matrix, both of which draw on typological theory.

2.4.10.3 Anchoring graph fragments to tokens

Finally, we would like to follow Koller, Oepen, and Sun (2019) in distin-
guishing three flavors by the degree of anchoring. The strongest form of
anchoring is bi-lexical dependency graphs, when graph nodes injectively
correspond to surface lexical units (tokens). In such graphs, each node is
directly linked to a specific token (but there may be semantically empty
tokens), and the nodes inherit the linear order of their corresponding
tokens. Linguistic frameworks in this flavor include CCG word–word de-
pendencies, Enju Predicate–Argument Structures, DELPH-IN MRS Bi-
Lexical Dependencies (which we will shortly discuss in Section 2.4.10.4),
and Prague Semantic Dependencies.

The middle flavor relaxes the correspondence relations between nodes
and tokens, while still explicitly annotates the correspondence between
nodes and parts of the sentence, but nodes may align with subtoken
or multi-token sequences, e.g. (derivational) affixes or phrasal construc-
tions. Nodes may correspond to overlapping spans, enabling lexical de-
composition (e.g. that of causatives or comparatives). Representatives
include Universal Conceptual Cognitive Annotation and two variants
that reduce underspecified logical forms into directed graphs: Elemen-
tary Dependency Structures and Dependency Minimal Recursion Se-
mantics (Section 2.4.10.4).

AMRs – on the other extreme – are unanchored, in that the corre-
spondence is not explicitly annotated. AMR deliberately backgrounds
notions of compositionality and derivation. The framework frequently
invokes lexical decomposition and represents some implicitly expressed
elements of meaning, abstracting furthest from the surface signal.

66



2.4 modern lexical resources

Figure 5: Semantic representation of the sentence “Everybody wants to meet
John” from Buys and Blunsom (2017). The graph is based on the El-
ementary Dependency Structure (EDS) representation of Minimal
Recursion Semantics (MRS). The alignments are given together with
the corresponding tokens, and lemmas of surface predicates and con-
stants.

2.4.10.4 Quantification, Minimal Recursion Semantics,
and its variants

Most of the information content of the sentences is not in the struc-
ture (syntactically disambiguated, provided with quantifiers), but in
the (content) words (Kornai 2019, Sec. 1.3). This is what 4lang, the
semantic formalism introduced in the next chapter, tries to represent.
Nevertheless, we end this chapter with a short discussion of Minimal
Recursion Semantics, which is more closely related to logic-based se-
mantic theories.

The linguistic structures targeted in semantic parsing are predomi-
nantly shallow, restricted to relations between surface word tokens. An
exception is provided by Buys and Blunsom (2017), who propose a
neural encoder-decoder transition-based parser for Minimal Recursion
Semantics (MRS, Copestake et al. (2005) and Copestake et al. (2016)).
MRS also serves as the semantic representation of the English Resource
Grammar (ERG, Flickinger (2000)). Buys and Blunsom define a com-
mon framework for semantic graphs for MRS-based graph representa-
tions (more precisely Dependency MRS and Elementary Dependency
Structures, EDS) and AMR (Section 2.4.8).

MRS is a framework for computational semantics that can be used
for both parsing or generation. As Figure 5 shows, instances and even-
tualities are represented with logical variables. Argument labels are
drawn from a small, fixed set of roles. Arguments are either logical vari-
ables or handles. Handles are designated formalism-internal variables.
Handle equality constraints support scope underspecification; multiple
scope-resolved logical representations can be derived from one MRS.
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MRS was designed to be integrated with feature-based grammars like
HPSG (Section 2.4.10.2) or Lexical Functional Grammar. EDS (Oepen
and Lønning 2006) is a conversion of MRS to variable-free dependency
graphs which drops scope underspecification.
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Mi generáltunk. Legalábbis azt hittük, hogy generálunk.
‘We generated. At least we thought we generated.’

— Ferenc Kiefer on generative linguistics before Chomsky (1970).
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As we pointed out in Section 1.1, some of our contributions are re-
lated to the 4lang theory and formalism for representing the seman-
tics of natural language, which has been developed in the Human Lan-
guage Technologies Research Group Budapest, and published along
with partial implementation in many research papers (Kornai 2010a,
2012; Nemeskey et al. 2013; Kornai et al. 2015; Recski et al. 2016;
Kovács, Gémes, Iklódi, et al. 2022) and two books (Kornai 2019, 2023).

The more important 4lang-related contributions of this thesis (Sec-
tions 3.3, 7.2 and 7.3) take derivatives of 4lang – the definition graph,
or a word embedding created from the graph – as input. Besides, the
author of this thesis had a great role in the manual creation of a set
of core definitions for 4lang, but our claims related to this part of the
work will focus on to the problem of thematic roles (Chapter 5). Now
we give some background by introducing 4lang.

In the previous chapter, we introduced some fundamentals of sym-
bolic meaning representation systems, notably Quillian (1969)’s semi-
nal experiments with his semantic network (Section 2.2.1). While the
4lang theory involves other formalisms, for the purposes of the present
thesis, 4lang can be primarily viewed as a semantic network, practically
a graph, whose nodes are labeled with (names of) concepts (similarly
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the 4lang semantic network

to AMR, see Section 2.4.8), and the edges with 0, 1, or 2, roughly
corresponding to the most basic syntactic relations.

The name 4lang refers to that the core dictionary, the object of in-
quiry in all of the 4lang related work in this thesis, has bindings in four
languages, representatives “of the major language families spoken in Eu-
rope; Germanic (English), Slavic (Polish), Romance (Latin), and Finno-
Ugric (Hungarian)”. More recently, Kornai (2023) added Japanese and
Chinese. “The relative ease of creating these new bindings goes some
way onward ameliorating concerns of eurocentricity.”

“4lang is an algebraic (symbolic) system that puts the emphasis on
lexical definitions at the word and sub-word level, and on valency (slot-
filling) on the phrase and sentence level” (Recski et al. 2016). These
two levels are the focus of this chapter and Chapter 5 respectively.
“Historically, 4lang falls in the AI/KR tradition, following on the work
of Quillian (1969, Section 2.2.1), Schank (1975, Section 2.2.3), and more
recently Banarescu (2013, Section 2.4.8). Linguistically, it is closest to
Wierzbicka and Goddard (1972, 2002, Section 2.3.3) and to modern
theories of case grammar and linking theory (see Butt (2006) for a
summary).” (References to sections in the present thesis added.)

3.1 nodes and edges

3.1.1 Concepts: monosemy and language- and POS-independence

The backbone of 4lang consists of 1942 defined words and bound mor-
phemes (see Section 3.2). However, the version of the Longman dictio-
nary that was available to us (Bullon 2003) uses other elements (Sec-
tion 2.4.1.2), so we further expanded the vocabulary with 197 simple
words (e.g. dimension, two, communicate, conform , mammal, item,
artifact), 188 proper names, the definition of which is essentially just a
reference to the corresponding element of the encyclopedia (e.g. Green-
land, Greenwich, Guy Fawkes) and 147 compounds (bell-shaped, bitter-
tasting, blue-black). The latter are uninteresting from our present per-
spective.

The definitions in 4lang were made by human labor, consulting clas-
sical dictionaries in the most cases, especially the Longman dictionary.
This part of the work is unfortunately unreproducible. We quoted from
the Natural Semantic Metalanguage project (Section 2.3.3) that words
(morphemes, etc.) can have the same meaning representation there even
if the part of speech, the scope of use, or the polysemy pattern is differ-
ent. 4lang definitions follow this line: (unary) predicates in 4lang repre-
sent language- and POS-independent, monosemic concepts. We discuss
language-independence and monosemy in this subsection, while POS-
independence will be investigated in the next one.

Monosemy means that 4lang tries to grasp the abstract meaning
of the words, from which specific uses can be deduced. Kornai and
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Makrai (2013) cite the definition of potash from Webster’s Third (Gove
1961) to show how words considered there to be polysemous are de-
fined in traditional lexicology. Potash has four meanings there. In the
presentation of (Makrai 2013), we provided a similar example from
the English WordNet (Miller (1995), see Section 2.4.3) with six mean-
ings of the word stomach. According to the principles of 4lang, most
words are monosemic. Disambiguation is only done for pure homonyms,
e.g. the word form state corresponds to separate entries in the senses
related to ‘country’ and ‘condition’. The disambiguation of homonyms
have not been implemented. How the distinction between polysemy and
homonymy can be made on the basis of data and word embeddings will
be discussed in Chapter 8 in the frame of multilingual word sense induc-
tion, the computational task of clustering word occurrences to lexical
items based on two corpora in different languages.

Rather than including as much information on different uses as pos-
sible in disambiguation, we prefer representing each surface morpheme
with a single graph. In Ruhl (1989)’s view, the elements of the mean-
ing of a word in a context that is not present in the monosemic lexical
item should be deduced from the similarly abstract representations of
context words. We think that computing the meaning of occurrences of
words that are usually called metaphoric is the basic mechanism behind
human linguistic capabilities, and artificial understanding should work
with a similar goal, possibly with the use of non-lexical components
to handle extra-linguistic knowledge and pragmatic implicatures. The
interested reader should consult Recski (2018, especially Section 4.4.3)
and Kovács, Gémes, Iklódi, et al. (2022, especially Sections 5 and 6).

The 4lang dictionary strives to be language-independent. When defin-
ing the words, we tried to take into account a couple of languages, and
the word forms of the terms were indicated in Hungarian, English, Latin
and Polish. Since the creation of the definition formulas, colleagues have
expanded the dictionary to more languages, Ács, Pajkossy, and Kornai
(2013) to 40 languages, and Kornai (2023) to Japanese and Chinese.

Language-independence may be contrasted with the Saussurean def-
inition of a linguistic sign which is an ordered pair consisting of a
cluster of (spoken or written) forms in a specific language and an
extra-linguistic category in the mind. Whether human categorization
is dependent of the mother tongue and other languages learned by the
speaker early on is a classical topic in psycho-linguistics. Common expe-
rience shows that people can express the same content in any language,
and the greatest problem one faces in finding translational equivalents
is that an ambiguous word in some language may (not surprisingly)
translate to some other language in multiple ways, depending on con-
text.
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3.1.2 Syntactic and semantic type

4lang contains a single concept where two words differ only in their
parts of speech, e.g. action nouns are the same concept as the verbal
stem, since 4lang describes the conceptual meaning. This approach
obviously deviates from Montague grammar (Montague 1970), where
syntactic types correspond to semantic types. 4lang is a conceptual
network, so its representations try to factor out pure morpho-syntactic
differences on the word level.1 This avoidance of types is in contrast
to lexicographic practice, both traditional or symbolic computational,
that splits usages of words by parts-of-speech. Furthermore, unlike in
Conceptual Structures (Jackendoff (1972, 1990), Section 2.3.5), our con-
cepts are free of semantic type as well.

The 4lang approach to the lexicon can be illustrated in relation to
the phenomenon that a great part of the English core vocabulary con-
sists of words that appear as nouns and verbs as well, with semantically
equivalent meanings: a divorceN is exactly a situation when some people
divorceV . The corresponding pairs in Hungarian are derivational ones:
remaining with the same example, the noun vál-ás is derived from the
verb vál(ik) by a compositional suffix.

Formal semantics is organized along the principle of compositional-
ity: the representation of a phrase or a sentence is computed from the
representations of the immediate constituents and the way of their com-
position. Montague Grammar formalizes the compositional requirement
by associating rewrite rules over syntactic forms to semantic rules. Ter-
minals of the semantic sub-grammar are semantic types, most notably
entities and truth-valuable states of affairs.

Compositionality also applies to 4lang graphs. Formulas in the hand-
written core vocabulary, which we discuss in Section 3.2, are parsed to
graphs in a rule-to-rule fashion, and the representations of phrases and
sentences are composed of those of the words. The main operation in
both is to draw a link from a node in the graph corresponding to the
macro-structure of the linguistic unit to the so-called head-node of the
constituent. The head-node corresponds to the genus (Sections 2.2.1,
2.2.8 and 3.1.2). The theory allows the link to point to a sub-graph,
motivated e.g. by accusativus cum infinitivo sentences like I see the
father coming where the object of seeing can argued to be the coming
of the father as well as the father himself, but this idea is unrelated to
the present thesis, and it is not implemented.

The lack of semantic types can be seen as an instance of radical
lexicalism: 4lang concentrates on the meaning of words and phrases
at the expense of type consistency in the graph. Our definitions can
of course turn out to be less exact that those applying POS distinc-

1 The interested reader may learn about the syntactic part of the 4lang theory, mo-
tivated by functional programming and formalized in Eilenberg Machines, in Sec-
tion 6.3.2 of Kornai (2008) and in Kornai (2019).
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tions. Another problem is when the head-node depends on the POS:
the head of cook has to be ‘person’ if the noun is meant, and ‘make’ if
the verb. Nevertheless, 4lang representations still turn out to capture
enough lexical content to be useful in application, especially in word
and sentence level similarly and entailment, see Section 3.7.

3.1.3 Edges

In the 4lang meaning representation framework, the meaning of words
and greater linguistic units is formalized in pointed directed graphs
with nodes labeled by concepts and edges colored in three colors: 0, 1,
and 2. Pointedness means that one node, the head, is distinguished for
compositional purposes, as already discussed in Section 3.1.2.

In Section 2.2.4, we introduced Woods (1975)’s argument that a too
large inventory of edge types (colors) makes reasoning with graphs com-
putationally unfeasible. This problem is avoided in 4lang by splitting
relations to various levels. At the deepest level, there are only three
types of edges (0, 1, and 2). When there is an edge c1

i
Ñ c2 with label

i P t0, 1, 2u from concept c1 to concept c2, we will also say that c2 is on
the ith partition2 of c1. Binary predicates and lexical relations,3 whose
appearance in static word embeddings is the topic of Chapter 7, are rep-
resented with nodes (typically with 1 and 2-edges leading out of them
to their first and second argument). These relations represent kinds of
information including the type of general knowledge ConceptNet (see
Section 2.4.7) represents.

Ditransitives (ternary and higher arity verbs) are eliminated by de-
composition to at most binary ones (Kornai 2012) with methods pio-
neered in generative semantics. Following Jackendoff (1972), who de-
fined kill as ‘cause to die’, with a 4lang formula,

=AGT CAUSE [=PAT[die]],

we define put as ‘cause to (be) at’, (=AGT CAUSE [=PAT AT =TO]), and
the two classes of Schank (1972) as give: ‘cause to have’, (=AGT CAUSE
[=DAT HAS =PAT]) and tell: ‘cause to know’, (=AGT CAUSE [=DAT KNOW
=PAT]). As we will see later, =AGT, =PAT, and =DAT are what we

2 Those who are familiar with gold-age meaning representation, especially Hendrix
(1975), should note that in 4lang, partition is meant much more simply than for
Hendrix, who introduced a machinery with the same name to provide an adequate
quantification mechanism for semantic network concepts. In 4lang, more concepts
on a partition of a concept (out-neighbors with a fixed edge label) are interpreted
as a conjunctive bundle of properties.

3 4lang can represent both the static and constant lexical meaning of words as well
as the contextual and dynamic properties they acquire in context. Lexical relations
belong to the former (‘cows make milk’), while binary relations can represent context-
dependent properties as well (‘John has a cow’). As the present thesis investigates
lexical meaning, binary relations above lexical ones are out of the scope, and we use
the two terms basically in an interchangeable way.
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call deep cases, placeholders for the representation of the agent, the
patient, and the recipient (“dative”) of the verb respectively. There
are eight deep cases is total, some of which represent arguments of
relational nouns or function morphemes (Chapter 5).

Turning to the edge-colors, 0 denotes every relation in which a con-
cept modifies some other as a whole: we draw an abstraction over
the traditional genus/hypernym/is-a (e.g. dog 0

Ñ animal, see Sec-
tions 2.2.8, 2.2.9 and 2.3.1), (generic) unary predication (dog 0

Ñ bark),
and attribution (dog 0

Ñ faithful). The interested reader may learn
more about is-a, genus, and hypernym in Section 4.5 of Kornai (2019).
0 is used for verbs as well as nouns. Unlike Levelt, Roelofs, and Meyer
(1999), where escort IS-TO accompany, in 4lang we simply state that
escort 0

Ñ accompany.
1 and 2 represent two arguments of a function that play asymmetric

roles, e.g. the agent and patient role of a verb (e.g. cow 1
Ð make 2

Ñ

milk), or the figure and the ground in tempo-spatial relations (star 1
Ð

at 2
Ñ sky). Nodes (concepts) with an 1 or 2-labeled out-edge will be

called binary, while the rest will be called unary because these concepts
correspond to unary predicates of truth-conditional logic

two remarks related to the formalism It can be ar-
gued that in terms of predication, the direction of the 0 versus 1 and
2 edges is somewhat inconsistent: in dog 0

Ñ animal, the link goes from
the argument to the predicate, while in cow 1

Ð make 2
Ñ milk, the edges

lead from the function to the arguments. In the view of the thesis au-
thor, this discrepancy may be an accident in the development of the
system, but need not corrupt empirical results in applications. Never-
theless, András Kornai writes in personal communication that what
the argument and what the predicate is in the case of 0, and also in
the case of intransitives in general, is debatable/changeable, e.g. in the
first two articles of Montague, there is boypsleepq and sleeppboyq, re-
spectively. Both can be argued for. The interested reader may refer to
Recski (2016b) as well.

Another remark has been made by Tibor Szécsényi (personal commu-
nication), related to the representation of “ergative (and other strange)”
expressions (e.g. Peter likes Mari vs. Peter is pleased by Mari)”.

The thematic role–argument correspondence is not al-
ways clear! Wouldn’t it have been enough to assume a single
unary predicate-argument relation: cow 0

Ñ (make 0
Ð milk)?

This would have been more in line with the idea of light verb
construction in syntactic theory, with Currying in logic, and
with the type xe, xe, tyy of transitive verbs. Or, once we get
to type logic, what would the 4lang representation corre-
sponding to the type-raised, generalized quantifier transi-
tive verb type xxe, xe, tyy, xe, tyy look like? Would that make
sense? (Tibor Szécsényi, translated by the thesis author.)
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The ergative problem was one of the motivations for the introduc-
tion of the thematic roles like =AGT, a shallower level of binary re-
lations. There are theoretical motivations for using hypergraphs like
cow 0

Ñ (make 0
Ð milk), where edges can point to edges. We already

mentioned an example in Section 3.1.2. However, disjunction, negation,
and all forms of quantification are considered secondary phenomena in
4lang (Kornai 2010b) which would make the model computationally
more complex without much benefit in terms of accuracy in text under-
standing. The emphasis of 4lang is on the lexical/conceptual content
rather than an elaborated type theory involving raising and generalized
quantifiers. The interested reader may consult Section 4.5 of Kornai
(2023) as well.

3.2 the recursive process of word definition

Symbolic representations define concepts by other concepts (Section 2.2.1).
Some methods take this circularity as a basic property of language,
while others break it by using primitives, words that play the same
role in semantics as primitive notions do in mathematics. The first ap-
proach includes disciplines ranging from structuralist semantics to se-
mantic networks (Chapter 2) and information retrieval (Section 3.3). In
Section 2.2.6 we reviewed Hayes (1979)’s analysis of the axiom-concept
graph, and his considerations on which direction the definition pro-
cess should follow. The primitive-based approach is exemplified in this
thesis by the Natural Semantic Metalanguage (Section 2.3.3), and the
Longman Defining Vocabulary (Section 2.4.1). The 4lang approach is
closer to the latter, but it is important that we do not specify the
defining vocabulary on theoretical grounds, but we derive it from the
definition graph (Section 2.2.6) with an iterative process (see Kornai
et al. (2015, Section 2.1), Ács, Nemeskey, and Recski (2017, Section
2.2), and Kornai and Makrai (2013), the latter is in Hungarian).

The meaning of a sentence is composed of the meaning of its words,
but the word inventory is still too great to give a 4lang account of
each item manually. Now we describe our method for vocabulary re-
duction from the, say, 80–160 thousand (disambiguated) words in a
traditional dictionary to a defining vocabulary for which we can create
4lang representations manually, constituting the main contribution in
this chapter.

It must be noted that members of the defining vocabulary are not
primitives of definition. This is in accordance with some other ap-
proaches: the structuralist notion of word sense; that “the full meaning
of any concept is the whole network as entered from the concept node”
(Collins and Loftus 1975); and what Lenat and Guha (1990) say about
the lack of primitive actions in Cyc: “actions are not merely macros
introduced for notational convenience, for use instead of more complex
sequences of primitive actions. [Our] approach is motivated by two rea-
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sons: we wish to be able to reason at different levels of abstraction and
a priori assigning of a set of actions as primitives goes against this”.

Our methods for defining the whole vocabulay in terms of a more
restricted set (as well as previous work in this field) are discussed in
Section 2.1 of Kornai et al. (2015). There are two basic approaches:
bottom-up methods use a defining vocabulary specified on some theo-
retical basis, but our group has done top-down computations as well
to discover the defining vocabulary of both traditional dictionaries and
our manually written definitions themselves.

The first modern efforts in [the direction of a basic vocab-
ulary] are Thorndike (1921)’s Word Book, based entirely on
frequency counts (combining TF and DF measures), and
Ogden (1944)’s Basic English, based primarily on consider-
ations of definability. The Swadesh (1950) list puts special
emphasis on cross-linguistic definability, as its primary goal
is to support glottochronological studies.

[. . . ]
The idea that there is a small set of conceptual primi-

tives for building semantic representations has a long his-
tory both in linguistics and AI as well as in language teach-
ing. The more theory-oriented systems, such as Conceptual
Dependency (Schank 1972) and NSM (Wierzbicka 1985) as-
sume only a few dozen primitives, but have a disquieting
tendency to add new elements as time goes by (Andrews
2015). In contrast, the systems intended for teaching and
communication, such as Basic English (Ogden 1944) start
with at least a thousand primitives, and assume that these
need to be further supplemented by technical terms from
various domains. [. . . ] A trivial lower bound [on the num-
ber of primitives] is given by the current size of the NSM
inventory, 65 (Andrews 2015), but as long as we don’t have
the complete lexicon of at least one language defined in
NSM terms the reductivity of the system remains in doubt.

For English, a Germanic language, the first provably re-
ductive system is the Longman Defining Vocabulary (LDV),
some 2,200 items, which provide a sufficient basis for defin-
ing all entries in LDOCE (using English syntax in the defi-
nitions). (Ács, Pajkossy, and Kornai 2013)

The core vocabulary of the 4lang meaning representations frame-
work is a set of about three thousand concepts with English, Hungar-
ian, Latin and Polish exponents4 and formal definitions that can be
compiled to 4lang graphs with the pymachine software package. The

4 Ács, Pajkossy, and Kornai (2013) describe how bindings in other languages can be
created automatically.
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original vocabulary (words with ID up to 2692) was specified in the
Hungarian Unified Ontology (MEO) Project based on theoretical con-
siderations similar to those mentioned in the previous citation. This
process is also described in the paper:

We5 built a seed list composed of the Longman Defining
Vocabulary (2,200 entries), the most frequent 2,000 words
according to the Google unigram count (Brants and Franz
2006) and the British National Corpus, as well as the most
frequent 2,000 words from Polish (Halácsy et al. 2004) and
Hungarian (Kornai et al. 2006). [For Latin,] we added the
classic Diederich (1939) list and Whitney (1885)’s Roots.
(Ács, Pajkossy, and Kornai 2013)

Turning to the top-down method, in the same Kornai et al. (2015),
we formalized the defining vocabulary in graph-theoretic terms, based
on the definition graph, whose nodes correspond to (disambiguated)
words, and a directed edge u Ñ v represents if v is used in the defini-
tion of u. The mathematical formulation of the defining vocabulary is
a feedback vertex set (FVS) that contains all nodes without out-edges
(these are definitional primitives) and one node from each directed cy-
cle. We found that in definition graphs there are much smaller FVSs
than there may be if the graph was random: “For example, in the En-
glish Wiktionary, 369,281 definitions can be reduced to a core set of
2,504 defining words, and in Collins English Dictionary we can find a
defining set of 6,490 words.” Gold-age versions of the Longman Dic-
tionary were created with a pre-specified defining vocabulary (LDV),
what still shows its advantages in the newer, non-LDV-based version we
have access to, as the defining vocabulary of the not strictly LDV-based
version still consists only of 1,061 words.6 The interested reader may
read more details on the possible gains of a smarter parsing of implicit
cross references in dictionaries, handling compositional derivations of
Latinate stems, disambiguation, and multiword expressions in the pa-
per. The key point is that a cca. 3000-word vocabulary that we defined
with 4lang formulas at the middle of the past decade (Section 3.6)
covers the defining vocabulary of traditional dictionaries. Further re-
finements of the 4lang defining vocabulary can be found in Appendix
4.8 of Kornai (2019) and in Kornai (2023).

5 The inventory had been essentially compiled before the thesis author joined the
group

6 This set roughly corresponds to the words that are marked with u (for uroboros
(Ács, Pajkossy, and Kornai 2013; Kornai et al. 2015; Kornai 2019, 2023)) in the 6th
column of the 4lang dictionary file.
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3.3 the importance of each concept in definition

Symbolic representations define concepts and relations by other con-
cepts and relations, possibly with the help of formal devices like our
deep cases. In the previous sections, we introduced the 4lang formal-
ism and our approach to the iterative process of defining words by each
other. In this section, which applies the ideas of the Hungarian paper
by Makrai (2013) to the definitions accompanying Makrai (2014b), we
quantitatively describe how important each node of the semantic net-
work is for the definition of the whole vocabulary. Intuitively, the impor-
tance measure tells us which unary and binary7 predicates (e.g. exist
or the comparative -er) and thematic roles (e.g. the patient) have to be
defined (if possible) or used (in the case of primitives) with the greatest
caution.

3.3.1 Introduction

In order to quantify how important each concept is in sentence com-
prehension, we transform the definitions that represent the meaning
of each word into a directed graph, with the concepts as nodes. Page-
Rank is a method in computer science, especially traditional web search,
originally introduced to measure the relevance of websites. We apply
PageRank to the definition graph to obtain values assigned to each ver-
tex, which can be interpreted as the importance of the corresponding
concept in understanding other words and phrases.

The remainder of the section is organized as follows. In Section 3.3.2
we present the definition graph, and in Section 3.3.3 we present the
PageRank method used to calculate the weight of each concept. Finally,
we report the quantitative results in Section 3.3.4.

We work at the word level, yet it is important to talk about argu-
ments of words (typically those of verbs and relational nouns). As it
follows from the principle of compositionality, we require that the rep-
resentation of the meaning of a structure consisting of a function and
its arguments is composed from the representations of the meaning of
the function and that of the arguments. To make this possible, the def-
initions of functions should indicate where the representation of each
argument has to be inserted. We do this by referring to the deep cases
of the arguments (Chapter 5).

This section repeats the experiments in a Hungarian paper of ours
(Makrai 2013)8. Repeating the experiments was made necessary by a
change in the deep cases system. In Makrai (2013), the names of the

7 Recall from our Section 3.1.3 or from Kornai (2012) that 4lang accounts for the
meaning of ditransitive (and higher arity) verbs using deep predicates of at most
two variables.

8 Thanks for helpful comments by Ágota Fóris, Dávid Nemeskey, Gábor Prószéky,
Tibor Vámos, and Tamás Váradi.
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deep cases abbreviated Hungarian surface cases (nom denoted the sub-
ject, acc denoted the object, and dat denoted the dative argument) or
classes thereof (obl denoted the oblique). Makrai (2014b) introduced
a more theoretically grounded system (i.e. more easily comparable to
Fillmore’s idea and invariance with respect to alternations). This linker
inventory is introduced in this thesis in Chapter 5. For the purposes
of this section of the thesis, we repeated the experiments by Makrai
(2013) with the 2014 definitions.

3.3.2 The definition graph

In this section, we first show how we transformed the 4lang dictionary
into a directed graph and a corresponding matrix, which enabled us to
characterize the semantic importance of the concepts. Thereafter we
describe the graph.

The vertices of the definition graph are concepts from the dictionary.
Recall that concepts have to be understood in the broad sense, rather
technical than the cognitive one of Section 2.2.6: they include unary and
binary predicates and deep case symbols. Whenever the word ‘metal’
is used in the definition of ‘steel’, there will be a directed edge

‘steel’ Ñ ‘metal’

in the graph. This graph has 3,185 (2013 version: 2,897) vertices and
11,023 edges (2013 version: 7,816). These numbers show that the graph
is sparse, i.e. there are relatively few edges between pairs of vertices,
recall Section 2.2.6. (Nevertheless, the development of the definitions
between Makrai (2013) and Makrai (2014b) resulted in a slight increase
of edge density to e{n2 “ 1.0866 ¨ 10´3 in 2014 from 9.3130 ¨ 10´4 in
2013 of (n and e are the number of nodes and edges respectively), which
means that the concepts got better anchored.)

The mathematical concept of strongly connected components will
play an important role later. Two vertices are called strongly connected
if a path (a sequence of edges) connects them in both directions. This
relation is an equivalence relation, it classifies the vertices into classes,
which are called strongly connected components. The strongly connected
components of the 4lang graph are interesting by themselves as they
give an intuition about the graph, so we briefly present them.

Table 4 shows some the strongly connected components. The largest
component consists of quite mixed words (yellow, four, sleep, under,
lack, month. . . ). The next largest strongly connected components con-
sist of cycles such as months, days of the week, or seasons. The def-
inition of e.g. a month consists of the pieces of information that the
definiendum is a month and which the previous and the next months
are.

In some of the mid-sized strongly connected components, the lex-
icographer can single out a central concept. E.g. the components of
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january, february, . . . , december 12
monday, tuesday, . . . , friday 7
bed, chair, cupboard, furniture, table 5
cereal, flour, grain, wheat 4
draw/2707, pen, pencil, write 4
king, monarch, queen, royal 4
autumn, spring/2318, summer, winter 4

buttocks, seat, sit 3
camera, lens, photograph 3
calm, disturb, upset 3
answer, question, reply 3
bake, bread, cake 3
female, male, sex 3
justice, right/1191, wrong 3
actor, stage/2220, theatre 3
many, much, quantity 3
husband, marriage, wife 3
poem, poet, poetry 3
cutlery, fork, spoon 3

Table 4: The mid-size strongly connected components of the 4lang definition
graph, version 2014. The largest component consists of 623 words,
there are many 2-cycles, and 2430 primitives.
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furniture and cereal can be intuitively analyzed as consisting of the
mentioned abstract concept and examples (bed, chair, cupboard, and
table or flour, grain, and wheat) thereof. Lexical definitions generally
do not contain examples. Furniture and cereal are exceptional in that
they need examples. Cycles appear as the definition of the abstract con-
cept contains the examples, and the definitions of the examples contain
the abstract notion as a genus.

In most of the small (2–4) components, we can only see that the
words mutually depend on each other conceptually, especially in the
case of 2-cycles.9 Finally, most concepts have no out-edges, i.e. they
are primitives of definition, so they form singleton strongly connected
components.

3.3.3 Weighting the concepts

Circularity is an old problem of lexicography: if we say that a ‘child’
is one who has a ‘parent’, and ‘parent’ is one who has a ‘child’, we
have not said much. As we have discussed in Section 3.2, some modern
dictionaries avoid this problem by limiting the vocabulary of the def-
initions to the so called defining vocabulary, the meaning of which is
assumed to be know. In the experiment of this section, we choose the
opposite direction by characterizing the importance of defining words
based on the dictionary, i.e. the structure where the words define each
other.

The mathematical method used for this can be thought of as a ran-
dom walk in the definition graph. We start the walk in a randomly cho-
sen concept. The problem of the probability distribution from which
this start concept is drawn, will be dealt with in the next paragraph
on the so called damping. During the steps of the walk, we randomly
take one of the concepts defining the current concept with a uniform
distribution (taking multiplicity into account). For each concept, con-
sider the probability that we will end up there after a long time. This
is called the limit distribution of the random walk. This just expresses
how important a given concept is in defining all the concepts, taking
into account, recursively, how important is the concepts that we want
to define.

The limit distribution is unique (that is, independent of the initial dis-
tribution) if and only if the graph consists of a single strongly connected
component. We have seen that this is not the case in the 4lang defini-
tion graph. PageRank is adapted for weighting the vertices of graphs

9 cause–reason, exist–real, hill–mountain, book–page, electricity–wire, programme–
television, acid–sour, bottle–glass, now–this, attention–interesting, level–scale,
balance/1607–weigh, dirt–dust, door–entrance, bell–ring/2735, brush–paint,
thick/2134–thin/1038, problem–solve, hang–swing, dig–spade, elephant–trunk/1910,
guest–host/2605, horse–ride, rat–rodent, news–newspaper, president–republic,
school–student, soap–wash
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consisting of more than one strongly connected components. Intuitively,
there are two possibilities at each step of the abstract walk that defines
PageRank: With a high probability d, we still go to one of the vertices
directly accessible (uniform distribution with multiplicity). With the
remaining low probability 1 ´ d, we can go to any of the nodes. Note
that the name is a bit misleading: a smaller damping factor leads to
more uniform distribution. More formally, this means that if we go to
node j with probability P pi, jq in the original walk given we are cur-
rently in node i, the same transition probability in the damped walk
will be

Pdpi, jq “
1 ´ d

n
` d ¨ P pi, jq

d is called the damping factor (most often d “ 0.85) and n is the
number of nodes. If the graph is strongly connected, and d goes to 1,
the limit distribution approximates that of the original walk.

3.3.4 Results

Of course, the PageRank value depends on the damping factor d. We
computed the PageRank of each node in the definition graph with three
values of the damping factor: besides the standard d “ 0.85, we took
0.9 and 0.95. In Figure 6 we explore the PageRank distributions. The
vertical axis corresponds to the PageRank values obtained with differ-
ent damping factors. The horizontal axis is aligned: the vocabulary is
sorted by PageRank obtained with d “ 0.85. Both axes are logarithmic.
(Encyclopedic references in 4lang like @Koran are omitted for reasons
to be discussed later in this section.)

This plot shows, that all the tree PageRank distributions are approx-
imated by a power law,10 i.e. a few items receive quite a great weight
and very many get very little. A higher damping factor increases the
contrast: the highest ranks increase and the lowest ones decrease. This
is as expected, if we recall that the name is misleading: smaller damping
factors smooth the distribution better.

The ordinal rank of the 8 most important elements does not depend
on the damping factor, however we see some instability with respect to
the damping factor especially in the 100–1000 range. (The PageRank
of many (121 out of 185) encyclopedic references like @Koran are very
close to 4 ¨ 10´4 regardless of the damping factor. These 121 are used
only once, e.g. @Koran is used only to define the word Koran, while
some appear in more definitions, e.g. @Arabia is used in the definition
of both Arabia and Arabian. These elements deviate from the power-
law distribution. We omitted them from the figure to make the power
law clearer.)

10 In this thesis, power-law is written with a hyphen, whenever it is an adjective, and
without one, when it is a noun.
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Figure 6: The three PageRank distributions. The vertical axis corresponds to
the PageRank values, and colors correspond to different damping
factors. The horizontal axis shows to the vocabulary sorted by the
PageRank value obtained with d “ 0.85. Both axes are logarith-
mic. Encyclopedic references were removed (see the main text). The
plot shows, that all the tree PageRank distributions can be approxi-
mated with a power law, and a higher damping factor increases the
contrast among concepts: the highest ranks increase and the lowest
ones decrease.
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Figure 7: The PageRanks of primitive and defined concepts (d “ 0.85), ency-
clopedic references included.

The tail consists of more than a thousand words with constant Page-
Rank. This includes words like presence, orange-colored, persuade, com-
plicated, and -able, which are defined, but not used in any definition.

The reader can investigate individual concepts in Figure 7 and Ta-
ble 5, where we also indicate whether each concept is defined or left
as a primitive. Clearly, the continuous values of PageRanks provide
a more subtle description of the defining vocabulary then the binary
distinction between primitive and defined concepts. Among the highest-
ranking nodes of the definition graph, we can see binary relations (has,
at), deep cases (=pat, =agt), and unary concepts proper, especially
members of 2-cycles (exist, reason). The high rank of some binary re-
lations and deep cases are in line with the intuitive idea that under-
standing lexical relations and the arguments of a verb structure play a
significant role in natural language understanding. These results are in-
structive in the sense that in order for a symbolic artificial intelligence
system to be able to draw the right conclusions, it must first handle
well the items at the top of the rankings.

3.3.5 Conclusion

We proposed a quantitative method to measure the importance of each
word in the recursive process (Section 3.2) of word definition. The
method is based on PageRank with the definition graph as an input.
We applied the method to the graphical representation of the 4lang’s
manually-written word definitions. Most nodes in this graph represent
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index d “ 0.85 d “ 0.9 d “ 0.95 primitive

0 has 0.030417 0.031716 0.032239 True
1 =pat 0.028574 0.030711 0.032011 True
2 exist 0.025244 0.040721 0.069136 False
3 at 0.025138 0.027126 0.028517 False
4 reason 0.023064 0.028577 0.035985 False
5 cause 0.022473 0.025304 0.028615 False
6 real 0.022016 0.035551 0.059786 False
7 place/1026 0.017554 0.020090 0.022533 False
8 er 0.016251 0.020077 0.025601 True
9 in 0.016165 0.016037 0.014831 False
10 =agt 0.016092 0.015693 0.014193 True
11 lack 0.014789 0.013393 0.010658 True
12 =poss 0.014709 0.018331 0.023043 True
13 =rel 0.011136 0.011443 0.011095 True
14 quantity 0.009905 0.012027 0.014770 False
15 degree 0.009466 0.012834 0.017398 False
16 point 0.009130 0.011350 0.013958 False
17 man/659 0.007482 0.007818 0.007804 False
18 many 0.007392 0.009732 0.013207 False
19 after 0.007338 0.007264 0.006860 False
20 want 0.007262 0.007306 0.006783 True
21 part-of 0.006579 0.006701 0.006628 True
22 big 0.006449 0.008655 0.011969 False
23 object 0.006213 0.006275 0.005758 False
24 instrument 0.005876 0.005566 0.004672 False
25 contain 0.005749 0.006167 0.006241 False
26 large 0.005355 0.006930 0.009123 False
27 follow 0.005237 0.005347 0.005248 False
28 much 0.005152 0.006743 0.008978 False
29 move 0.005103 0.005299 0.005413 False
30 for/2782 0.005057 0.005303 0.005156 True
31 person 0.005057 0.004948 0.004791 False
32 do 0.004259 0.004536 0.004724 False
33 sex 0.004237 0.005192 0.006541 False
34 good 0.004148 0.003830 0.003253 False
35 before 0.003874 0.003773 0.003477 True
36 other 0.003758 0.003837 0.003824 True
37 live 0.003685 0.003953 0.004008 False
38 change 0.003494 0.003949 0.004467 False

Table 5: The PageRanks of primitive and defined concepts (d “ 0.85).
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concepts (unary predicates) and lexical relations (binary predicates, see
the footnote in Section 3.1.3 for the difference). The place-holders of po-
tential syntactic arguments are also represented by nodes (labeled with
the deep cases – the thematic-role-style classes – of the argument, see),
and so are encyclopedic references. This section adopts the Hungarian
paper Makrai (2013) to the version of 4lang which uses our deep cases.
The most important nodes turn out to be lexical relations and deep
cases, what motivates their further investigation in Chapters 5 and 7
respectively.

3.4 analytic properties

What kind of information is included in 4lang representations? Lan-
guage philosophy and lexicography distinguish word meaning from other
kinds of knowledge, while cognitive science and NLP put the emphasis
on grounding linguistic knowledge in other capabilities of entities with
natural or artificial intelligence such as vision and memory.

Kant (1781) introduced the distinction between analytic propositions,
which are true by virtue of their meaning (All bodies occupy space.), and
synthetic propositions, that are true of their references in the real world
(All creatures with hearts have kidneys.). Within synthetic propositions,
a priori and a posteriori propositions can be distinguished based on
whether their justification relies upon experience. Logical positivists
revisited the definition of analytic proposition as a proposition that is
made true (or false) solely by the conventions of language.

W. v. Quine (1951) argued that the analytic–synthetic distinction
is untenable despite “one [being] tempted to suppose in general that
the truth of a statement is somehow analyzable into a linguistic com-
ponent and a factual component.” Wikipedia summarizes Quine’s ar-
gument so that the notion of an analytic proposition requires a notion
of synonymy (e.g. the proposition ‘Bachelors are unmarried’ is analytic
because bachelor is synonymous with something like older unmarried
man), but establishing synonymy inevitably leads to matters of fact via
semantic equivalence.

Grice and Strawson (1956) offer a pair of thought experiments to
restore the distinction. The protagonist of the first experiment says
that My neighbor’s three-year-old child understands Russell’s Theory
of Types. The other one says My neighbor’s three-year-old child is an
adult. The intended distinction is that it is logically impossible for a
child of three to be an adult, and it is naturally impossible for a child
of three to understand Russell’s Theory of Types. “In both cases we
would tend to begin by supposing that the other speaker was using
words in a figurative or unusual or restricted way; but in the face of
[their] repeated claim to be speaking literally, it would be appropriate
in the first case to say that we did not believe [them], while in the
second case [we would] say that we did not understand [them].”
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3.5 the naive model and an ontology

For a deeper understanding of the 4lang principle that the lexicog-
rapher should record analytic properties and disregard synthetic ones,
the reader may refer to Section 5.7 of Kornai (2019), which heavily
builds on the philosophical work in Putnam (1976), who “restored the
honor of the analytical/synthetic distinction”.

3.5 the naive model and an ontology

Our system is similar to truth-conditional semantics in that it can in-
teract with models. There are more models: an internal one modeling
linguistic meaning, and external models in charge of specific domain
specific knowledge and reasoning (Nemeskey et al. 2013). In the pre-
ceding chapter, we reviewed many works emphasizing the role of naive
theories in natural language semantics (Sections 2.2.6, 2.2.9 and 2.3.4).
The internal model is different from that of modern sciences of the cor-
responding domains. E.g. the 4lang definition of heart includes, besides
the scientific truth that ‘heart is an organ’ and ‘heart moves blood’ the
naive fact that ‘love is in heart’. We define death as the end of life,
though theology may state that life continues after death. As a third
example, ‘speed’ is related to ‘move’ in 4lang, but the exact nature of
this relation which is explained in physics is not part of the naive world
model, neither can it be expressed in 4lang.

Gruber et al. (1993) defines an ontology as a formal, explicit speci-
fication of a shared conceptualization. In such Knowledge Representa-
tional terms, the core definitions, the main protagonists of this chapter,
constitute the top-level ontology of the 4lang meaning representation
framework, keeping in mind that at this top level, we concentrate on
linguistic meaning, and domain-specific knowledge can represented in
external models.

3.6 formulas

The main contribution of this chapter is the representation of a cca. 3000-
word core vocabulary that, according to computations discussed in Sec-
tion 3.2, is sufficient to define all the words in a dictionary. These core
representations are written in 4lang formulas that are compiled to
4lang graphs by the pymachine software package.

4lang representations are graphs whose nodes are labeled by (mainly
alphabetical) strings, the exponents of the concept that the node rep-
resents; edges have one of the colors 0, 1, and 2; and one node is distin-
guished as head-node. Such graphs can be specified by listing the nodes
and the edges, but we maintain a formula representation as well which
is more reminiscent of natural language definitions found in a dictio-
nary. In this section, we describe the syntax of these formulas, i.e. the
minisyntax, along with the graphs they are compiled to in pymachine,
i.e. minisemantics. The minisyntax and the minisemantics together will
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be called the minigrammar. (The terminology metasyntax, metaseman-
tics, and metagrammar may be more familiar as they are the syntax and
the semantics of some metalanguage, the object languages being natural
languages, but we think that meta would suggest something impressive
while minigrammar is a modest mechanism for creating 4lang graphs
in lexicographer-friendly fashion.)

The minigrammar was first published in Kornai et al. (2015) with the
shortcoming that we did not make the head-node explicit, which made
the formalism somewhat unclear. Figure 8 reproduces the grammar
published there with some simplification in the system of non-terminals
and indicating the head-node in each graph. The left column specifies
how the graph representing the definiendum is built. There is always a
definiendum node denoted with m (labeled by the definiendum). The
right column shows how a graph gpXq representing the non-terminal
X in the left side of the corresponding rule can be build from m and
the graphs gpY q representing the yields of the non-terminals Y in the
right side of the rule by drawing the edges from the head-node of some
gpY1q or m to that of some gpY2q or m. The head-node of the resulting
graph is emphasized by boldface.

Non-terminals of the minisyntax are D for a definition, E for an ex-
pression (subjunctive clause), Eu for a “unary expression” (subjunctive
clause with unary head), U for (the label of) a unary node, B for (the
label of) a binary node, and A for an argument of a binary node. The
terminal , separates subjunctive clauses: a definition consist one or
more clauses. Note that normal-font round parenthesises in this figure
are used in regular expressions describing sentential forms, e.g. p,Eq˚

is the Kleene-closure of ,E, while the typewriter-font parens ( and )
are terminals of the minisyntax for 0-edges, e.g. long(time) compiles
to time 0

Ñ long. Square brackets parenthesize arguments of nodes,
mostly those of unary nodes (air[move]) and possibly those of binary
ones (The definition of put is =AGT CAUSE[=PAT AT/2744 =TO], =AGT
MOVE =PAT, =PAT[object], in which the second argument of CAUSE is
the patient (=AGT) being at the goal (=TO).)

Most unary predicates are lower-case strings that may include _ – see
below for special cases. Ambiguous word-forms are disambiguated by
appending the terminal / plus a numerical id to the end, e.g. light/739
is the opposite of dark(ness) while light/1381 is the opposite of heavy.
In the theory, homonyms have to be disambiguated before the graphs
are computed. This part was not implemented, the applications chose
the fist 4lang definition, when there were more.

From the point of view of the minigrammar, deep cases, the place-
holders of arguments in representations of functions, are also unary la-
bels despite their linking purpose. Deep cases are type-set as e.g. =AGT
or =TO. Some unary nodes are encyclopedic references, these are pre-
fixed with the terminal @, e.g. @United_States. Binary node labels are
uppercase strings also allowing _. In this thesis, binaries are type-set
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D Ñ Ep,Eq˚ m
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��
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E Ñ Eu

E Ñ U(E) gpEq

0
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gpUq

long(time) time
0
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Eu Ñ U[D] gpUq

0

��
gpDq

air[move] air
0

��
move

Eu Ñ U gpUq

A Ñ Eu | [D] | ’ gpEuq | gpDq | H

U Ñ @?ra ´ z_s`p/r0 ´ 9s`q? | =AGT | =PAT | =POSS | =REL | =DAT |

=TO | =FROM | =OBL | =AT | =FOR
B Ñ rA ´ Z_s`p/r0 ´ 9s`q?

Figure 8: The original minigrammar
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with small-caps-and-hyphens for aesthetic purposes), e.g. HAS and
PART_OF are written as has and part-of.

In Section 2.2.9, we discussed to what extent concepts can be de-
fined as conjunctions of other concepts. The first row in Figure 8 cor-
responds to the top level: the definition of a concept is a conjunction
of properties. For the theoretic background, see section 3.3. of Kor-
nai (2019) who defines ‘dog’ as ‘four-legged, animal, hairy, barks, bites,
faithful, and inferior’11. The next three lines represent binary predi-
cation. By default, the definition parser in pymachine draws a 0-edge
from empty arguments of binary nodes to the definiendum m. This can
be avoided by inserting the dummy argument ’ (gp’q “ H). E.g. the
definition of place is point, ’ AT/2744: a place is a point, at which
something else (something generic) is. Nodes with the same label get
unified (see Section 2.3.5) unless there is the key-word other on their 0-
th partition. E.g. the intended minisemantics of the definition of think,
=PAT IN/2757 mind, =AGT HAS mind, is that the patient is in the
mind that the agent has, because the to mind nodes are unified. Never-
theless, in the definition of cross, shape, line AT/2744 other(line),
symbol, <HAS upright(post/2740)>, <HAS horizontal>, <christian>,
the key-word other shows that the two occurrences of line should not
be unified.

3.7 applications, inheritance, and negation

No summer’s high
No warm July

No harvest moon to light one tender August night
No autumn breeze

No falling leaves
Not even time for birds to fly to southern skies

— Stevie Wonder

We conclude this chapter with an overview of 4lang’s applications
along with related remarks on the representation of (word-level) nega-
tion and inference. Early work (Nemeskey, Recski, and Zséder 2012;
Nemeskey et al. 2013) demoed 4lang in a dialog system that answered
questions about the time table and sold tickets. 4lang was successfully
applied to measure the similarity of English (Recski and Ács 2015; Rec-
ski et al. 2016; Recski 2016a, 2018) and Hungarian (Recski, Borbély,
and Bolevácz 2016) words and English sentences (Kovács et al. 2020;
Kovács, Gémes, Iklódi, et al. 2022). A key idea of these works is to rep-
resent words by their hand-written12 or automatically extracted defini-

11 We give pre-theoretic meanings in ‘single quotes’, while typewriter font is kept for
4lang formulas.

12 See the footnote in Section 5.5 on which applications used the hand-written defini-
tions.
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tions, and then replace defining words with their definitions (this kind
of step is called expansion), and repeat this for some iterations. The
principle is to reduce every word to the defining vocabulary. See the
PhD thesis of Recski (2016b) as well.

Recski et al. (2016) discuss some features for inference in their Sec-
tion 3.2. From the configuration train 0

Ñ vehicle 0
Ð car they in-

fer that train and car are somewhat similar (both are vehicles), and
from park 1

Ð IN 2
Ñ town and street 1

Ð IN 2
Ñ town that so are park

and street (both are in towns). A key point in inference is inheritance,
which we introduced in Section 2.2.1. If we have HAS wing for all birds,
HAS wing will also be true of all concepts for which 0

Ñ bird holds.
Inheritance is closely related to negation. Negation is expressed in the

2016 version of the hand-written 4lang formulas by connecting a lack
node to the 0th partition of the property which is lacking, e.g. by stating
diamond 1

Ð HAS 2
Ñ color 0

Ñ lack in the definition of diamond, we
escape the (counterfactual) inference of concluding diamond 1

Ð HAS 2
Ñ

color from the conjunction of diamond 0
Ñ mineral 0

Ñ substance
and substance 1

Ð HAS 2
Ñ color. A broader discussion of negation in

4lang can be found in Chapter 4 of Kornai (2023).
In the similarity experiments, Recski, Ács, Borbély, and Bolevácz

utilized dependency parsing, and combined the manual definitions with
those extracted from explanatory dictionaries. They refined the system
with construction-specific rules. Both the agents (resp. patient) in the
manual definitions and the subjects (resp. object) in the dependency
analysis have been linked with a 1 (resp. 2) arrow. Combined with
word embeddings and WordNet, they achieved the state of the art on
SimLex 999 (Hill, Reichart, and Korhonen 2015) near to the correlation
between a human annotator and the average of the other annotators.

Novák and Novák (2018a) transformed word embeddings into sym-
bolic token-based semic representations, Their experiments involved
4lang, as this framework „seemed to consists of a relatively coherent
minimal set of semantic elements” (Attila Novák, in his pre-opponent’s
report on this thesis, translation by the thesis author).
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Radim: “Was a story like nobody believed that it actually works,
and you can do this sort of algebra with the vectors directly?”

Tomáš: “Oh, algebra, yeah, yeah, yeah.”

— From a podcast with Tomáš Mikolov by Radim Řehůřek (21:20)
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Most contributions of this thesis are based on vector space language
models (VSMs). This chapter provides a relatively complete history of
these models going back to two interrelated families of word representa-
tions. The traditional method (Section 4.1) takes the co-occurrence ma-
trix as a starting point, while more recent representations are learned as
weights in shallow (Section 4.2) or deep (Section 4.3) neural networks.

92

https://youtu.be/p-_0lOMfMYI?t=1279


4.1 matrix factorization for word modeling

The primary source of information about the meaning of a word is
how often it is used in different contexts, an idea called the distribu-
tional hypothesis by linguists going back to Z. Harris (1951), and often
quoted in the form that “You shall know a word by the company it
keeps” (Firth 1957). The Saussurean definition of syntactic category
(part of speech) is strikingly similar, the only difference in NLP prac-
tice appears to be how the context is defined (Sahlgren (2006), see Sec-
tion 4.1.4): syntax is based on a short directed window (e.g. adjectives
closely precede nouns) while semantic relations can be extracted from
longer but symmetric windows (dog and faithful co-occur in sentences
in any order).

One simple formalization of word distribution in a corpus is the co-
occurrence matrix whose rows correspond to words in the vocabulary,
columns to contexts, and cells contain the occurrence count of the word
corresponding to the row appearing in the context corresponding to
the column. What is meant by context depends on the application. In
Latent Semantic Analysis (LSA, Deerwester, Dumais, and Harshman
(1990), Section 4.1.3), columns of the original (unreduced) matrix cor-
respond to documents. In matrix-based vector space language models
(Turney and Pantel 2010) on the other hand, columns originally corre-
spond to words, and counts express how often the words corresponding
to the row and the column collocate in a window of some fixed length
(say 5). Both in LSA and co-occurrence based VSMs, the number of
contexts is at least in the thousands and gets reduced to some hundred
dimensions for computation efficiency.

Neural language models (both shallow static ones, Section 4.2, and
contextualized deep ones, Section 4.3), on the other hand, are neu-
ral nets, trained on gigaword corpora by iterating over words in their
contexts and updating some weights of the model at each word. The
resulting models represent similar words and sentences with similar vec-
tors, and already static word embeddings reflect relational similarities
between words like king ´ queen « man ´ woman (Mikolov, Yih,
and Zweig 2013).

4.1 matrix factorization for word modeling

4.1.1 Semantic differential

Vector space models of word meaning originate with psychological re-
search by Osgood, May, and Miron (1975). In Osgood, May, and Miron’s
experiments, participants were asked to scale words like freedom on op-
positional scales like sturdy-fragile, be the choice simple or abstrac-
t/metaphorical. Measurements were done in several languages with
great typological care, and projected from the high-dimensional space of
these oppositions to a three-dimensional space by principal component
analysis (PCA). The emerging inter-lingual scales called evaluation,
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potency, and activity turned out to explain much of the variation
in the data. The method is called semantic differential. For details, see
the last part of Section 2.7 in Kornai (2019).

4.1.2 TF-IDF and PMI

The next step in the history of VSMs was to gain the vectors from text
corpora or, in the context of information retrieval, where the method
got elaborated (Salton, Wong, and Yang 1975), from text documents.
Classical methods start with a frequency matrix, more recent ones ad-
just association weights in artificial neural networks, but the mathemat-
ics these systems learn turn out to be variants of each other. Turney
and Pantel (2010) discuss the history of VSMs arranged by what the
rows and columns of the matrices correspond to, distinguishing term–
document, word–context and pair–pattern matrices. Each cell contains
the frequency of the term (or word, . . . ) corresponding to the row in
the document (or context, . . . ) corresponding to the column.

Frequencies are adjusted to balance the effect of more frequent but
less informative terms, or the variation in the length of the documents.
The standard weighting technique comes from information retrieval,
where the task is to return from a pool of documents the ones that
are the most relevant for (similar to) a given query. (The query is also
treated as a document) This weighting is tf-idf (term frequency–inverse
document frequency) scoring, but there are other methods as well.

In NLP, the information-theoretic association scores pointwise mu-
tual information (PMI, Church and Hanks (1990))

PMIpx, yq “ logP px, yq{P pxqP pyq

and positive pointwise mutual information (PPMI, Niwa and Nitta
(1994))

maxt0, PMIpx, yqu

became standard, and Levy and Goldberg (2014c) showed (as we will
see in Section 4.2.5) that the more recent word2vec is mathematically
equivalent to a variant of PMI, shifted PMI.

Besides weighting, matrices also have to be smoothed to reduce the
amount of random noise and to fill in some of the zero elements in a
sparse matrix. Semantic differential (Section 4.1.1) applies PCA, which
computes word representations from the raw term–document matrix.
PCA requires inverting the data matrix. This became feasible for thousand-
row matrices in the past decades, resulting in the method called Latent
Semantic Analysis, what we turn to now.
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4.1.3 Latent semantic analysis

The main pre-neural method, which has remained an important refer-
ence point in the word embedding era (Tsvetkov, Faruqui, and Dyer
2016; Antoniak and Mimno 2018), is Latent semantic analysis (LSA,
Dumais et al. (1988) and Furnas et al. (1988)). Landauer, Foltz, and
Laham (1998) introduce LSA in two ways.

On the practical side, it is a method for obtaining approximate esti-
mates of the contextual substitutability of words in text, and similari-
ties among words and text segments. On the cognitive side, it is a model
of the computational processes and representations underlying the ac-
quisition and utilization of knowledge. While we think that it rather
depends on the scientific taste of the researcher whether they motivate
their work with such acquisitional claims, the practical importance of
LSA in pre-embedding NLP is beyond debate. For a recent overview
of LSA methods in psychology, especially author modeling, automated
grading, and change over time, see Iliev, Dehghani, and Sagi (2014,
Section 1.4).

Closer to the mathematical content is the way to think of LSA as
representing the meaning of a word as the average of the meaning of all
the passages in which it appears, and dually, the meaning of a passage
as an average of the meaning of all the words it contains. The choice of
dimensionality can be of great importance. LSA can be motivated in
a way that the resulting dimensions may be analogous to the semantic
features often postulated as the basis of word meaning, but establishing
specific relations to mentalisticly interpretable features poses daunting
technical and conceptual problems. It may worth noting that LSA ar-
rived at the same dimensionality (300), as word embeddings did (Sec-
tion 4.2). The effective usage of LSA is a process of very sophisticated
tuning and can be viewed as a kind of art. The main factors are pre-
processing (stopwords, stemming), frequency matrix transformations,
the choice of dimensionality, and, the choice of similarity measure. For
an early study on the impact of weight functions choice, see Nakov,
Popova, and Mateev (2001).

The authors point out that transformation of co-occurrence counts to
log frequency divided by entropy and followed by dimensionality reduc-
tion is reminiscent of information retrieval methods, and the psycholin-
guistic reality of the dimensionality reduction step is often implicit
and sometimes explicit in many neural net and spreading-activation
architectures. The similar equivalence between word embeddings and
pointwise mutual information will be discussed in Section 4.2.5.

4.1.3.1 Singular Value Decomposition

Data preprocessing transformations in LSA need to be described in
more detail. LSA subjects the data in the raw word-by-context matrix
to a logpx ` 1q transformation, and then each cell entry is divided by the
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row entropy value. The result is an estimate of the word’s importance
in the passage, the degree to which knowing that a word occurs in a
passage provides information about the passage.

Singular value decomposition (SVD) is the general method for linear
decomposition of a matrix into independent principal components of
which factor analysis is the special case for square matrices. For the
reader who is not familiar with or interested in multivariate statistics,
we cite Landauer, Foltz, and Laham (1998)’s elevator-pitch description
of factor analysis as finding a parsimonious representation of all the
intercorrelations between a set of variables in terms of a new set of ab-
stract variables, each of which is unrelated to any other but which can
be combined to regenerate the original data. SVD does the same thing
for an arbitrarily shaped rectangular matrix, including the case when
columns stand for words, and rows for contexts. (See the formulas in
Section 4.2.8.3.) In the process, cells in the matrix originally contain
the frequency. The raw cell entries f are first transformed to lnp1 ` fq{e

where e is the entropy of the word over all contexts. This matrix is then
submitted to SVD and the — for example — 300 most important di-
mensions are retained (those with the highest singular values, i.e. the
ones that capture the greatest variance in the original matrix). The
resulting vectors of 300 real values represent each word and each con-
text. Similarity has been usually measured by the cosine of the angle
between the vectors.

Related to LSA is a generative method called Latent Dirichlet Allo-
cation (Blei, Ng, and Jordan 2003), where each document is supposed
to be composed of a mixture of topics. While the dimensions of LSA
may be regarded as abstract and meaningless, the dimensions in LDA
correspond better to latent topics that emerge from the corpus.

4.1.4 Relation to structuralist linguistics

Now we summarize Sahlgren (2006), who investigates the relation be-
tween the word-space model and structuralist linguistics.

4.1.4.1 Rethinking the distributional hypothesis: syntagma and paradigm

The distributional hypothesis, as motivated by the work of Zellig Harris,
states that differences of meaning correlate with differences of distribu-
tion, but he neither specifies what kind of distributional information
we should look for, nor what kind of meaning differences it mediates.

Syntagmatic relations concern positioning, as already the Greek word
syntag-matikos ‘arranged, put in order’ shows.1 They relate entities that
co-occur in the text. They are linear, and apply to linguistic entities

1 The PDF version of Sahlgren (2006) I have access to transcribes the first vowel of
the Greek word as u, but – as Attila Novák pointed out – the original must be an
υ, and the transcription, accordingly a y.
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Test Which relation? (Is essential?) Context

Thesaurus both (´) large
Association syntagmatic (`) small
Synonym paradigmatic (`) narrow
Antonym paradigmatic (´) wide
POS paradigmatic (`) narrow

Table 6: Test, relations they rely on, the degree to which the relations are
essential to the test (´ and `), and the context that yields the best
results in the strict evaluation settings (Sahlgren 2006, Table 15.6).
The thesaurus task is to list words with related meanings to the
query.

that occur in sequential combinations. They are combinatorial relations,
which means that words that enter into such relations can be combined
with each other. A syntagma or syntagm is such an ordered combination
of linguistic entities: written words are syntagms of letters, sentences
are syntagms of words.

Paradigmatic relations, on the other hand, concern substitution. The
Greek word paradeigmatikos means serving as a model. Saussure him-
self never used the word paradigmatique. It was Hjelmslev who coined
the term as a substitute for Saussure’s associative meanings. Paradig-
matic relations are between entities that do not co-occur in the text.
They hold between linguistic entities that occur in the same context
but not at the same time. A paradigm is a set of such substitutable
entities, usually depicted as orthogonal axes in a grid.

Although Harris was arguably more directly influenced by the works
of Bloomfield than of Saussure, the latter’s structuralist legacy is foun-
dational for both Bloomfield’s and Harris’ theories. In Sahlgren’s view,
the Saussurian refinement of the distributional hypothesis clarifies the
semantic requirements of the word-space model and the distributional
methodology. A word-space model accumulated from co-occurrence in-
formation contains syntagmatic relations between words, while one
from information about shared neighbors contains paradigmatic rela-
tions.

4.1.4.2 The semantic continuum

Sahlgren’s point is that syntagmatic and paradigmatic relations be-
tween words should be discoverable by using co-occurrence information
and information about shared neighbors in the word-space, respectively.
A qualitative comparison between different uses of context e.g. in LSA
(Section 4.1.3) or other models should be able to divulge the difference
by empirical investigation. Sahlgren is interested in what these different
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uses of context entail, what their differences are, and how they can be
used to build word spaces.2

Sahlgren’s thesis is split to background chapters, “setting the scene”
chapters, and foreground chapters, a structure we followed in the present
thesis to some extent. The latter contain experiments demonstrating
the differences between syntagmatic and paradigmatic uses of context:
small context regions yield more syntagmatic word spaces, while wide
context windows yield more paradigmatic spaces, as can be seen in Ta-
ble 6. Only a small percentage of the nearest neighbors occur in both
syntagmatic and paradigmatic word spaces.

Sahlgren investigates three parameters of the characterization of paradig-
matic contexts:

• the size of the context region,

• the position of the words within the context region, and

• the direction in which the context region is extended. The only
experiment he was aware of exploiting the directional information
in a words-by-words co-occurrence matrix was Schütze (1993).

In his experiments, Sahlgren compares different weighting schemes
of the slots for the paradigmatic uses. The two extremes are constant
weighting over the window, and aggressive distance weighting according
to the formula 21´l, where l is the distance to the focus word. Possibil-
ities in between include linear distance weighting and 1{l.

In the concluding chapter, Sahlgren answers his research questions.
Is it at all possible to extract semantic knowledge by merely looking
at usage data? Clearly, yes. Does the word-space model constitute a
complete model of the full spectrum of meaning, or does it only con-
vey specific aspects of meaning? It is complete as far as it reflects a
structuralist dichotomy of syntagma and paradigm. If we believe that
meaning is essentially referential, then no.

4.1.4.3 “Future” work

The future work section lists problems related to which much has been
achieved since 2006, but they still remain major problems. One is that
word spaces may have (i) a common internal structure that can be

2 While a bit irrelevant for the purposes of the present thesis, it is interesting what
Sahlgren thinks about the use of a document as a context. Word-space algorithms
that prefer a syntagmatic use of context, such as LSA, hail from the information
retrieval community, where a document is a natural context of a word. But “docu-
ment” in the sense of a topical unit is an artificial notion that hardly exists elsewhere;
before the advent of library science, the idea that the content of a text could be ex-
pressed with a few index terms must have seemed strange. In the “real” world,
content is something we reason about, associate to, and compare. In the world be-
yond information-retrieval, text is a continuous flow where topics intertwine and
overlap and the notion of a “document” is at best an arbitrary choice. In a whole
document nearly every term can co-occur with every other.
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utilized to differentiate between different types of relations within the
word space; and (ii) a discoverable “latent” dimensionality. While com-
positionality is not without controversy in the philosophy of language,
word-space models may be extended to handle phrase, clause, sentence,
paragraph, “document” and text level meaning too. The word-space
model may have the flexibility and ability to continuously evolve when
subjected to a continuous data flow.

Finally, Sahlgren remarks that the word-space model is not a psycho-
logically realistic model of human semantic processing. It is arguable
that humans also use extra-linguistic context when learning, under-
standing, and using language. The inability to reach beyond the limits
of textuality is the most disqualifying feature of the word-space model
with regard to the referential aspect of meaning.

4.1.5 A compression-based method

Cilibrasi and Vitányi (2004) present a similarity measure between words
and phrases based on information distance and Kolmogorov complexity,
using Google page counts. In the Turney and Pantel (2010) classifica-
tion, this is a term–document model. This similarity measure is the
special case of a compression-based universal similarity metric among
objects given as finite binary strings. These strings include genomes,
music pieces in MIDI format, computer programs, pictures in simple
bitmap formats, or time sequences such as heart rhythm. The universal
metric is feature-free in the sense that it does not look for particular
features, but analyzes all features simultaneously and determines the
similarity between every pair of objects according to the most dominant
shared feature. The word similarity measure is based on “the Google se-
mantics of a word or phrase”, i.e. the set of web pages returned by the
query concerned.

They normalize the introduced distance to make it relatively stable
with respect to the index size (Normalized Google Distance, NGD).
The NGD of horse and rider is 0.443. The distance is usually between 0
(identical) and 1 (unrelated), but not always (see below). If the distance
is calculated from the index of only one-half of the pages, this distance
only deviates to 0.460.

A drawback of the Google semantics is that terms with different
meaning may have the same semantics, especially opposites often have
a similar semantics. The paper offers more literature (of course, from
before 2005) on how representative Google hits are for language. The
theoretical underpinning is based on the theory of Kolmogorov complex-
ity, in terms of coding and compression. Let G denote the prefix-code
word length defined from the relative frequency of the hits. The NGD
formula
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NGDpx, yq “
Gpx, yq ´ minpGpxq, Gpyqq

maxpGpxq, Gpyqq

“
maxplog fpxq, log fpyqq ´ log fpx, yq

log N ´ minplog fpxq, log fpyqq

is similar to many earlier formulas in this area, but not equivalent to
any of them.

It has to be noted that the returned Google counts are approximate.
The situation used to get worse if one used the boolean OR operator
between search terms, but the measure is based on the AND operator,
which is less problematic. When the paper was written, Google already
estimated the number of hits based on samples, and the number of
indexed pages already changed rapidly. To compensate for the latter ef-
fect, the authors have inserted a normalizing mechanism. Web searches
for rare two-word phrases correlated well with frequency in traditional
corpora, as well as with human judgments.

4.1.5.1 Kolmogorov complexity, information distance, compression-
based similarity

Information can be compressed to different extents. The Kolmogorov
complexity Kpxq is the length, in bits, of the ultimate compressed
version from which x can be recovered by a general decompression
program. An earlier paper considered the following information dis-
tance Epx, yq: given two strings x and y, what is the length of the
shortest binary program in the reference universal computing system
such that the program computes output y from input x, and also
output x from input y. Up to a negligible logarithmic additive term,
Epx, yq “ Kpx, yq ´ min Kpxq, Kpyq, where Kpx, yq is the binary length
of the shortest program that produces the pair x, y and a way to tell
them apart. This distance Epx, yq is actually a metric.

E is universal for the family of computable distances, i.e. E minorizes
every admissible distance up to an additive constant, where admissible
means non-negative, symmetric, and computable. More intuitively, this
means that the information distance determines the distance between
two strings minorizing the dominant feature in which they are similar.
This measure has to be normalized, because if small strings differ by an
information distance which is large compared to their sizes, then the
strings are very different. The normalized information distance (NID)
has values between 0 and 1, and it is universal: minorizes, up to a
vanishing additive term, every other possible normalized computable
distance. The NID is uncomputable since the Kolmogorov complexity
is uncomputable, but we can use real data compression programs to
approximate the Kolmogorov complexities Kpxq, Kpyq, Kpx, yq.
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4.1.5.2 Google distribution, Normalized Google Distance, and their
universality

We cannot use the probability of the events directly to determine a pre-
fix code, or, rather the underlying information content implied by the
probability because events overlap and hence the summed probability
exceeds 1. But absolute probabilities allow us to define the associated
prefix code-word lengths (information contents) for both the singletons
and the doubletons.

The Google Similarity Distance has the following properties:

• The range of the NGD is basically in between 0 and 8. More
precisely, it is slightly negative if the Google counts are untrust-
worthy and state fpx, yq ą maxtfpxq, fpyqu.

• If fpxq “ fpyq “ fpx, yq ą 0, then NGDpx, yq “ 0.

• If frequency fpxq “ 0, then for every search term y we have
NGDpx, yq “ 8{8, which we take to be 1 by definition.

• NGD is always non-negative and NGDpx, xq “ 0 for every x.

• NGD is symmetric (NGDpx, yq “ NGDpy, xq).

• The NGD does not satisfy the triangle inequality, i.e. NGD is not
a metric.

The paper includes clustering and classification experiments (against
WordNet, see Section 2.4.3) to validate the universality, robustness, and
accuracy of the proposal.

4.1.6 Mathematical processing

Now we summarize Turney and Pantel (2010, Section 4)’s discussion of
the mathematical processing for distributed word models. This will be
especially important in Chapter 6.

First the frequency matrix is built by scanning sequentially through
the corpus, and recording events and their frequencies in a hash table,
a database, or a search engine index. The frequency matrix has to be
represented in a sparse way (i.e. most items are 0).

4.1.6.1 Weighting the Elements

The weights of the elements in the matrix have to be adjusted, because
common words will have high frequencies, yet they are less informative
than rare words. Information retrieval uses the tf-idf (term frequency ˆ

inverse document frequency) family of weighting functions, where an el-
ement gets a high weight when the corresponding term is frequent in the
corresponding document (i.e. tf is high), but rare in other documents
in the corpus (i.e. df is low). Document length has to be normalized.
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Affixation, especially derivational affixation is problematic both from
linguistic and computation point of view. The linguistic problem is
to delineate the inventory of compositional affixes. The compositional
problem is that though different forms of the same lexeme are corre-
lated, yet we may not want to lemmatize them, because they may have
slightly different meanings. An idea that did not become standard is to
reduce the weights of derivatives when they co-occur in a document.

A key step in pre-neural machine learning was feature selection. One
of the most popular word association scores remains Pointwise Mutual
Information, which we will discuss in detail in Section 6.2.

4.1.6.2 Smoothing the Matrix

The goal of smoothing the matrix is to reduce the amount of random
noise and to fill in some of the zero elements that are due to data
sparsity. The other direction, sparsification is a hot topic today (Sanh et
al. 2019), but it goes beyond the limits of this thesis. The mathematical
method of truncated (or thin) Singular Value Decomposition (SVD)
is standardly applied to either document similarity (Latent Semantic
Indexing), or word similarity (Latent Semantic Analysis, Section 4.1.3).

SVD decomposes X into the product of three matrices UΣV ⊺, where
U and V are in column orthonormal form (i.e. the columns are orthogo-
nal and have unit length, U⊺U “ V ⊺V “ I), and Σ is a diagonal matrix
of singular values. If X is of rank r, then Σ is also of rank r. Let Σk,
where k ă r, be the diagonal matrix formed from the top k singular
values, and let Uk and Vk be the matrices produced by selecting the cor-
responding columns from U and V . The matrix UkΣkV ⊺

k is the matrix of
rank k that best approximates the original matrix X, in the sense that
it minimizes the approximation errors. That is, pX “ UkΣkV ⊺

k , which is
called the truncated SVD, minimizes | pX ´ X|F over all matrices pX of
rank k, where | . . . |F denotes the Frobenius norm.

The authors list four aspects of what SVD is looking for: latent mean-
ing, noise reduction, indirect or high-order co-occurrence (when two
words appear in similar contexts), or sparsity reduction. Truncated
SVD implicitly assumes that the vectors have a Gaussian distribution
– Minimizing the Frobenius norm | pX ´ X|F will minimize the noise,
if the noise has a Gaussian distribution – but this assumption is not
satisfied by word frequencies.

4.1.6.3 Comparing the Vectors

There are many different ways to measure the similarity of two vectors,
but the most popular one is clearly cosine similarity, while the most
intuitive one remains the Euclidean distance. In classical information
retrieval, it has been commonly said that, properly normalized, the dif-
ference in retrieval performance using different measures is insignificant.
Distances include the Manhattan distance, or, from information theory,
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Hellinger, Bhattacharya, and Kullback-Leibler. Dice 2xy{p|x|2 ` |y|2q

and Jaccard have set-theoretic motivation.
Lee (1999) gives the principle that measures that focused more on

overlapping coordinates and less on the importance of negative features
(i.e. coordinates where one word has a non-zero value and the other has
a zero value) appear to perform better. In her experiments, the Jaccard,
Jensen-Shannon, and L1 measures seemed to perform best.

Other researchers studied the linguistic and statistical properties of
the similar words returned by various similarity measures and found
that the measures can be grouped into three classes: high-frequency
sensitive measures, low-frequency sensitive measures, similar-frequency
sensitive methods. Given a word w0, if we use a high-frequency sensi-
tive measure to score other words wi according to their similarity with
w0, higher frequency words will tend to get higher scores than lower fre-
quency words. If we use a low-frequency sensitive measure, there will
be a bias towards lower frequency words. Similar-frequency sensitive
methods prefer a word wi that has approximately the same frequency
as w0.

4.1.6.4 Efficient comparisons

One section in Turney and Pantel (2010) discusses methods like dis-
tributed sparse matrix multiplication and Random Indexing. Random-
ized algorithms are based on the idea that high-dimensional vectors can
be randomly projected into a low-dimensional subspace with relatively
little impact on the final similarity scores. Random Indexing (RI) is
an approximation technique that computes the pairwise similarity be-
tween all rows (or vectors) of a matrix. There are index vector elements
of which are mostly zeros with a small number of randomly assigned
`1’s and ´1’s. The cosine measure between two rows r1 and r2 is then
approximated by computing the cosine between two fingerprint vectors,
fingerprint(r1) and fingerprint(r2), where fingerprint(r) is computed by
summing the index vectors of each non-unique coordinate of r.

Locality sensitive hashing (LSH, Broder (1997)) is similar technique.
LSH functions include the Min-wise independent function, which pre-
serves the Jaccard similarity between vectors, and functions that pre-
serve the cosine similarity between vectors.

4.2 neural word embeddings

4.2.1 Symbolic structures in connectionism

As a thesis submitted to a theoretical linguistics programme, this work
may start its account of neural word models with Rumelhart and Mc-
Clelland (1986), a paper from the same year as Hinton, McClelland,
and Rumelhart (1986), which proposed a distributed representation
of words. Rumelhart and McClelland’s paper belongs to the infamous
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past tense debate between connectionists and discrete-minded schol-
ars. However, we prefer taking our ideological heritage from Smolensky
(1990, Section I), which we summarize now.

4.2.1.1 Discrete and continuous computations

Connectionist models rely on parallel numerical computation rather
than the serial symbolic computation of traditional artificial intelli-
gence (AI) models. Smolensky argues that connectionist models will
offer an opportunity to escape the brittleness of symbolic AI systems,
and develop more human-like intelligent systems, but only if we can find
ways of naturally instantiating the sources of power of symbolic compu-
tation within fully connectionist systems. The connectionist approach,
on the one hand, is an excellent opportunity for formally capturing the
subtlety, robustness, and flexibility of human cognition, and for eluci-
dating the neural underpinnings of intelligence. The symbolic approach,
on the other, has provided tremendous insights into the nature of the
problems that must be solved in intelligent systems, and of techniques
for solving these problems.

The paper is part of an effort to extend the connectionist frame-
work to naturally incorporate symbolic computation, without losing the
virtues of connectionist computation; i.e. integrate the discrete math-
ematics of symbolic computation and the continuous mathematics of
connectionist computation. Language can be represented by objects
like a phrase-structure tree, or even as a simple sequence of words. The
representation problem is characterized as finding a mapping from the
set of structured objects to a vector space.

Smolensky takes an analogy from mathematics: representing abstract
groups as collections of linear operators on a vector space. Discrete
group theory and the continuous vector space theory interact, and this
relation extends to applications like quantum physics. In physics, ele-
mentary particles involve a discrete set of particle species which exhibit
many symmetries, that are described by group theory. Yet underlying
elementary particle state spaces are continuous.

In human language processing, the discrete symbolic structures that
describe linguistic objects are actually “imbedded” in a continuous con-
nectionist system that operates on them with flexible, robust processes
that can only be approximated by discrete ones. Smolensky refers to
structures as symbolic ones, because the principal cases of his interest
are objects like strings and trees, however, his analysis is of structured
objects in general; it applies equally well to objects like images and
speech trains. (His view is not that mental operations are always serial
symbol manipulations, but that the information processed often has
useful symbolic descriptions.)

Smolensky seeks a fully distributed representation in which each out-
put neuron participates in the representation of many different outputs.
In the tensor product representation he proposes, both the variables
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and the values can be arbitrarily nonlocal, enabling (but not requiring)
representations in which every unit is part of the representation of every
linguistic constituent in the structure. The representation can be used
recursively, and connectionist representations of operations on symbolic
structures and recursive data types, can be naturally analyzed.

4.2.1.2 Why inject symbolic structure in a neural network?

The motivation for pursuing the representation of symbolic structures
in connectionist systems lies in the connectionist modeling of higher cog-
nitive processes such as language. Here the central question is: What
are computationally adequate connectionist representations of strings,
trees, and sentences? The essence of the connectionist approach, people
might say, is to expunge symbolic structures from models of the mind.
But a reasonable starting point is to take linguistic analysis of the
structure of linguistic objects seriously, and to find a way of represent-
ing this structure in a connectionist system: it is important to find ade-
quate connectionist representations of these trees or strings. Smolensky’
hope is that new connectionist representations of linguistic structures
will rest on prior understanding of connectionist representations of ex-
isting symbolic descriptions of linguistic structure. The importance of
representing linguistic structures exceeds NLP: these representations
are the basis for connectionist models of conscious, serial, rule-guided
behavior: all higher thought processes.

One argument against designing a connectionist representation of
symbolic structures goes like this: Just as a child somehow learns to
internally represent sentences with no explicit instruction on how to do
so, so a connectionist system with the right learning rule will somehow
learn the appropriate internal representations; The problem of linguistic
representation is not to be solved by a connectionist theorist but rather
a connectionist network. Smolensky’s response is the following:

• In the short term, at least, our learning rules and network simu-
lators do not seem powerful enough for unstructured learning,

• we will still need to explain how the representation is done,

• we should build bridges as soon as possible between accounts of
language; the problem is just too difficult to start all over again
from scratch,

• to experiment now with connectionist learning of rather complex
skills (e.g. parsing, anaphoric resolution, and semantic interpre-
tation, all in complex sentences), we need connectionist represen-
tation of the input and output. We want to study the learning of
the operations without waiting for the discovery of the linguistic
representations.
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• Language is more than just a domain for building models: it is
a foundation on which the entire traditional theory of computa-
tion rests. It is crucial for how the basic concepts of symbolic
computation and formal language theory relate to connectionist
computation.

4.2.2 Neural language modeling

At least before the neural revolution in NLP, the term language model-
ing was restricted to the task of “predicting the next word”, which
is equivalent to computing the probability (naturalness) of a word
sequence. Probabilities are estimated using (relative) frequencies. As
there are infinitely many possible sentences but the model is trained
on a finite sample, the main point is in generalization. A simple and
effective approach to language modeling is the family of n-gram models
(Brown et al. 1992) that make the Markov assumption, i.e. the simplify-
ing assumption that the probability of a word in a context depends only
on preceding words of some fixed number (four in most applications of
the time). Thus the probability of the Hungarian word string minden
madár társat választ (‘every bird is choosing a mate’)3 is computed as

P p^ minden madár társat választ $q “

P p minden | ^ q ¨ P p madár | minden q ¨ P p társat | madár q¨

¨ P p választ | társat q ¨ P p $ | választ q

P p madár | minden q denotes the probability of the word madár given
that the preceding word was minden. ^ and $ denote the beginning and
the end of the string, respectively. While n-gram models are easy to
understand and useful in application, they have the disadvantage of not
capturing morphological and semantic relations between words. This is
the problem that the neural language model (Bengio et al. 2003) solved.

Bengio et al. (2003) implement the n-gram language model relying
on shared-parameter multi-layer neural networks. Their network has
millions of parameters, and it is trained on tens of millions of examples.
Training such large-scale model is expensive but feasible, scales to large
contexts, and yields good comparative results.

The idea of fighting the so called curse of dimensionality with dis-
tributed representations is summarized by the authors as associating
with each word in the vocabulary a distributed word feature vector (a
real-valued vector in Rm); expressing the joint probability function of
word sequences in terms of the feature vectors of these words in the se-
quence; and learning simultaneously the word feature vectors and the
parameters of the probability function. The objective can be the log-
likelihood of the training data or a regularized criterion, e.g. by adding

3 This sentence is from the song that gave the title of the conference where Makrai
(2014b) was published.
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a weight decay penalty i.e. like in ridge regression, the squared norm
of the parameters as a penalty.

The paper cites a rich collection of related work for the idea of using
neural networks to model high-dimensional discrete distributions and,
from the early days of connectionism, the idea of learning a distributed
representation for symbolic data. In their view, neural networks for lan-
guage modeling are not new either in the field of character-level LM
based neural text compression with or without hidden units and one
or more input words. What is more well known, generalization from
training sequences is and has been been obtained in the form of simi-
larities between words: clusterings of the words with words associated
deterministically or probabilistically with classes. Vector-space repre-
sentation for words has been well exploited in the context of an n-gram
based statistical language model, using LSI to dynamically identify the
topic of discourse. Finally, vector-space representation for symbols in
the context of neural networks, and especially a parameter sharing layer,
was pioneered in text-to-speech mapping.

Bengio et al. (2003) is the kind of paper whose future work section
forecast the most important steps of the next 10-15 years, especially
hierarchical softmax (Section 7.4.4.1, Morin and Bengio (2005)), the
recurrent language model (Mikolov 2010), negative sampling (Mikolov,
Sutskever, et al. 2013), “interpreting (and possibly using) the word
feature representation” (Mikolov, Yih, and Zweig 2013), and sub-word
encoding (Bojanowski et al. 2017). A section sketches an energy-based
extension.

We used the Hierarchical Log-Bilinear extension (HLBL, Mnih and
G. E. Hinton (2009)) of the neural word model for this thesis (Sec-
tions 7.2 and 7.3). The model is called log-bilinear because it models
the co-occurrence of two words as proportional to exppuJ ¨ vq where u

and v are the corresponding word vectors.
Probabilistic modeling proper means that the sum of the co-occurrence

probabilities, Z “
ř

uPV ppu | vq , a.k.a. the partition function (V is
the vocabulary) should be equal to 1. Z is very costly to compute.
Hierarchical modeling, most notably hierarchical softmax, solves this
problem by organizing the vocabulary at the leaves of a binary tree,
and reducing the choice of a word to a series of binary choices among
the path leading to the corresponding leaf. The choice at each node is
accounted for by a two-valued probabilistic variable, which makes the
partition function trivial.

4.2.3 Parameter sharing and noise-contrastive estimation

One of the key components of the NLP advances in the last decade is
parameter sharing (Bengio, Courville, and Vincent 2013) in the form
of unsupervised pre-training introduced by Collobert et al. (2011), who
train a single model for tasks including part-of-speech tagging, chunk-
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ing, named entity recognition, and semantic role labeling. The system
learns internal representations based on vast amounts of mostly un-
labeled training data. This representation is then used as a basis for
building a freely available tagging system with good performance. The
architecture is similar to Bengio et al. (2003)’s language model dis-
cussed in the previous section, but it uses noise contrastive estimation
to spare the computation of the normalization term needed for proba-
bilistic modeling. A couple of years later, noise-contrastive estimation,
or simply negative sampling, became an ingredient of the very influen-
tial skip-gram model we will see in the next section. Besides its great
importance in the development of VSMs, Collobert et al.’s work has
also relevance for this thesis because we used their vectors (Senna) in
work presented in Sections 7.2 to 7.4.

This work is also one of the most remarkable linguistic applications
of one of the major neural architectures, convolutional neural networks,
which was originally invented for computer vision. The window ap-
proach described so far performs well for most NLP tasks Collobert et
al. choose, but it fails with semantic role labeling (SRL), where the pred-
icate may fall outside the window. This task requires the consideration
of the whole sentence. Among the main neural networks architectures,
one of the natural choices to tackle this problem in a convolutional
networks.

A convolutional network is a sequence of alternating convolutional
and pooling layers. A convolutional layer is a generalization of a win-
dow approach: given a sequence represented by columns in a matrix,
a matrix-vector operation is applied to each window of successive win-
dows in the sequence, where the weight matrix is constant across all
windows. Convolutional layers extract local features around each win-
dow, and they are often stacked to extract higher level features.

The size of the output of the convolutional layer depends on the
number of words. Local feature vectors extracted by the convolutional
layers have to be combined to obtain a global feature vector, with a
fixed size, in order to apply subsequent layers. Traditional convolutional
networks often apply a (possibly weighted) average or a max operation
over “time”. Average does not make much sense in the SRL case, as
in general most words in the sentence do not have any influence on
the semantic role of a given other word. So the authors used a max
approach. The network finally produces one score per possible tag for
the given task, as in the window approach.

4.2.4 word2vec

Deeper in its effect on the broad NLP community than in its architec-
ture, the first wave of the neural revolution was pre-trained word embed-
dings, word models learned by shallow neural networks in an unsuper-
vised way, which have become very popular since Mikolov, Sutskever,
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et al. (2013), who implemented4 a log-bilinear model to learn contin-
uous representations of words on very large corpora efficiently. These
more accurate variants of earlier VSMs, map “similar” word to similar
vectors in a space of some hundred dimensions. Word similarity covers
syntax and semantics, and vector similarity is mostly measured by co-
sine similarity. Embeddings also reflect analogical quadruples (Mikolov,
Yih, and Zweig (2013), Section 4.2.7) like

woman ´ man « queen ´ king

Mikolov, Le, and Sutskever (2013) discovered that VSMs of different
languages have such similarities that a linear mapping can map the
representations of words in a source language to the representation of
their translations, see Sections 7.4, 7.5 and 8.4 for details.

Most of the main contributions of this thesis are related to the
word2vec line of research. Sections 7.2 and 7.3 investigate two lexical re-
lations with the vector offset method of Mikolov, Yih, and Zweig (2013),
Section 7.4.1 offers a Hungarian equivalent of the analogical test set,
Section 7.4.2 to compares word embeddings based on the linear method
for dictionary induction. Section 7.5 utilises the confidence score ob-
tained in linear translations to develop the triangulation method of dic-
tionary induction, and Chapter 8 puts linear translation in the context
of cross-lingual word sense induction by computing an upper bound
on the precision of multi-sense word embeddings as detectors of word
ambiguity.

4.2.5 Word embeddings as matrix factorization

The series of papers Levy and Goldberg (2014c), Goldberg and Levy
(2014), Levy and Goldberg (2014b), Levy, Goldberg, and Dagan (2015),
and Levy et al. (2015) unfolded the series Mikolov, Chen, et al. (2013),
Mikolov, Sutskever, et al. (2013), Mikolov, Yih, and Zweig (2013),
Mikolov, Le, and Sutskever (2013), and Le and Mikolov (2014) as
Zhuangzi unfolded Laozi. As we have already cited, Levy and Gold-
berg (2014c) showed that skip-gram with negative-sampling (SGNS) is
implicitly factorizing a word-context matrix,

w ¨ c “ PMIpw, cq ´ log k

whose cells are the pointwise mutual information (PMI) of the respec-
tive word and context pairs, shifted by a global constant. Similarly,
an embedding model based on noise-contrastive estimation (Mnih and
G. E. Hinton 2008) was shown to be implicitly factorizing a similar
matrix, where each cell is the (shifted) log conditional probability of

4 https://github.com/tmikolov/word2vec/
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a word given its context. SGNS is much less sensitive to extreme and
infinite values than the pure SVD of a PPMI matrix, due to a sigmoid
function surrounding w ¨ c, and the weighting function: rare pw, cq pairs
affect the objective much less.

Levy and Goldberg (2014c) improved results on standard test sets of
the time, two word similarity tasks and one of two analogy tasks, with a
sparse Shifted PPMI word-context matrix representation of the words.
(We introduced PPMI in Section 4.1.2.) They also showed that dense
low-dimensional vectors from exact factorization with SVD provides at
least as good as SGNS’s solutions for word similarity tasks. On analogy
questions, SGNS remains superior to SVD. They conjectured that this
stems from the weighted nature of SGNS’s factorization.

4.2.6 Global optimization

The interest in why SGNS can capture such fine-grained semantic and
syntactic regularities using vector arithmetic inspired another imple-
mentation, GloVe (Pennington, Socher, and Manning 2014), which, be-
sides its mathematical elegance, apparently became the most frequently
applied word embedding, probably more frequently than the original
set by Mikolov et al. Our experiments in Chapters 7 and 8 are no excep-
tion. The abbreviation stands for global vectors or, more precisely, glob-
ally optimized vectors. The authors claim that models, such as SGNS,
that train on separate local context windows instead of on global co-
occurrence counts, poorly utilize the statistics of the corpus. The global
approach is made possible by training only on the non-zero elements
in the word-word co-occurrence matrix.

The basis of GloVe is the logbilinear model

w⊺
i pwk ` bi ` pbk “ logpXikq,

where X is the co-occurrence matrix, w and pw are the focus and context
vectors for each word, and b and pb are bias vectors. The two kinds of
vectors w and pw are needed because words rarely appear in their own
context, but we do not want w⊺w, the squared norm of w, to be small.

The objective above is approximated with weighted least-squares re-
gression, where the weighting is motivated by that rare co-occurrences
are noisy and carry less information than the more frequent ones. They
introduce the weighting function fpXijq, where

fpxq “

$

&

%

px{xmaxqα if x ă xmax

1 otherwise,

with xmax “ 100 and α “ 3{4. Word pairs with a co-occurrence below
xmax are downweighted (by a slightly concave function). It is interest-
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ing that a similar fractional power scaling was found to give the best
performance in Mikolov, Chen, et al. (2013).

Levy, Goldberg, and Dagan (2015) point out that if we were to fix

bw “ logfreqpwq and

bc “ logfreqpcq,

this would be almost equivalent to factorizing the PMI matrix shifted
by logp|D|q, where |D| is the vocabulary size. However, GloVe learns
these parameters, giving an extra degree of freedom over SVD and
SGNS. (Unlike Arora et al. (2015)’s RandWalk model, which has a
linear relation between the squared norms of the word vectors and the
logarithm of the word frequencies.)

Pennington, Socher, and Manning (2014) compare their method to
word2vec mathematically and in performance in their sections 3.1 and
4.7, respectively. The quantitative comparison is complicated by many
parameters that have a strong effect on performance. They control
for the main sources of variation, vector length, context window size,
corpus, and vocabulary size. The most important remaining variable
to control for is training time.

For GloVe, the relevant parameter is the number of training iter-
ations, while for word2vec, the obvious choice would be the number
of training epochs, but back then the code was restricted to a single
epoch. They measure training time instead by the number of negative
samples, which effectively increases the number of training words seen
by the model. For the same corpus, vocabulary, window size, and train-
ing time, GloVe consistently outperforms word2vec. More interestingly
from the big-picture perspective, word2vec’s performance decreases if
the number of negative samples increases beyond about 10.

4.2.7 Word analogies, direction, and multiplication

Levy and Goldberg (2014b) generalize word analogies as searching for
a word that maximizes a linear combination of three pairwise word
similarities

arg max
b˚

psimpb˚, b ´ a ` a˚qq “ arg max
b˚

pcospb˚, b ´ a ` a˚qq

“ arg max
b˚

pcospb˚, bq ´ cospb˚, aq ` cospb˚, a˚qq

(e.g. b “ king, a “ man, a˚ “ woman, b˚ “ queen), and show that
the linear representation of lexical properties is not restricted to neu-
ral word embeddings: a similar amount of relational similarities can be
recovered from traditional distributional word representations. Calling
the original additive objective 3CosAdd, they introduce PairDirec-
tion, which requires only the direction of a˚ ´ a to be preserved by
b˚ ´ b, and the multiplicative variant 3CosMul
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arg max
b˚

cospb˚, bq ¨ cospb˚, a˚q

cospb˚, aq ` ε
.

ε “ 0.001 is used to prevent division by zero. Though it was not
mentioned in the paper, Mikolov, Yih, and Zweig (2013) used PairDi-
rection for solving the semantic analogies of the SemEval task, and
3CosAdd for solving the syntactic analogies.

PairDirection performs very well on multiple choice tasks, yet very
poorly on full vocabulary searches. The difference is attributed to that
PairDirection is likely to find candidates b˚ that have the same rela-
tion to b as reflected by a ´ a˚ but these candidates are not necessarily
similar to b. In the queen example, PairDirection may return femi-
nine entities, but not necessarily royal ones. The motivation for 3Cos-
Mul is to avoid the “soft-or” behavior of linear objectives, i.e. that
they allow one sufficiently large term to dominate the expression.

4.2.8 Improving PPMI-SVD with neural lessons

Levy, Goldberg, and Dagan (2015) improve traditional distributional
similarity models with lessons learned from word embeddings. We will
build on this line of research especially in Chapter 6. Their experiments
reveal that much of the performance gains of word embeddings are due
to certain system design choices and hyper-parameter optimizations.
By making the hyper-parameters explicit, the authors show how they
can be adapted and transferred into the traditional count-based ap-
proach. Changing the setting of a single hyper-parameter yields more
than switching to a better algorithm or training on a larger corpus.

For historical reasons (Baroni, Dinu, and Kruszewski 2014), they
refer to PPMI and SVD as “count-based” and to SGNS and GloVe as
“neural” or “prediction-based”. The following hyper-parameters can be
transferred from word2vec and GloVe to count-based methods:

4.2.8.1 Pre-processing Hyper-parameters

Words can be weighted according to their distance from the focus word.
In traditional count-based methods, it is less common, but also ex-
plored (Sahlgren (2006), Section 4.1.4.2). GloVe uses 1, 1{2, 1{3, . . . ,
and word2vec w{w, w ´ 1{w, . . . . What seem important is the dynamic
context window: word2vec implements its weighting scheme by uniformly
sampling the actual window size between 1 and L.

Subsampling is for diluting very frequent words. Mikolov, Chen, et
al. (2013) randomly remove words that are more frequent than some
threshold t. While word2vec’s code implements a slightly different for-
mula, Levy, Goldberg, and Dagan followed the formula presented in
the original paper (equation 2). Subsampling in word2vec is dirty in
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the sense that the removal of tokens is done before the corpus is pro-
cessed into word-context pairs. Levy, Goldberg, and Dagan found the
impact of dirty and clean subsampling comparable, and report dirty.

Finally, word2vec removes some rare words before creating context
windows, but Levy, Goldberg, and Dagan’s experiments showed that
the effect of this was small.

4.2.8.2 Association Metric Hyper-parameters

The authors define Shifted PMI as

SPPMIpw, cq “ maxpPMIpw, cq ´ logpkq, 0q

k has two distinct functions:

• to better estimate the distribution of negative examples: a higher
k means more data and better estimation, and

• it affects the probability of observing a positive example: a higher
k means that negative examples are more probable.

Shifted PPMI captures only the second aspect of k. They experiment
with three values of k: 1, 5, 15.

Finally, in word2vec, negative examples (negative contexts, Section 4.2.3)
are sampled according to a smoothed unigram distribution. Smoothing
alleviates PMI’s bias towards rare words.

4.2.8.3 Post-processing Hyper-parameters

When word vectors are used in some downstream task (an intrinsic test
or a real application), context vectors c are often added to focus vectors
w. This was originally motivated as an ensemble method. While this
addition does not apply to PPMI, it is interesting that the authors pro-
vide a different interpretation of its effect: it adds first-order similarity
terms to the second-order similarity function. Second-order similarity
wx ¨ wy, cx ¨ cy measures the extent to which the two words are replace-
able based on their tendencies to appear in similar contexts, and are the
manifestation of Z. S. Harris (1954)’s distributional hypothesis. First-
order similarity wx ¨ cy, on the other hand, is the tendency of one word
to appear in the context of the other.

Recall that truncated Singular Value Decomposition (SVD) is a com-
mon method of dimensionality reduction, which finds the optimal rank
d factorization with respect to L2 loss. SVD was popularized in NLP
via Latent Semantic Analysis (LSA, Deerwester, Dumais, and Harsh-
man (1990), Section 4.1.3). The word-context matrix M is factorized
as

M “ U ¨ Σ ¨ V
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where U and V are orthonormal and Σ is a diagonal matrix of eigen-
values. The representations are obtained as WSV D “ Ud ¨ Σd for words
and CSV D “ Vd for contexts.

In the SVD-based factorization, the context matrix CSV D is orthonor-
mal while the word matrix WSV D is not. The factorization by SGNS’s
is much more “symmetric”: neither Ww2v nor Cw2v is orthonormal, and
there is no bias to either of the matrices in the training objective. Sym-
metry can be achieved in SVD by weighting the eigenvalue matrix Σd

with the exponent p, what has a significant effect on performance, and
should be tuned. The final hyper-parameter of any vector space lan-
guage model is whether rows and/or columns are normalized.

4.2.8.4 Low-dimensional embeddings and isotropy

Arora et al. (2016) emphasize that xvw, vw 1y « PMIpw, w 1q was only
true if there were no dimension constraints, but, in practice, low-dimen-
sional embedding are used. They argue that the low dimensionality of
word embeddings plays a key role. In previous papers, the model is
agnostic about the dimension of the embeddings, and the superiority
of low-dimensional embeddings is an empirical finding (starting with
Deerwester, Dumais, and Harshman (1990)). Arora et al.’s theoreti-
cal analysis makes the key assumption that the set of all word vec-
tors (which are latent variables of the generative model) are spatially
isotropic, i.e. they have no preferred direction in space. Having n vec-
tors be isotropic in d dimensions requires d ! n. This is related to the
emergence of the “relations = lines” phenomenon (Section 4.2.4).

4.2.9 What’s in a similarity score?

The basic evaluation for static word embeddings has been word similar-
ity, but the method has many shortcomings. Now we summarize Avra-
ham and Goldberg (2016) to illustrate these. Avraham and Goldberg
redesign the annotation task to achieve higher inter-rater agreement,
and propose a performance measure which takes the reliability of each
annotation decision in the dataset into account.

Datasets for Word Similarity Evaluation have been standardly used
with rank correlation (Spearman’s ρ). Hill, Reichart, and Korhonen
(2015) pointed out that in some datasets, associated but dissimilar
words, e.g. xsinger, microphoney, ranked high, sometimes even above
pairs of similar words. Hill, Reichart, and Korhonen also found a clear
preference for hyponym-hypernym pairs, e.g. xcat, pety and xwinter,
seasony over cohyponyms pairs like xcat, dogy (and, less outrageously,
over antonyms pairs xwinter, summery).

Avraham and Goldberg summarize the problems as follows:

• The rating scales are vulnerable to a variety of biases. This prob-
lem was earlier addressed by asking the annotators to rank each
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pair in comparison to 50 randomly selected pairs, but that re-
sulted in a daunting annotation task.

• Different relations are rated on the same scale. A difference of 1.8
similarity scores can testify to anything from no difference, e.g.

simpsmart, dumbq “ 0.55, simpwinter, summerq “ 2.38,

to true superiority of one pair, e.g.

simpcab, taxiq “ 9.2, simpcab, carq “ 7.42..

• Different target words are rated on the same scale. Even within
pairs in a targeted relation, there are ill-defined comparisons, e.g.:
xcat, pety vs. xwinter, seasony. Pairs which share the target are
much more natural to compare, e.g. the comparison xcat, pety

vs. xcat, animaly is natural. Penalizing a model for preferring xcat,
pety over xwinter, seasony or vice versa impairs the evaluation
reliability.

• The evaluation measure does not consider the annotation deci-
sions’ reliability. Reliability should be determined by the agree-
ment of the annotators.

They publish two datasets of Hebrew nouns with the following fea-
tures:

• The annotation task is an explicit ranking task: each pair is di-
rectly compared with a subset of the other pairs, but, unlike in
earlier work, with only a few carefully selected pairs, following
the principles above.

• Only pairs in a single preferred relation type (hyponym-hypernym
in one dataset, and cohyponym in the other one) are presented
to the annotators, what spares the annotators the effort of con-
sidering the type of the similarity, and lets them concentrate on
the strength of the similarity.

• Any pair is compared only with pairs sharing the same target
word.

• The dataset includes a reliability indicator with a probabilistic
interpretation.

4.2.10 Retrofitting vectors to semantic lexicons

The two main topics of this thesis are semantic networks (relational
representations of lexical meaning) and neural word embeddings. The
original goal of both was to model associations in the human mind that
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make linguistic processing possible. Early research in computational lin-
guistics was based on manual implementation of expert knowledge, and
hand-crafted tools remain useful even today. Since the nineties, comput-
ers have become able to learn from text corpora of increasing size, and
in recent years, artificial neural networks became the state of the art
in many computational applications, but their interpretability remains
poor. In this section, we investigate methods of injecting knowledge
from semantic networks to (static) word embeddings.

Works before Faruqui et al. (2015) either augmented the co-occurrence
matrix in a relation-specific way, or changed the objective of the word
vector training algorithm to include some relational knowledge. The lat-
ter involves enhancing word2vec to include more similarity knowledge or
word relational knowledge and or latent semantic analysis for antonym
specific polarity induction or multi-relational knowledge. These meth-
ods are limited to particular vector models. Faruqui et al. introduced a
graph-based learning technique. The training objective includes an ad-
ditional term for new vectors to be similar to the vectors of related word
types. Relations are taken from semantic lexicons such as WordNet (Sec-
tion 2.4.3), FrameNet (Section 2.4.4), and the Paraphrase Database.

Besides the English GloVe (Section 4.2.6), skip-gram with hierarchi-
cal softmax (Section 4.2.4), and the multi-prototype model of Huang
et al. (2012, Section 8.3), the experiments involve Multilingual Vectors
by Faruqui and Dyer (2014), who learned vectors by first performing
SVD on text in different languages, then applying canonical correla-
tion analysis on pairs of vectors for words that align in parallel corpora.
These vectors were trained on the WMT-2011 news corpus for English,
French, German and Spanish.

The resulting representations were evaluated for their semantic and
syntactic aspects in extrinsic sentiment analysis task, Word Similar-
ity, Syntactic Relations by Mikolov, Synonym Selection (TOEFL), and
phrase and sentence level Sentiment Analysis (Socher et al. 2013).

Mrkšić et al. (2016) present a counter-fitting method that injects
both antonymy and synonymy constraints into vector space representa-
tions improving the vectors’ capability for judging semantic similarity.
The method gave new a state of the art performance on the SimLex-
999 dataset and was demonstrated in the downstream task of dialogue
state tracking (where the task is updating the system’s distribution over
user goals as the conversation progresses and new information becomes
available), resulting in robust improvements across domains.

Word representations coalesce semantic similarity and conceptual
association (Hill, Reichart, and Korhonen 2015). Furthermore, even
methods that can distinguish similarity from association (e.g., based
on syntactic co-occurrences) will generally fail to tell synonyms from
antonyms (Mohammad, Dorr, and Hirst 2008). Distinguishing anto-
nymy from similarity is critical for the dialogue state tracking (DST)
task, more specifically the restaurant domain, where systems should not
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recommend an “expensive pub in the south” when asked for a “cheap
bar in the east”. Counter-fitting, is a lightweight post-processing proce-
dure in the spirit of the retrofitting introduced in the previous subsub-
section.

Mrkšić et al. (2017) introduce Attract-Repel which jointly injects
mono- and cross-lingual synonymy and antonymy in word embeddings,
yielding semantically specialised5 cross-lingual vector spaces. In prac-
tice, semantic transfer goes from high to lower-resource languages. Their
evaluation obtains SOTA on SimLex semantic similarity datasets in six
languages and in DST across multiple languages. Their multilingual
DST models bring further performance improvements.

Mrkšić et al. call the retrofitting approach, i.e. when vectors are
refined to satisfy constraints extracted from a lexicons such as Word-
Net, semantic specialization. Mrkšić et al. deploy the Attract-Repel
algorithm in a multilingual setting, taking semantic relations from Ba-
belNet and exploiting information from high-resource languages to im-
prove the lower-resourced ones. They train their cross-lingual vector
spaces jointly, which brings benefits in the form of positive semantic
transfer.

Mrkšić et al. demonstrate their efficacy both in intrinsic and down-
stream tasks. The former includes SOTA results on the four languages
in the Multilingual SimLex-999 dataset and in lower-resource languages
Hebrew and Croatian, where Mrkšić et al. collect evaluation datasets,
and show that cross-lingual specialization significantly improves word
vector quality.

Their downstream applications are motivated by improving the lexi-
cal coverage of supervised models. Mrkšić et al. consider again DST. In-
corporating their specialised vectors into a SOTA neural network model
for DST improves performance on English dialogues. In a multilingual
spirit, Mrkšić et al. produce new Italian and German DST datasets,
where Attract-Repel-specialised vectors leads to even stronger gains,
and they train a single model that performs DST in all three languages,
in each case outperforming the monolingual model.

The retrofitting models discussed so far specialize only the vectors of
words from the constraints. Glavaš and Vulić (2018) use the external
lexico-semantic relations to train an explicit retrofitting model (ExRf),
a deep feedforward neural architecture, which learns a global special-
ization function and specializes the vectors of words unobserved in the
whole training data. ExRf is applicable to arbitrary embeddings. The
authors also specialize vector spaces of new languages (i.e. unseen in
the training) by coupling ExRf with shared multilingual distributional
vector spaces. Glavaš and Vulić’s proposal unifies the two prominent
ways for external constraints: joint specialization models, which inte-
grate the constraints into the distributional learning objective, and post-
processing models, which fine-tune distributional vectors retroactively.

5 They use British spelling, and we keep it, because this is a term.
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In general, the latter outperform the former, and they can be applied to
arbitrary distributional spaces but vectors of all unseen words remain
intact. Their evaluate the model in intrinsic word similarity evaluation
(on the standard benchmarks SimLex-999 (Hill, Reichart, and Korho-
nen 2015) and SimVerb-3500 (Gerz et al. 2016)) and two downstream
tasks – lexical simplification and dialog state tracking.

4.2.11 Sub-word embeddings for rich morphology

The next important step in the history of word embeddings is sub-
word level modeling, which we now discuss with an emphasis on rich
morphology, keeping in mind that sub-word level modeling solves other
kinds of out-of-vocabulary problems, like proper nouns, as well.

As we will see for the case of Hungarian in Section 7.4, for morpholog-
ically rich languages, word embeddings provide less consistent semantic
representations due to higher variance in word forms and often less con-
strained word order, which further increases variance. In this section,
we focus on two families of solutions proposed.

4.2.11.1 Gluten-free word embeddings

In Nemeskey (2017)’s retrospection, „The most common solution in the
literature is to break up the words into smaller segments (Hirsimäki et
al. 2005; Afify et al. 2006; Botha and Blunsom 2014).” For Hungarian,
the idea was introduced in the context of statistical machine transla-
tion (László Tihanyi, personal communication). More specifically, in
the context of Hungarian static word embeddings, it was proposed by
Siklósi and Novák (2016) and Novák and Novák (2018a).6 Following
Borbély, Kornai, et al. (2016) and Nemeskey (2017), we will call the
method deglutination, and the models deglutinated, deglutinized, or sim-
ply gluten-free. The name refers to that languages like Finnish, Hungar-
ian, or Turkish are called agglutinative, because they mark grammatical
(syntactic) relations by gluing inflectional suffixes to the words. In the
gluten-free method, we split compositional derivational and inflectional
suffixes from the stem. The suffixes are represented by their morpho-
logical analysis (i.e. different allomorphs of the same morpheme are
represented by the same symbol).

On the practical level, deglutination uses a classical NLP pipeline
with a rule-based morphological tagger, which lists all the possible
morphological analyses of each word in a linguistically principled for-
malism, and a POS disambiguator (tagger), which selects the analy-
sis which is relevant in the context. This thesis uses gluten-free em-
beddings in two experiments. One of our cross-lingual word-sense in-
ductions experiments (Section 8.5.5), which is based on Makrai and
Lipp (2018), uses the general purpose morphological annotation by

6 The former is in Hungarian.
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jelmondatával Ñ <jelmondat> <poss> <casins>

akartak Ñ <akar> <past> <plur>

érdekelheti Ñ érdekel [/V][_Mod/V][Prs.Def.3Sg]

köszönhetően Ñ köszönhető [/Adj][_Manner/Adv]

Table 7: Deglutination in the Kornai–Rebrus annotation (top pane, example
by Nemeskey (2017)) and with emMorph (bottom pane).

Rebrus, Kornai, and Varga (2012) and the emLam free-access gluten-
free corpus (Nemeskey 2017), while in our experiments in the con-
text of analogical questions (Section 7.4), which were conducted di-
rectly for the purposes of the present thesis, we used Webcorpus 2.0
(Nemeskey 2020), which is tagged with the emMorph morphological
analyzer (Novák 2014; Novák, Siklósi, and Oravecz 2016). (A detailed
discussion of the emMorph formalism is given in Hungarian by Novák,
Rebrus, and Ludányi (2017)). Ideally, non-compositional derivational
suffixes like -hető ‘able’ in köszönhető . . . -nak/-nek ‘be due to . . . ’,
lit. thank-able to (bottom pane in Table 7, pat is thankable to agt,
i.e. we may thank agt for pat) should remain on the stem, while com-
positional derivational and inflectional suffixes like the possessive or
-het ‘can’ in érdekelheti ‘(he/she) can be interested in (it)’ should be
put in the suffix series.

4.2.11.2 Character n-grams, lemmatization, and stemming

In Döbrössy et al. 20197, we explored and evaluated several simple sub-
word unit based embedding strategies – character n-grams, lemmatiza-
tion provided by an NLP-pipeline, and segments obtained in unsuper-
vised learning (Morfessor) – to boost the semantic consistency of Hun-
garian word vectors in the analogical benchmark that will be introduced
in Section 7.4.1 in this thesis. The effect of changing embedding dimen-
sion and context window size is also considered. Morphological analysis
based lemmatization is found to be the best strategy to improve embed-
dings’ semantic accuracy, whereas representation by character n-grams
is consistently counterproductive in this regard (Figures 9 to 12).

4.2.12 The offset is naked

The basic way of evaluating static word embeddings has been intrinsic
evaluations, namely similarities and analogies. Both methods have se-
rious shortcomings – we illustrated this for similarities in Section 4.2.9.
Now we turn to a critical reflection on what have been called the vector
offset method, relational similarity, or word analogies.

7 The paper was based on the BSc thesis of Bálint Döbrössy, advised by György
Szaszák, and refereed by Makrai.
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Figure 9: Semantic accuracy of Hungarian 100 dimensional embeddings as ob-
tained by Döbrössy et al. (2019) with different preprocessings: word
forms with no preprocessings (W) as the baseline, lemmas (L) ob-
tained with the magyarlánc toolkit (Zsibrita, Vincze, and Farkas
2013), and two strategies based on Morfessor (Virpioja et al. 2013):
taking all morfs (M) or only the root (R) of each word. During test-
ing in analogical questions, query words are also spitted to segments,
and their vectors are computed as the sum of the segments’ vectors.

Figure 10: Syntactic accuracy of Hungarian 100 dimensional embeddings with
different strategies.
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Figure 11: Semantic and syntactic accuracy of Hungarian 100 dimensional
word embeddings with character n-grams (chr) and in the original
way (nochr).

Figure 12: Semantic accuracy of Hungarian 100 and 200 dimensional embed-
dings with different strategies; context window covers 21 units.
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Levy et al. (2015) argue that supervised methods for hypernymy ex-
traction are actually memorizing whether the hypernym candidate is
a “prototypical hypernym”, i.e. a category, irrespective of the word to
be categorized. They compare four compositions for representing px, yq

(e.g. x “ cat, y “ animal) as a feature vector: besides the standard
concatenation x ‘ y and difference y ´ x, they use the diagnostic “only
x”, and “only y”. The finding is that models just learn whether y is
a likely “category” word – a prototypical hypernym – and, to a lesser
extent, whether x is a likely “instance” word. This extends to other in-
ference relations, such as meronymy. To test the hypothesis, the authors
manipulate the test pairs by inserting mismatched pairs, e.g. (banana,
animal).

The word embeddings they use include interpretable PPMI-based
ones, which enable them to look for prototypical hypernym contexts.
Besides dataset-specific contexts like psychosomatic -1 (word ˘ i de-
notes the context where the ith word to to right/left is word), they find
domain-independent indicators of category, e.g. any -1, every -1, and
kinds -2, and even relics of the Hearst patterns in all datasets: other
-1, such +1, including +1, etc., and their analogons, e.g. such -2.

Linzen (2016) notes that in analogical tasks

x “ a˚ ´ a ` b,

if a˚ and a are very similar to each other (as scream and screaming
are likely to be) the nearest word to x may simply be the nearest
neighbor of b. If in a given set of analogies the nearest neighbor of b

tends to be b˚, the answer may be correct regardless of the consistency
of the offsets. He proposes new baselines that perform the task without
using the offset a˚ ´ a, and measures how the performance is affected
by reversing the direction of each analogy problem (which should not
affect its accuracy).

4.2.13 Theoretical critique of vector analogy

Rogers, Drozd, and Li (2017) criticize the vector analogy method on
theoretical grounds. Given the vital role that analogical reasoning plays
in human cognition, automated analogical reasoning could become a
game-changer in many fields. The method is already used in many
downstream NLP tasks, such as splitting compounds, semantic search,
and cross-language relational search. One way to explain the current
limitations is to attribute them to the imperfections of the models
and/or the corpora. With this view, in a perfect VSM, any linguistic
relation should work. The alternative explored by Rogers, Drozd, and
Li is that there are both theoretical and mathematical issues with ana-
logical reasoning with word vectors and 3CosAdd (see Section 4.2.7).

In the authors’ view, the most fundamental term is not analogy, but
relational similarity, i.e. that pairs of words may hold similar relations.
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We speak of similarity rather than identity: instances of a single relation
may still have significant variability in how characteristic they are of
that class.

“Classical” analogical reasoning follows roughly this template: ob-
jects X and Y share properties a, b, and c; therefore, they may also
share the property d. For example, both Earth and Mars orbit the Sun,
have at least one moon, revolve on axis, and are subject to gravity;
therefore, if Earth supports life, so could Mars. The NLP move from
relational similarity to analogy follows the use of the term by Turney
(2006).

Analogy was once rejected in generative linguistics as a mechanism
for language acquisition through discovery, although now it is making
a comeback. It has been criticized for ambiguity, guesswork and puzzle-
like nature.

The paper has been referred to as Mikolov cheated!, because they
point out that 3CosAdd, as initially formulated by Mikolov, Yih, and
Zweig (2013), “dishonestly” excludes a, a˚ and b from among potential
b˚s.

The authors present a series of experiments performed with the
BATS dataset, which has more relations and is more difficult than
the original Google test. BATS is balanced across derivational and in-
flectional morphology, lexicographic and encyclopedic semantics (10 re-
lations of each type). They explain lower performance on derivational
morphology questions as opposed to inflectional or encyclopedic seman-
tics: man and woman are reasonably similar distributionally, as they
combine with many of the same verbs: both men and women sit and
sleep, but the same could not be said of words derived with prefixes
that change POS.

Another, purely logical problem is exemplified by snow: white ::
sugar: ?white, where, in the dishonest setting, the correct answer is
a priori excluded. In BATS data, this factor affects several semantic
categories, including country:language, thing:color, animal:young, and
animal:shelter.

Rogers, Drozd, and Li hypothesize that the more crowded a partic-
ular region is, the more difficult it should be to hit a particular tar-
get. Estimating density as the similarity to the 5th neighbor, they get
the counter-intuitive results that denser neighborhoods actually yield
higher scores.

They consider LRCos, a method based on supervised learning from
a set of word pairs. The model learns a representation of the target
class with a supervised classifier. The question is this: what word is
the closest to king, but belongs to the “women” class? The accuracy
of LRCos is much higher than the top-1 3CosAdd or 3CosMul, and its
“honest” version performs just as well as the “dishonest” one.
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4.2.14 Frequency effects in cosine similarity

Faruqui et al. (2016) review the main problems with word similarity
evaluations, and they discuss frequency effects in cosine similarity (be-
sides the subjectivity of the task; the confusion of semantic and task-
specific similarity; the lack of standardized splits and overfitting; the
low correlation with extrinsic evaluation, e.g. that in text classification,
parsing, or sentiment analysis; and the absence of statistical signifi-
cance).

Vectors of frequent words are longer as they are updated more often
during training (Turian, Ratinov, and Bengio 2010). In Faruqui et al.’s
view, ideally the relatively small number of frequent words should be
evenly distributed through the space, while rare words should cluster
around related, but more frequent words.

However, vector-spaces contain hubs, i.e. vectors that are close to
a large number of other vectors in the space. In word vector-spaces,
this manifests in words that have high cosine similarity with a large
number of other words (Dinu, Lazaridou, and Baroni 2015), as we will
discuss in Sections 7.5.3 and 8.4.1. Schnabel et al. (2015) further refine
this hubness problem to show a power-law relationship between the
frequency-rank r of a word (i.e. the rank of a word in vocabulary of the
corpus sorted in decreasing order of frequency) and the frequency-rank
of its neighbors: the average rank a of the 1000 nearest neighbors of a
word follows: a « 1000r0.17.

The last problem Faruqui et al. discuss is related to the main prob-
lem with word embeddings of the type investigated in this section: the
inability to account for polysemy. As we will see in Chapter 8, there
has been progress on obtaining multiple vectors per word-type to ac-
count for different word-senses, but the practical advantage of word
embeddings with more but fixed vectors to account for different senses
remained modest (Li and Jurafsky 2015), and in most applications, the
real solution is contextualized word representations provided by deep
language models, which brought a new paradigm in NLP, to which will
now turn.

4.3 attention and deep language models

The contributions of this thesis are based on static word embeddings,
i.e. the kind discussed so far, but we would like to put our investiga-
tion in the context of the advances of the past few years. Deep neural
networks defined a new state-of-the-art in many areas of NLP.

Deep neural networks and deep learning mean machine learning of
a model that consists of layers from the input layer through hidden
layers to the output layer, and calculates higher and higher level fea-
tures. Deep learning brought its first breakthroughs in speech technol-
ogy (Dahl et al. 2011) and computer vision (Krizhevsky and Sutskever

124



4.3 attention and deep language models

2012). The ImageNet moment of NLP, as Ruder (2018) called it, arrived
in 2018.

Pretraining entire models to learn both low and high level
features has been practiced for years by the computer vision
(CV) community. Most often, this is done by learning to
classify images on the large ImageNet dataset. ULMFiT,
ELMo, and the OpenAI transformer have now brought the
NLP community close to having an “ImageNet for language”
– that is, a task that enables models to learn higher-level
nuances of language, similarly to how ImageNet has enabled
training of CV models that learn general-purpose features
of images. (Ruder 2018)

Up to this point of the thesis, we were chronological and didactic.
Main contribution chapters will be similar, even self-contained in many
cases. This section provides, however, just some flashes for the reader
somewhat familiar with deep learning of language. Those with less back-
ground in machine learning may skip to the foreground part, to Chap-
ter 5. Where citations are omitted, they can be found in the correspond-
ing paper we just summarize.

4.3.1 Pre-trained deep models for NLP

Qiu et al. (2020, Section 2.4.2) summarize the history of pre-trained
deep NLP models as follows: McCann et al. (2017) pre-trained a deep
LSTM encoder from an attentional sequence-to-sequence model with
machine translation objective, and used the context vectors (CoVe)
output by the pre-trained encoder. Peters et al. (2018) pre-trained a
2-layer LSTM encoder with a bidirectional language model (BiLM), con-
sisting of a forward LM and a backward LM. Contextual representa-
tions output by the pre-trained BiLM, ELMo (Embeddings from Lan-
guage Models) brought large improvements on a broad range of tasks.
Flair (Akbik, Blythe, and Vollgraf 2018) captured word meaning with
contextual string embeddings pre-trained with a character-level LM.
Ramachandran, Liu, and Le (2017) significantly improved the seq2seq
models by unsupervised pre-training. The weights of both the encoder
and the decoder are initialized with pre-trained weights of two language
models and then fine-tuned with labeled data.

ULMFiT (Universal Language Model Finetuning, Howard and Ruder
(2018)) fine-tuned a pre-trained LM for text classification, achieving
state-of-the-art results on six widely-used text classification datasets.
ULMFiT training consists of three phases: pre-training LM on general-
domain data; fine-tuning LM on target data; and fine-tuning on the tar-
get task. Their fine-tuning strategies include discriminative fine-tuning,
slanted triangular learning rates, and gradual unfreezing. Since ULM-
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FiT, fine-tuning has become the mainstream approach to adapt PTMs
for the downstream tasks.

Very deep PTMs have shown their powerful ability in learning uni-
versal representations, including OpenAI GPT (Generative Pre-trained
Transformer Radford et al. (2018)) and BERT (Bidirectional Encoder
Representation from Transformer, Devlin et al. (2018)). Besides LM,
an increasing number of self-supervised tasks are proposed to make the
PTMs capturing more knowledge form large scale text.

4.3.2 BERTology

Transformer-based models are now widely used in NLP, and much work
has been done to understand their inner workings. The stream of papers
seems to be accelerating rather than slowing down. Here we summarize
the findings of Rogers, Kovaleva, and Rumshisky (2020), who synthesize
over 40 analysis studies, overview the proposed modifications and the
training regime, and offer directions for further research.

4.3.2.1 Introduction

Transformers (Vaswani et al. 2017) took NLP by storm, offering en-
hanced parallelization and better modeling of long-range dependen-
cies. The most popular model is BERT (Devlin et al. 2019), which
obtained state-of-the-art results in many benchmarks, and it has been
integrated in Google search, improving an estimated 10% of queries.
However, this family of models has little cognitive motivation, and the
size of these models limits their training and study. Rogers, Kovaleva,
and Rumshisky focus on the papers investigating the types of knowl-
edge learned by BERT, where this knowledge is represented, how it is
learned, and the methods proposed to improve it.

4.3.2.2 Overview of BERT architecture

BERT is a stack of Transformer encoder layers with multiple heads,
i.e. fully-connected neural networks augmented with a self-attention
mechanism. For every input token in a sequence, each head computes
key, value and query vectors, which are used to create a weighted rep-
resentation. The outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer is wrapped with a
skip connection and layer normalization

The conventional workflow is pre-training and fine-tuning. Pre-training
uses two semi-supervised tasks: masked language modeling (MLM, pre-
diction of randomly masked input tokens), and next sentence prediction
(NSP, predicting if two input sentences are adjacent to each other). In
fine-tuning for downstream applications, one or more fully-connected
layers are typically added on top of the final encoder layer.
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The representations are computed as follows: the model tokenizes
the given word into wordpieces, and then combines three embedding
layers (token, position, and segment). The special token [cls] is used
for classification predictions, and [sep] separates segments of typically
multi-sentence input. Two sizes fit all: base and large, varying in the
number of layers, their hidden size, and number of attention heads.

4.3.2.3 What knowledge does BERT have?

Analysis approaches include fill-in-the-gap probes of BERT’s MLM,
that of self-attention weights, and probing classifiers using different
BERT representations as inputs.

syntactic knowledge Representations are hierarchical rather
than linear. There is something akin to syntactic tree structure in addi-
tion to the word order information. BERT has information about parts
of speech, syntactic chunks and roles. Knowledge of syntax is partial,
not enough to recover the labels of distant parent nodes in the syntactic
tree. The syntactic structure is not directly encoded in self-attention
weights, but they can be transformed to reflect it. Dependency trees
have been extracted directly from self-attention weights but without
quantitative evaluation. Transformation matrices recover much of the
Stanford Dependencies formalism for PennTreebank data.

BERT representations have been approximated with Tensor Prod-
uct Decomposition Networks, concluding that dependency trees are
the best match among five decomposition schemes, but differences
are very small. BERT takes subject-predicate agreement into account
in the cloze task even with distractor clauses and meaningless sen-
tences. BERT is able to detect the presence of negative polarity items
(e.g. “ever”) and the words that allow their use (e.g. “whether”) but
not scope violations. BERT does not understand negation, and it is
insensitive to malformed input: predictions were not altered even with
shuffled word order, truncated sentences, or removed subjects and ob-
jects. Models are disturbed by nonsensical input (adversarial attacks).

semantic knowledge Fewer studies were devoted to BERT’s
knowledge of semantics. Entity types, relations, semantic roles, and
proto-roles have been detected with probing classifiers. BERT has some
knowledge for semantic roles. We have seen in Section 4.3.5 that Et-
tinger (2020) shows with an MLM probing study that the model prefers
incorrect fillers for semantic roles that are semantically related to the
correct ones to those that are unrelated, e.g. to tip a chef to to tip a
robin.

BERT struggles with representations of numbers (addition, number
decoding, floating point numbers). The problem may be with word-
piece tokenization: numbers of similar values can be divided up into
substantially different word chunks.
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BERT is surprisingly brittle to named entity replacements: replacing
names in the coreference task changes 85% of predictions. This suggests
that the model does not form a generic idea of named entities, although
its F1 scores on NER probing tasks are high. Fine-tuning BERT on
Wikipedia entity linking “teaches” it additional entity knowledge, which
suggests that it did not absorb all the relevant entity information during
pre-training on Wikipedia.

world knowledge MLM has been adapted for knowledge in-
duction by filling in the blanks, e.g. “Cats like to chase [ ]”. Besides
a probing study of world knowledge in BERT, evidence comes from
many practitioners using BERT to extract knowledge. For some rela-
tion types, vanilla BERT is competitive with knowledge base methods.
BERT generalizes well to unseen data, but we need good template
sentences. There has been research on the automatic extraction and
augmentation of such templates.

BERT cannot reason based on its world knowledge. It can guess the
affordances and properties of many objects, but it has no information
about their interactions. E.g. it knows that people can walk into houses,
and that houses are big, but it cannot infer that houses are bigger than
people. Its performance drops with the number of necessary inference
steps. Some of BERT’s success in factoid knowledge retrieval comes
from learning stereotypical character combinations, e.g. that a person
with an Italian-sounding name is Italian.

limitations Some researchers remark that “the fact that a linguis-
tic pattern is not observed by our probing classifier does not guarantee
that it is not there, and the observation of a pattern does not tell us
how it is used.” A hot question is how complex a probe should be: If
a more complex probe recovers more information, to what extent are
we still relying on the original model? Different probing methods may
lead to complementary or even contradictory results. A given method
might also favor one model over another. E.g., RoBERTa trails BERT
with one tree extraction method, but leads with another. The choice of
linguistic formalism also matters.

We should focus on identifying what BERT actually relies on at in-
ference time. Amnesic probing aims to specifically remove certain infor-
mation, and see how it changes performance. This method has shown
that e.g. language modeling does rely on part-of-speech information.

Information-theoretic probing approaches include estimating the mu-
tual information between the learned representation and a given linguis-
tic property. Some researchers quantify the amount of effort needed to
extract some information, which is more important than the amount
of information in the representation. The mathematical formalism is
minimum description length needed to communicate both the probe
size and the amount of data required for it to do well on a task.
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Figure 13: Typical self-attention patterns (Kovaleva et al. 2019). Both axes
on every image represent BERT tokens of an input example, and
colors denote absolute attention weights (darker colors stand for
greater weights). The first three types are most likely associated
with language model pre-training, while the last two potentially
encode semantic and syntactic information.

4.3.2.4 Localizing linguistic knowledge

bert embeddings In studies of BERT, the term embedding refers
to the output of a Transformer layer (typically, the final one). Every
token contains at least some information about the context. Both con-
ventional static embeddings and BERT-style embeddings can be viewed
in terms of mutual information maximization.

Distilled contextualized embeddings better encode lexical semantic
information, i.e. they are better at traditional word-level tasks such as
word similarity. The methods to distill a contextualized representation
into a static one include aggregating the information across multiple
contexts, encoding “semantically bleached” sentences that rely almost
exclusively on the meaning of a given word (e.g. This is x y), and using
contextualized embeddings to train static embeddings. Distillation to
a static embedding is useful because interpretability methods for static
embeddings are more diverse and mature than those available for their
dynamic counterparts.

It has been studied how similar the embeddings for identical words
are in every layer, reporting that later BERT layers are more context-
specific. In the earlier Transformer layers, MLM forces the acquisition of
contextual information at the expense of the token identity, which gets
recreated in later layers. To what extent do models capture phenom-
ena like polysemy and homonymy? BERT embeddings form distinct
clusters corresponding to word senses. The model is successful at word
sense disambiguation. Representations of the same word depend on the
position of the sentence in which it occurs, likely due to the NSP ob-
jective, what is desirable from the linguistic point of view, and could
be a promising avenue for future work.

The standard way to generate sentence or text representations for
classification is to use the [cls] token, the concatenation of token rep-
resentations, or the normalized mean.

self-attention heads Several classifications of attention heads
have been proposed in different studies:
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• attending to the word itself, to previous/next words and to the
end of the sentence,

• attending to previous/next tokens, to the [cls], to the [sep], to
punctuation, or broadly over the sequence, or

• the five attention types in Figure 13: Vertical, Diagonal, Vertical
+ diagonal, Block, and Heterogeneous.

Heads with linguistic functions. The “heterogeneous” attention
pattern could be linguistically interpretable, and a number of studies
focused on identifying the functions of the heads.

There are BERT heads that attended significantly more than a ran-
dom baseline to words in certain syntactic positions. Datasets and meth-
ods used in these studies differ, but there is some consistency that some
heads attend to words in obj role more than the positional baseline. Ev-
idence for nsubj, advmod, and amod varies between studies. The overall
conclusion is also supported by a study in machine translation context.
Even complex dependencies like dobj may be encoded by a combination
of heads, but the corresponding work is limited to qualitative analysis.

No single head has the complete syntactic tree information, but a
BERT head can directly be used for coreference classification on par
with a rule-based system, what is remarkable because coreference clas-
sification requires quite a lot of syntactic knowledge. Attention weights
are weak indicators of subject-verb agreement and reflexive anaphora.
Instead of serving as strong pointers between related tokens, they were
close to a uniform attention baseline, but there was some sensitivity
to different types of distractors coherent with psycholinguistic data we
saw in Section 4.3.5. Morphological information in BERT heads has not
been addressed, but with a sparse attention variant in the base Trans-
former, some attention heads appear to merge BPE-tokenized words.

Semantic relations, core frame-semantic relations, as well as lexico-
graphic and commonsense relations have been studied, but a head ab-
lation study showed that heads related to some of these problems were
not essential for BERT’s success on GLUE tasks.

The popularity of self-attention as interpretation is due to the idea
that “attention weights have a clear meaning: how much a particular
word will be weighted when computing the next representation for the
current word.” This has been much debated. In a multi-layer model
where attention is followed by a non-linear transformation, the patterns
in individual heads do not provide a full picture. Many current papers
are accompanied by attention visualizations, and visualization tools,
but analysis is mostly qualitative, often with cherry-picked examples,
and should not be interpreted as evidence.

Attention to special tokens. Most self-attention heads do not
directly encode any nontrivial linguistic knowledge; at least after fine-
tuning on GLUE, less than 50% of heads exhibit the “heterogeneous”
pattern. Much of the heads have the vertical pattern (attnding to [cls],
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[sep], and punctuation), what is likely related to the overparametriza-
tion issue. Norms of attention-weighted input vectors yield a more in-
tuitive interpretation of self-attention reducing the attention to spe-
cial tokens, but it is still not the case that most heads that do the
“heavy lifting” are even potentially interpretable. Some work focuses
on inter-word attention and simply excludes special tokens, which is a
questionable method, as attention to special tokens actually matters at
inference time.

The functions of special tokens are not yet well understood. [cls] is
typically viewed as an aggregated sentence-level representation – al-
though all token representations also contain at least some sentence-
level information. Some researchers experiment with encoding Wiki-
pedia paragraphs with base BERT to consider specifically the attention
to special tokens, noting that heads in early layers attend more to [cls],
in middle layers to [sep], and in final layers to periods and commas. The
function of attending to special tokens might be a kind of “no-op”: a
signal to ignore the head if its pattern is not applicable to the current
case. While attention to special tokens increases, their importance for
prediction drops. After fine-tuning, both [sep] and [cls] get a lot of
attention, depending on the task.

bert layers BERT’s input is a combination of token, segment,
and positional embeddings. Lower layers have the most linear word
order information. Knowledge of linear word order decreases around
layer 4 (i.e. the middle), and that of hierarchical sentence structure
increases, as detected by the probing tasks of predicting the index of a
token, the main auxiliary verb, and the sentence subject.

There is consensus among studies with different tasks, datasets and
methodologies that syntactic information (in general, and especially
syntactic tree depth and subject-verb agreement) is the most prominent
in the middle BERT layers. This must be related to that the middle
layers of Transformers are overall the best-performing and the most
transferable across tasks. There is conflicting evidence about syntactic
chunks: Some researchers draw parallels to the order of components in
a typical NLP pipeline from POS-tagging to dependency parsing to se-
mantic role labeling; others show that lower layers were more useful for
chunking, while middle layers were more useful for parsing; yet others
find the opposite: both POS-tagging and chunking were performed best
at the middle layers, in both BERT-base and BERT-large.

The final layers of BERT are the most task-specific: In pre-training,
this means specificity to the MLM task, which would explain why the
middle layers are more transferable. In fine-tuning, it explains why the
final layers change the most.

Semantics is spread across the entire model. While most of syntactic
information can be localized in a few layers, in semantic tasks, certain
nontrivial examples get solved incorrectly at first but correctly at higher
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layers, e.g. predicate-argument relations help to disambiguate parts of
speech. This is rather to be expected: semantics permeates all language,
and linguists like Goldberg (2006) debate whether meaningless struc-
tures can exist at all. What does stacking much more Transformer layers
actually achieve in BERT in terms of the spread of semantic knowledge,
and is that beneficial? Base and large BERTs shows the same overall
pattern of cumulative score gains, only more spread out in the large
BERT. This picture is disputed by other researchers, who place “sur-
face features in lower layers, syntactic features in middle layers and
semantic features in higher layers”, but only one SentEval semantic
task in the corresponding study actually topped at the last layer, three
others peaked around the middle and then degraded by the final layers.

4.3.2.5 Training BERT

model architecture choices The most systematic study
of BERT’s architecture investigated the number of layers, heads, and
model parameters, varying one option a time, and freezing the others.
The number of heads was not as significant as the number of layers,
consistently with research that found the middle layers to be the most
transferable. Larger hidden representation size was consistently better,
but the gains varied by setting.

improvements to the training regime Regarding the batch
size, large-batch training (8k examples) improves both the language
model perplexity and downstream task performance. With a batch size
of 32k, BERT’s training time can be significantly reduced with no degra-
dation in performance.

Embedding values of the trained [cls] token are not centered around
zero, its normalization stabilizes the training, resulting in a slight per-
formance gain on text classification tasks. “Warm-start”, i.e. training
in a recursive manner, where the shallower version is trained first and
then the trained parameters are copied to deeper layers, achieves 25%
faster training speed with similar accuracy to the original BERT on
GLUE tasks.

pre-training bert The original BERT is a bidirectional Trans-
former pre-trained on two tasks: next sentence prediction (NSP) and
masked language model (MLM). Pre-training is the most expensive part
of training BERT, and it would be informative to know how much ben-
efit it provides. On some tasks, a randomly initialized and fine-tuned
BERT obtains competitive or higher results than the pre-trained BERT.
Most weights of pre-trained BERT are useful in fine-tuning, although
there are “better” and “worse” subnetworks. One explanation is that
pre-trained weights help the fine-tuned BERT find wider and flatter
areas with smaller generalization error, which makes the model more
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robust to overfitting. Most new models’ gains are often marginal, and
estimates of model stability and significance testing are very rare.

The following topics have been investigated to improve pre-training.
How to mask? There are systematic experiments with corruption

rate and corrupted span length; diverse masks for training examples
within an epoch; masking every token in a sequence instead of a random
selection; replacing the MASK token with [unk] token, to help the
model learn a representation for unknowns that could be useful for
translation; and maximizing the amount of information available to
the model by conditioning on both masked and unmasked tokens, and
letting the model see how many tokens are missing.

What to mask? Alternatives include full words instead of word-
pieces and spans rather than single tokens (predicting how many are
missing). Masking phrases and named entities improves representation
of structured knowledge.

Alternatives to masking. Experiments have been performed for
replacing and dropping spans; deletion, infilling, sentence permutation
and document rotation; for predicting whether a token is capitalized
and whether it occurs in other segments of the same document; training
on different permutations of word order in the input with the objective
of maximizing the probability of the original word order; and the de-
tection of tokens that were replaced by a generator network.

NSP alternatives and additional tasks. Removing NSP does not
hurt or slightly improves performance. It has been replaced with the
task of predicting both the next and the previous sentences; or identi-
fying swapped sentences. Another model includes sentence reordering
and sentence distance prediction with two new tasks on two levels. On
the token-level: it has to be predicted whether a token is capitalized
and whether it occurs in other segments of the same document; and
the segment-level tasks include sentence reordering, sentence distance
prediction, and supervised discourse relation classification. In another
approach, both NSP and token position embeddings have been replaced
by a combination of paragraph, sentence, and token index embeddings.
Utterance order prediction for multiparty dialogue has also been pro-
posed. Rogers, Kovaleva, and Rumshisky cite cross-lingual work as well.

Approaches include combining MLM with some other tasks: simulta-
neous learning of seven tasks, including discourse relation classification
and predicting whether a segment is relevant for IR; latent knowledge
retrieval; knowledge base completion. Continual learning means sequen-
tial pre-training on a large number of tasks, each with their own loss
which are then combined.

Pre-training data. Several studies explored the benefits of increas-
ing the corpus volume; longer training; explicit linguistic information,
both syntactic and semantic; using the label for a given sequence from
an annotated task dataset (e.g. sentiment analysis); and learning rep-
resentations for rare words separately.
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The idea of explicitly supplying structured knowledge has been exper-
imented with in different ways, including entity-enhanced models (in-
cluding entity embeddings as input or adapting entity vectors to BERT
representations); an additional pre-training objective of knowledge base
completion; modifying the standard MLM task to mask named entities;
training with MLM objective over text + linearized table data; or en-
hancing RoBERTa with both linguistic and factual knowledge with
task-specific adapters.

fine-tuning bert The pre-training + fine-tuning workflow is a
crucial part of BERT. Pre-training is supposed to provide task-inde-
pendent linguistic knowledge, while the fine-tuning process would pre-
sumably teach the model to extract information from the representa-
tion.

During fine-tuning BERT, the most changes for 3 epochs occurred
in the last two layers. Those changes caused self-attention to focus
on [sep] rather than on linguistically interpretable patterns. It is un-
derstandable why fine-tuning increases the attention to [cls], but the
increase on [sep]needs some explanation. As [sep] may serve as “no-
op” indicator, fine-tuning basically may tell BERT what to ignore. In
multilingual BERT, fine-tuning affected both the top and the middle
layers of the model.

Studies explored the possibilities of improving the fine-tuning of
BERT by taking more layers into account: combining deeper layers
with the output layer or a weighted representation of all layers; two-
stage fine-tuning with an intermediate supervised training stage; adver-
sarial token perturbations that improve the robustness of the model;
or mixout regularization, which improves the stability of BERT fine-
tuning even for a small number of training examples.

With larger and larger models even fine-tuning becomes expensive,
but this cost has been limited by adapter modules, which have been
also used for multi-task learning and cross-lingual transfer; by reusing
monolingual BERT weights for cross-lingual transfer; or by extracting
features from frozen representations.

Initialization can have a dramatic effect, which is not often reported:
performance improvements claimed in many NLP modeling papers
may be within the range of that variation. Significant variation has
been reported for BERT fine-tuned on GLUE: both weight initializa-
tion and training data order contribute to the variation. Some authors
propose an early-stopping technique to avoid full fine-tuning for the
less-promising seeds.

4.3.2.6 How big should BERT be?

overparametrization Transformer-based models keep increas-
ing in size, e.g. T5 (Raffel et al. 2020) is over 30 times larger than the
base BERT. This raises concerns about the computational complexity
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of self-attention, environmental issues, and reproducibility and access
to research resources in academia vs. industry. Current models do not
make good use of the parameters: all but a few Transformer heads can
be pruned without much loss in performance, most BERT heads in the
same layer show similar self-attention patterns, and most layers can be
reduced to a single head.

Depending on the task, there may be harmful BERT heads/layers.
For machine translation and GLUE tasks, both heads and layers could
be advantageously disabled. In a structural probing classifier, 5 out of 8
probing tasks show some layers (typically the final one) to cause a drop
in scores. Comparing BERT-base and BERT-large, the larger model
performs better many times, but the opposite was observed for subject-
verb agreement and sentence subject detection. Why does BERT end
up with redundant heads and layers? It is not clear given the complexity
of language, and amounts of pre-training. The reason was suggested to
be the use of attention dropouts.

compression BERT can be efficiently compressed with minimal
accuracy loss. In a knowledge distillation framework, a smaller student
network is trained to mimic the behavior of BERT. Variants include
mimicking the activation patterns of individual portions of the teacher,
and knowledge transfer at different stages (pre-training or fine-tuning).
Another method is quantization of weights, which often requires com-
patible hardware. Other techniques include decomposing BERT’s em-
bedding matrix into smaller matrices.

pruning and model analysis Care has to be taken in linguis-
tic analysis. For example, BERT has heads that seem to encode frame-
semantic relations, but disabling them might not hurt downstream task
performance, which suggests that this knowledge is not actually used. A
study identified the functions of self-attention heads and then checked
which of them survive the pruning, finding that syntactic and positional
heads are the last ones to go. An approach in the opposite direction is
pruning on the basis of importance scores, and interpreting the remain-
ing “good” subnetwork. It does not seem to be the case that only the
heads that potentially encode nontrivial linguistic patterns survive the
pruning.

Models and methodology in these studies differ, so the evidence is
inconclusive. Head and layer ablation studies have limitations: they
inherently assume that certain knowledge is contained in heads/lay-
ers despite evidence of more diffuse representations spread across the
full network, i.e. the gradual increase in accuracy on difficult semantic
parsing tasks, and the absence of heads that do parsing “in general”.
Ablating individual components may harm the weight-sharing mecha-
nism, and ablations are also problematic if information is duplicated in
the network.
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4.3.2.7 Multilingual BERT

In version 1 of the paper, Rogers, Kovaleva, and Rumshisky (2020)
discussed the Multilingual BERT (mBERT), which was trained on
Wikipedia in 104 languages (with a 110K wordpiece vocabulary). (The
reader interested in pre-trained multilingual deep language models should
also refer to Doddapaneni et al. (2021).) Languages with a lot of data
were subsampled, and some were super-sampled. mBERT is surpris-
ingly good in zero-shot transfer on many tasks, but not in language gen-
eration. It has been used to create high-quality cross-lingual word align-
ments, with caution for open-class parts-of-speech. Adding more lan-
guages does not seem to harm the quality of representations. mBERT
transfers knowledge across some scripts, and retrieves parallel sentences,
although it has been noted that this task could be solvable by simple
lexical matches. The representation space shows some systematicity in
between-language mappings. “Translation” is possible by shifting the
representations by a so called sentences offset. However, mBERT does
not learn systematic transformations of structures to accommodate a
target language with different word order, e.g. SOV instead of SVO, or
a different adjective/noun order.

mBERT is simply trained on a multilingual corpus, with no language
IDs, but it encodes language identities. Adding the IDs in pre-training
was not beneficial. It reflects at least some typological language features,
and transfer between structurally similar languages works better. This
implies that mBERT could not be considered as interlingua, because its
representation space is structured by typological features. Cross-lingual
transfer can be achieved by only retraining the input embeddings while
keeping monolingual BERT weights, i.e. even monolingual models learn
generalizable linguistic abstractions. Compared with English BERT, at
least some of the syntactic properties hold for mBERT: MLM is aware
of four types of agreement in 26 languages, and the main auxiliary of
the sentence can be detected in German and Nordic languages.

There have been conflicting results whether shared word-pieces help
mBERT. The simplest formalization of this question is whether per-
formance correlates with the amount of shared vocabulary. Proposals
for improving mBERT include fine-tuning on multilingual datasets by
freezing the bottom layers; improving word alignment in fine-tuning;
translation language modeling as an alternative pre-training objective
where words are masked in parallel sentence pairs; and combining five
pre-training tasks (monolingual and cross-lingual MLM, translation lan-
guage modeling, cross-lingual word recovery, and paraphrase classifica-
tion). The monolingual BERT has been applied directly in cross-lingual
setting, by initializing the encoder part of the neural MT model with
monolingual BERT.
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4.3.2.8 Directions for further research

BERT was shown to rely on shallow heuristics in natural language
inference, reading comprehension, argument reasoning comprehension,
and text classification. Such heuristics can even be used to reconstruct
a non-publicly-available model, suggesting a shortcut in the data. It
has been realized in the past years that the development of harder
datasets that require verbal reasoning should be as valued as modeling
work. “Amnesic probing” targets what knowledge actually gets used by
identifying features that are important for prediction in a given task.

4.3.3 The geometry of word senses

Coenen et al. (2019) discover separate semantic and syntactic sub-
spaces in BERT representations: a fine-grained geometric representa-
tion of word senses, and syntactic representations in attention matri-
ces and individual word embeddings. In this section, we summarize
the former, i.e. their finding that BERT distinguishes word senses at
a very fine level. Much of this information in encoded in a relatively
low-dimensional subspace.

The operation of BERT has the following components:

• the input to BERT is based on a sequence of tokens (words or
pieces of words),

• the output is a sequence of vectors, one for each input token, a
contextualized embedding, and

• the internals consist of two parts. The initial embedding for each
token is created by combining a pre-trained wordpiece embedding
with position and segment information; and the initial sequence
of embeddings is run through multiple transformer layers produc-
ing a new sequence of context embeddings at each step. In each
transformer layer is a set of attention matrices, one for each at-
tention head, and each head contains a scalar value for each pair
of tokens.

Context embeddings in BERT and related models contain enough
information to perform tasks in the NLP pipeline with simple classifiers
(linear or small MLP models). Such single global linear transformations
have been termed “structural probes” (Belinkov et al. 2017; Conneau
et al. 2018; Hewitt and Manning 2019).

4.3.3.1 Visualization of word senses

Taking sentences from the introductions to English-language Wikipedia
articles, Coenen et al. retrieved 1,000 sentences for individual words,
and visualized the corresponding BERT-base context embeddings us-
ing UMAP. With the example of die, they find crisp, well-separated
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clusters: the German article, ‘stop living’, and the game tool. Within
‘stop living’, there is a kind of quantitative scale, related to the num-
ber of people dying. They ask the questions whether it is possible to
find quantitative corroboration that word senses are well-represented;
and the seeming contradiction: whether the positions in the clusters
represent syntax or semantics.

4.3.3.2 Measurement of word sense disambiguation capability

Coenen et al. train a simple classifier on BERT’s internal representa-
tions for WSD following the procedure described by Peters et al. (2018),
i.e. a nearest-neighbor classifier, considering centroids of a given word
sense’s BERT-base embeddings in the training data. They achieve a
higher F1 score than the previous state of the art, with accuracy mono-
tonically increasing through the layers. An even higher score was ob-
tained using the technique in next paragraph.

4.3.3.3 WSD in a 128-dimensional space

Coenen et al. hypothesize a linear transformation under which distances
between embeddings would better reflect their semantic relationships.
They trained a probe following Hewitt and Manning (2019)’s method-
ology, i.e. a matrix B P Rkˆm, testing different values for m. The loss is,
roughly, defined as the difference between the average cosine similarity
between embeddings of words with different senses, and that between
embeddings of the same sense. In evaluation on WSD, untransformed
BERT embeddings achieve a state-of-the-art accuracy rate of 71.1%.
Trained probes achieve slightly improved accuracy down to m “ 128.
Regarding layers, there is only a modest improvement in accuracy for
final-layer embeddings. The method more dramatically improves the
performance of embeddings at earlier layers: there is much semantic
information in the geometry of earlier layers. The finding offers a res-
olution to the seeming contradiction mentioned above: syntax and se-
mantics reside in separate complementary subspaces.

4.3.4 Self attention entropy and ambiguous nouns

NMT has achieved new state-of-the-art performance in translating am-
biguous words. Tang, Sennrich, and Nivre (2019) is interested in which
component dominates disambiguation. They consider hidden states,
and investigate the distributions of self-attention, training a classifier
to predict whether a translation is correct given the representation of
an ambiguous noun. They find that encoder hidden states outperform
static word embeddings significantly, which indicates that encoders ad-
equately encode relevant information for disambiguation. In contrast
to encoders, the effect of decoder differs by models. Most interestingly,
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attention weights and attention entropy show that self-attention can
detect ambiguous nouns and distribute more attention to the context.

Tang, Sennrich, and Nivre train a classifier which is fed a representa-
tion of ambiguous nouns and a word sense (represented as the embed-
ding of a translation candidate). The classifier has to predict whether
the two representations match.

They compare word embeddings and encoder hidden states at differ-
ent layers both from RNNS2S (Luong, Pham, and Manning 2015) and
the Transformer (Vaswani et al. 2017). Tang, Sennrich, and Nivre find
the following.

• Encoders encode lots of relevant information for WSD into hidden
states, even in the first layer. The higher the encoder layer, the
more relevant information is encoded.

• Forward RNNs are better than backward RNNs in modeling am-
biguous nouns.

• Decoders hidden states have different effects on WSD in Trans-
former and RNNS2S.

• Self-attention focuses on the ambiguous nouns themselves in the
first layer, and keeps extracting relevant information from the
context in higher layers.

• Self-attention can recognize the ambiguous nouns and distribute
more attention to the context words compared to dealing with
nouns in general.

4.3.5 Psycholinguistic diagnostics

Ettinger (2020) introduces a suite of diagnostics drawn from psycholin-
guistic experiments, that allow us to ask targeted questions about the
information used by LMs. The results are that BERT can generally
distinguish good sentence completions from bad ones involving shared
category or role reversal, albeit with less sensitivity than humans; it
robustly retrieves noun hypernyms; but struggles with challenging in-
ferences and role-based event prediction with a clear insensitivity to
the contextual impacts of negation. She is conservative in the conclu-
sion because these sets are small, and different formulations may yield
different performance.

Her diagnostics target a range of linguistic capacities, drawn from
psycholinguistics (but she does not test whether LMs are psycholin-
guistically plausible). The psycholinguistic origin of the test has advan-
tages: it is carefully controlled to ask targeted questions about linguis-
tic capabilities, it asks the questions by examining word predictions
in context, which is natural in the LM paradigm, and it allows us to
study LMs without any need for task-specific fine-tuning. As we will
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see in Section 4.3.5.2, these diagnostics are chosen specifically to reveal
insensitivities in predictive models. The problematic nature of the sen-
teces is evidenced by patterns that they elicit in human brain responses,
namely N400, which is a famous component of time-locked electroen-
cephalography (EEG) signals known as event-related potentials. N400
is a negative-going deflection that peaks around 400 milliseconds post-
stimulus onset. Ettinger goes beyond the syntactic focus seen in ex-
isting LM diagnostics, and target commonsense/pragmatic inference,
the knowledge of semantic roles and events, category membership, and
negation.

Each of Ettinger’s diagnostics is set up to support tests of word
prediction accuracy and sensitivity to distinctions between good and
bad context completions. Ettinger focuses on the BERT model, but the
diagnostics are applicable for testing any LM. She publishes a new set
of targeted diagnostics for assessing linguistic capacities that shed light
on strengths and weaknesses of the popular BERT model.

4.3.5.1 Related Work

The related work section includes work on fine-grained classification
tasks to probe information in sentence embeddings, token-level and
other sub-sentence level information in contextual embeddings, specific
linguistic phenomena such as function words, the overall level of “under-
standing” (semantic similarity and entailment), and curated versions of
these tasks to test for specific linguistic capabilities. The analysis of lin-
guistic capacities of LMs has been dominated by syntactic testing.

The internal dynamics underlying how LMs cape syntactic informa-
tion has been examined in different components of the LM and at dif-
ferent timesteps within the sentence, in individual units, and regarding
semantic phenomena like negative polarity items. (This line of analy-
sis is firmly rooted in the notion of detecting structural dependencies.)
Word prediction accuracy has been applied as a test of LMs’ language
understanding with the lambda dataset, which tests a models’ ability
to predict the final word of a passage, in cases where the final sentence
alone is insufficient to do so. lambda is not controlled to isolate and
test the use of specific types of information.

The linguistic characteristics of the BERT model itself have also been
examined. Regarding the dynamics of BERT’s self-attention mecha-
nism, probing attention heads for syntactic sensitivity found that indi-
vidual heads specialize strongly for syntactic and coreference relations.
The syntactic awareness in BERT has been also examined by syntactic
probing at different layers and the examination of syntactic sensitivity
in the self-attention mechanism. A variety of linguistic tasks have been
tested at different layers. BERT has been found to exhibit very strong
performance on several of the targeted syntactic evaluations.
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4.3.5.2 Leveraging psycholinguistic studies

The fourth section in Ettinger provides background on human language
processing, and explains how she uses this kind of information to choose
the tests. Psychologists test human responses to words in context, in
order to better understand the information that our brain uses to gen-
erate predictions. Two types of predictive human responses are relevant
here.

In the cloze test, humans are given an incomplete sentence and tasked
with filling their expected word in the blank. This is the ideal human
prediction in context, not under any time pressure, so participants have
the opportunity to use all available information from the context.

The brain response N400 can be detected by measuring electrical
activity at the scalp by EEG to gauge how expected a word in a con-
text is. The electrical signal appears to be sensitive to the fit of a word
in context. It correlates with the cloze in many cases, it can be pre-
dicted by LM probabilities, and, importantly, expectations reflected in
the N400 sometimes deviate from the more fully-formed expectations
reflected in the untimed cloze response.

Ettinger draws diagnostic tests from human studies that have re-
vealed divergences between cloze and N400 profiles, i.e. when the N400
response suggests a level of insensitivity to certain information in com-
puting expectations, causing a deviation from the fully-informed cloze
predictions. These present particularly challenging prediction tasks,
tripping up models that fail to use the full set of available informa-
tion.

4.3.5.3 Datasets

Each of Ettinger’s diagnostics support three types of testing: word pre-
diction accuracy, sensitivity testing, and the qualitative analysis of pre-
diction. These diagnostics are constructed to constrain the information
relevant for making word predictions. In word prediction evaluation ac-
curacy, Ettinger uses the most expected items from human cloze prob-
abilities as the gold completions. In what she calls sensitivity testing,
Ettinger compares model probabilities for good versus bad completions

— specifically, those on which the N400 showed reduced human sensi-
tivity. The question is whether LMs will show similar insensitivities.
The qualitative analysis of models’ top predictions is also informative,
because these items are constructed in a controlled manner.

In all tests, the target word to be predicted falls in the final position,
which fits the computational models, both left-to-right or bidirectional
ones, only token probabilities in context are concerned, and the method
is equally applicable to the masked LM setting of BERT and to a
standard LM. Ettinger filters out items for which the expected word is
not in BERT’s single-word vocabulary.
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The observations, which we already summarized at the beginning,
are based on the following data-sets:

cprag-102 tests sensitivity to differences within semantic category,
the name stands for Commonsense and pragmatic inference. In the
example He complained that after she kissed him, he couldn’t get the
red color off his face. He finally just asked her to stop wearing that
lipstick/mascara., commonsense knowledge informs us that red color
left by kisses suggests lipstick, and pragmatic reasoning allows us to
infer that the thing to stop wearing is related to the complaint.

As in lambda, the final sentence is not supporting prediction on its
own, but unlike lambda, these items have consistent structure. None of
these items contain the target word in context, to test commonsense in-
ference rather than coreference. The average Human cloze probabilities
for expected completions is .74. A psycholinguistic study found that in-
appropriate completions (e.g., mascara, bracelet) had cloze probabilities
of virtually zero, but N400 showed some expectation for completions
that shared a semantic category with the expected completion (e.g.,
mascara, by relation to lipstick).

role-88 tests event knowledge and the sensitivity to semantic role
reversals, e.g. The restaurant owner forgot which customer/waitress the
waitress/customer had served. It requires event knowledge about typical
interactions between types of entities in the given roles. The authors
found that although each completion (e.g., served) is good for only one
of the noun orders and not the reverse, the N400 shows a similar level
of expectation for the target completions regardless of noun order. The
sensitivity test targets this distinction. Cloze probabilities show strong
sensitivity to the role reversal, with average cloze difference of 0.233
between good and bad contexts.

neg-136 tests negation along with knowledge of category member-
ship, e.g. A robin is (not) a bird/tree. N400 shows more expectation
for true completions in affirmative sentences, but it fails to adjust to
negation: There is more expectation for false continuations.

A separate psycholinguistic experiment chose affirmative and nega-
tive sentences to be more “natural”, e.g. Most smokers find that quitting
is (not) very difficult/easy., and contrasts these with affirmative and
negative sentences chosen to be less natural Vitamins and proteins are
(not) very good/bad.

4.3.6 Layers and lexical content

Wang and Kuo (2020) generate sentence representations from BERT-
based word models exploiting that different layers of BERT capture dif-
ferent linguistic properties. The task of sentence embedding, i.e. trans-
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forming a sentence to a vector, is not trivial. A common approach with
BERT-based models is to average the representations obtained from
the last layer or using the [cls] token. The authors show that both
are sub-optimal. They fuse information across layers to find better sen-
tence representation: Wang and Kuo dissect BERT-based word models
through a geometric analysis of the space in an unsupervised fashion.

Different layers of BERT learn different abstraction levels: interme-
diate layers encode the most transferable features, and higher layers
are more expressive in high-level semantic information. Information fu-
sion across layers has great potential. Wang and Kuo experiment on
patterns of the isolated word representations across layers, and find
that the evolution of isolated word representation patterns across lay-
ers highly correlate with word content: words of richer information have
higher variation in their representations. This finding helps them define
“salient” word representations and informative words for sentence em-
beddings.

Wang and Kuo compare their model, SBERT-WK with the follow-
ing 10 (parameterized and non-parameterized) methods: the average
of GloVe word embeddings; the average of FastText word embedding;
the average of the last layer token representations of BERT; [cls] em-
bedding from BERT, originally used for next sentence prediction; the
SIF model (Arora, Liang, and Ma 2017), which is a non-parameterized
model, a strong baseline in textual similarity tasks; the p-mean model
that incorporates multiple word embedding models; Skip-Thought; In-
ferSent with both GloVe and FastText versions; the Universal Sen-
tence Encoder, which is a strong parameterized sentence embedding
using multiple objectives and a transformer architecture; and Sentence-
BERT, which is a SOTA sentence embedding model with a Siamese
network over BERT. SBERT-WK improves the performance on textual
similarity tasks by a significant margin. Regarding supervised down-
stream tasks, SBERT-WK obtains the best result in 5 of the 9 consid-
ered tasks, and also in average. The merit of the model is in part due
to its efficiency.
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Part II

M A I N C O N T R I B U T I O N S

Our main contributions investigate lexical relations in a
very broad sense: besides lexical relations proper (i.e. re-
lations that hold between the meanings of words indepen-
dent of context, e.g. hypernymy, antonymy, and causality),
we include thematic and syntactic relations, word analogies,
translation, and ambiguity.
The first two chapters investigate verbs and their arguments.
Chapter 5 investigates arguments structure: we provide a
thematic categorization of arguments in the 4lang frame-
work. Our main question is what inventory of thematic
roles is needed for the formulaic definition of each word
in the defining vocabulary of this multilingual and radically
monosemic semantic formalism.
Still on verb arguments, but moving from the symbolic
treatment of thematic roles to the distributional representa-
tion of „syntactic roles” (i.e. grammatical functions), Chap-
ter 6 investigates the use of different automatic association
scores and tensor decomposition methods in the context of
collocation extraction.
The last two chapters are motivated by the question whether
relations which can be captured by intuition and recorded
by human labor (as witnessed by their literature in psychol-
ogy and linguistics), can also be detected in data-driven
distributional representations, more specifically, static word
embeddings (word representations obtained with shallow
neural networks).
Chapter 7 investigates several lexical relations: hypernymy
(what basic category a word belongs to, e.g. dogs are an-
imals), antonymy (opposite meaning), causality, analogy,
and translation.
Our last chapter is concerned with one of the greatest prob-
lems in lexical semantics: word ambiguity and, more specif-
ically, homonymy and polysemy. Static word embeddings,
our main tools in the last two chapters, represent each word
form with a single linear algebraic vector. Chapter 8 pro-
poses an evaluation method for multi-sense (static) word
embeddings (MSEs), where the different senses of an am-
biguous word are represented with different vectors.





Az, ki tőlem elrabolna / Lelkemtől rabolna meg. . .
‘That who stole you from me would rob me of my soul’8

— Béni Egressy
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5.1 overview

Verbs are the backbone of sentences, expressing actions, events, and
relationships between entities. They denote many kinds of semantic
connections. In the field of computational lexical semantics, the study
of verbs and their arguments has been a central pursuit, aiming to
capture the nuanced meanings and syntactic patterns associated with
this part of speech.

Now, that the previous chapters provided the background in compu-
tational lexical semantics, the first two main chapters will investigate
verbs and their arguments: thematic roles in a symbolic approach, and

8
This motto from the libretto of a Hungarian opera is intended here as a Hungarian
pun, but we try to explain the joke: Both clauses contain the verbal stem rabol ‘rob’,
a pro-dropped syntactic object (an unmarked construction in Hungarian syntax),
and an ablative-marked overt argument, but there is a mismatch in the grammatical
functions (surface cases):

(pro-dropped) object ablative (‘from’)
el rabolna Object maleficient
rabolna meg maleficient Object

In the first clause, the ablative is arguably oblique and the preverb el ‘away’ is
adverb-like, while in the second clause, the ablative is quirky and the adverbial meg
is a pure perfectivizer.
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grammatical functions in a distributional one, respectively. This chap-
ter, which originally appeared as Makrai (2014b) in Hungarian1 inves-
tigates the argument linking system in the 2014 version2 of 4lang, the
semantic network we introduced in Chapter 3. Our discussion is based
both on theoretical principles, and on our experience in creating the for-
mulaic meaning representation of each item in the defining vocabulary.
We have seen in Sections 2.4.4 to 2.4.6 that the main difference between
modern resources for the representation of verb argument structure is
in the granularity of the argument labels. Accordingly, our main ques-
tion is what inventory of thematic roles is needed for the definition of
each word in the defining vocabulary of a multilingual and radically
monosemic semantic formalism.

As we have already seen in Chapter 3, 4lang is a multilingual lexicon
for general human language understanding containing formal represen-
tations of word meaning in the monosemic approach to lexical seman-
tics, which means that items are language independent concepts cover-
ing different uses of the same word, uses in different sentence patters
and even in different parts-of-speech with the same meaning represen-
tation.3 Multilinguality and abstractness of items have the effect that
a simple deep case (or thematic) frame captures uses with different ar-
ity (i.e. transitive and intransitive). Deep cases denote the nodes in the
graph representing the meaning of a predicate where the representation
of the argument (single word, entity or phrase) has to be inserted.

4lang makes no clear cut between complements and adjuncts. Basi-
cally an argument is represented by a deep case whenever it is needed
for building the representation of the verb. As uses of the same verb
with different arities are handled in the same item, deep cases are used
consequently in different verb patterns, and all possible arguments are
included in the representation (Section 5.4.2.1). However, as verbs can
be defined as special cases of other verbs (biting is cutting with teeth),
arguments are inherited, so not every argument is listed directly in
the definition of some verb. Another source of implicit arguments are
constructions providing verbs with outer arguments, e.g. paint a pic-
ture for somebody, sleep an hour, fly the Atlantic. Causatives
(e.g. march the soldiers) are also attributed to constructions rather
than to argument structure.

The most frequent verbal deep cases (Section 5.4.2, especially Sec-
tion 5.4.2.2) are agents (denoted by AGT), patients (PAT), and datives

1 Most of the definitions were written by Makrai, and, in later phases of the project,
it was him who developed them, Kornai advised. There were group discussions on
the deep cases, the approach described here is that of Makrai. The paper Kornai
and Makrai (2013) was written by Kornai and presented by Makrai. Makrai is the
only author of the Hungarian Makrai (2013).

2 See Section 5.6 for explanation.
3 The lexicon, automatically collected word forms in 50 languages, a vector space

language model (embedding) computed from 4lang, and articles can be found at
http://hlt.sztaki.hu/resources/4lang/
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(DAT), already familiar from Section 2.3.2. Patient plays the role of the
neutral case it seems to play in many systems (Somers 1987). Following
the Unaccusative Hypothesis, arguments of intransitive verbs split to
agents and patients. The label “dative” is taken from Fillmore (1968),
but our understanding is narrower as we mainly restrict dative to recip-
ients in ditransitives (verbs of communication (e.g. tell) and transfer
(e.g. give)). (Psychological experiencer verbs and predicative arguments
will be discussed in Section 5.4.2.3.) These verbs correspond to Schank’s
(see Section 2.2.3) transmission types, mtrans and ptrans. There are
three locative cases in 4lang (TO, FROM, and AT). TO is used for the
abstract goal of relational nouns such as occasion and need as well
(Section 5.4.3). E.g. the definition of the former is time, =TO AT/2744.
A greater group of relational nouns require the possessive (POSS) such
as absence and duty. In the theory, quirky cases (e.g. prefer something
to something) can be marked in a language dependent module.

Deep cases in 4lang are not restricted to verbs. Some grammatical
features such as plural contribute to meaning. Technically, the defini-
tion of these morphemes refer to the referent with REL. Representations
of productive derivational suffixes and adpositions also refer to the con-
ceptual element they attach to with REL.

5.2 what do argument labels do?

To calculate the meaning representation of a sentence, we need to
map the predicate-argument relationships. From a theoretical linguis-
tic point of view, we have two pillars here: selection constraints and
surface cases in the broadest sense (e.g. the order of phrases, case af-
fixes and/or adpositions varying from language to language). In our
opinion, selection constraints correspond to spreading activation (Sec-
tion 2.2.2) in the dictionary, and the knowledge about surface cases is
indirectly encoded by deep cases. From the point of view of deep cases,
it is important that 4lang is designed to connect to each language
with a language-specific module, which tells which surface cases will re-
alize each deep case in that language. Recall from Section 3.7 that the
linking module has since been partially implemented in accusative lan-
guages by colleagues. The implementation uses a dependency analyses
in the framework of Universal Dependencies (UD, Nivre et al. (2016))),
and associates dependency types (i.e. subject and object) to agent and
patient. In this chapter we deal with deep cases, so we outline the
activation spreading only briefly and in a simplified way.

Recall the definition graph, the vertices of which are concepts in
the dictionary, and two of these are connected if one is included in
the definition of the other (Section 3.3), e.g. ‘milk’ is associated with
‘liquid’. If we want to know which argument of drink the word milk
fills in a sentence, we should look for the shortest path (edge sequence)
between the two concepts in the graph. With some luck, this passes
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through the word liquid and largely corresponds to the representation
of the phrase drink milk.

Let us now turn to how the role of each argument (which slot it
fills) can be calculated from surface cases. The meaning representation
of a term that includes a predicate with its arguments (e.g. a verb
phrase) should be calculated from the following: the representation of
the meaning of the predicate, that of the arguments, and the structure
of all these together. In the case of 4lang, the latter is taken care of
by indicating in the meaning representation of the predicate (typically
a verb) where the meaning representation of each argument should go.
To do this, we need to be able to distinguish the arguments of higher
arity predicates (e.g. transitive verbs). This is done with reference to
the deep case of the argument. The background for our method is
the common assumption (Section 2.3.2) that, at least within languages,
there are regular correspondences between the semantic role (e.g. agent)
and the syntactic properties of the arguments (the surface case of the
argument, which sentence alternations the verb participates in), and in
several cases these regularities shows up in more languages.

5.3 the granularity of the case labels

In Section 2.4, we discussed modern lexical semantic resources. Focus-
ing on verb resources, the main difference is in the granularity of the ar-
gument labels: FrameNet (Section 2.4.4) uses verb-specific tags, e.g. the
Apply-heat Frame includes a Cook, Food, and a Heating Instrument.

PropBank, on the other extreme, uses very generic labels such as
Arg0, Arg1, . . . , among which Arg0 is generally a prototypical Agent,
Arg1 is a prototypical Patient or Theme, but there are no consistent
generalizations for the higher numbered arguments, e.g. Arg2 can be
beneficiary, goal, source, extent or cause. There are several more general
ArgM (Argument Modifier) roles that can apply to any verb, and which
are similar to adjuncts, e.g. LOCation, EXTent, ADVerbial, CAUse,
TeMPoral, MaNneR, and DIRection.

VerbNet (Section 2.4.5) has a granularity between FrameNet and
PropBank with semantic roles like Agent, Patient, Theme, Experiencer,
etc., 24 in total. 4lang follows a monosemic approach (Section 3.1.1),
i.e. we strove to make as few distinctions as possible, but we also wanted
to make meaningful abstractions, what resulted in an inventory which
is finer than that of PropBank, but more abstract that that of VerbNet.

As we have already mentioned, our deep cases only serve to identify
which argument is which. In this context, it is perhaps worth emphasiz-
ing that the classification of arguments into deep cases is not primarily a
semantic classification. In computational semantics, the fact that there
is a regular difference between the meanings of the corresponding argu-
ments could often be an argument in favor of distinguishing between
two deep cases. For example, Talmy attributes the intentional differ-
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ence between the verb pairs hide/mislay, pour/spill, . . . to the exact
nature of the case of the agent.

In Allen and Teng (2018)’s view, semantic roles should have con-
sequences independent of the predicate or event. They explore three
aspects: entailment from a role independent of the type that has such
roles; integration with ontology (Roles should obey the typical entail-
ments in an ontology, e.g. inheritance of properties from parents); and
derivability (roles should be derivable from the definitions in dictionar-
ies). These authors admit that only the third property allows empirical
evaluation. In 4lang such differences do not justify the introduction of
a new deep case, as the meaning is fully described in the definition field
of the lexical entry.

Compared to semantic classification, the other extreme is where the
number of cases cannot exceed the largest number of arguments we
encounter among verbs. We do not strive for this either, as we want
to take advantage of regularities between the semantic role and the
syntactic properties.

5.4 individual relations

5.4.1 Function morphemes

How does 4lang grasp simpler dependencies? On the one hand, certain
inflections, such as the plural, have a conceptual meaning in the sense
that in the representation of the structure containing the inflectional
affix, there is an element for which the inflectional affix is responsible.
Productive derivational affixes and adpositions are similar. We need to
treat these relations (stem–inflectional affix, stem–derivational affix, ad-
positional object–adposition) uniformly already because 4lang wants
to be language-independent, and the same semantic relation is ex-
pressed differently in different languages, e.g. the meaning, which is
expressed by the possessive personal suffix in Hungarian, is expressed
by the possessive pronoun in English. Here, the place of the representa-
tion of a function morphemes in the representation of the more content
element is always represented by the keyword REL (relational, related),
which in a broader sense can be called a deep case.

5.4.2 Verbal deep cases

5.4.2.1 Argument positions, alternations, open case inventory

Turning now to the arguments of verbs, we must first clarify what
we mean by an argument. Only the obligatory ones or the adjuncts as
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well?4 Are we talking about surface arguments, or the arguments for the
(deep, logical) predicate corresponding to the verb in a formal semantic
translation? In the first approximation, we follow the literature (Somers
1987) in representing those surface arguments by their deep case in the
definition of a verb that are needed to describe the meaning. Another
issue arises from the fact that, due to the abstract nature of 4lang, we
do not differentiate between the transitive use of a verb (or even that
with more surface arguments) and the intransitive use of the same verb
form. Deep cases are defined in such a way that the same predicate in
different uses gets the same case. It follows that if a verb has a transitive
use, the deep case of two participants must also be indicated. Finally,
a further nuance is that when a verb can be defined as a special case
of another verb and the arguments are inherited, it is not necessary to
explicate them in the definition, e.g. bite is defined as cut, INSTRUMENT
tooth (‘cut with tooth’), and bite inherits the arguments of cut, so these
are not listed.

In choosing deep cases, it is not our task to create harmony between
the participants of different verb roots. Thus, for example, it is not
our intention that the participants in the sentences John sells a book
to Peter and Peter buys a book from John will receive the same deep
cases for the two sentences.5 Finally, we do not include outer roles in the
verb definition, that is, the possible arguments that can be assigned to a
verb by a construction that affects entire verb classes (e.g. motion verbs)
or even all verbs, so in the following examples the putative argument
position corresponding to the bold face phrases: paint an image for
someone, sleep an hour, fly over the Atlantic Ocean.6 Causation is
also considered such a construction. (In Hungarian, the meta-language
of the paper on which this chapter is based, causation is marked by the
derivational suffix -(t)At.)

5.4.2.2 The core (agent, patient, dative)

There are 744 verbs in 4lang. Deep cases are listed in the Table 8,
along with the number of words that they occur with. Unsurprisingly,
the most common deep case is the agent. When writing definitions, we
can decide without much difficulty which argument of a typical transi-
tive verb is the agent (indicated by the keyword AGT in the dictionary).
The second most common deep case in 4lang, which we called patient
(PAT), is often defined only as the “semantically unmarked” deep case,
but since the others are relatively clearly identifiable, this is not a prob-
lem either. According to the Unaccusative Hypothesis widely accepted

4 This chapter was originally published in Hungarian, where there is a common term
for arguments and adjuncts, bővítmény ‘expansion’, arguments proper are called
vonzat ‘attractee’, and adjuncts proper are called szabad bővítmény ‘free expansion’.

5 In both cases, the English subject will be an agent, and the object will be PAT.
6 For more on external roles, see Somers 1987, Chapter 9.
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AGT 383
PAT 311
REL 81
POSS 52
DAT 30
TO 17
FROM 11
AT 2

Table 8: Each deep case with the number of predicates using them. As for
the granularity of the role inventory, our system is between Prop-
Bank/AMR (Sections 2.4.6 and 2.4.8) and VerbNet (Section 2.4.5).

object- ergative ergative active lexicalized subject-
marking 1 2 active marking

Peter is writing the letter. nom ag ag ag ag ag
Peter is writing. nom nom ag ag ag ag
Peter is walking. nom nom nom ag ag/nom ag
Peter is ill. nom nom nom nom ag/nom ag

object marking English (eng), Hungarian (hun)
ergative 1 Kabardian (kgb), Avar (ava), Adige (ady)
ergative 2 Aghul (agx), Udi (udi)
active Bats (bbl)
lexicalized active Georgian (kat), Dakota (dak)
subject marker Mingrelian (xmf), Maidu (nmu)

Table 9: Arguments of intransitive verbs in different languages (Komlósy
1982). The SIL code of the languages is also indicated.

in modern syntax, the argument of an intransitive verbs can also be
patient (e.g. fall, melt).

Komlósy (1982) summarizes how the agent and patient of intransitive
and transitive verbs are classified by surface cases in different languages.
Komlósy reviews a number of ergative (or active and subject-marking)
languages in terms of the case of the arguments of different single-
argument verbs. Table 9 shows that different languages draw the line
between the two cases at different points on a scale of activity. These
data suggest that in a language-independent case system we need to
make finer differences than the binary AGT vs PAT partition. It is a
question whether this would really improve the performance of our
systems in these languages. Such experiments would exceed the bounds
of the present thesis, so we’ll stick with the simpler case set.
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With agent and patient, we essentially follow the generative semantic
tradition. We deviate more from the literature by using the dative (DAT).
The name is taken from the oldest terminology of generative semantics
(Heringer 1967; Fillmore 1968). Fillmore himself later separated the da-
tive into experiencers, objects (Object), and goals (Goal). We basically
use the dative only for verbs with at least three surface arguments, in
other cases only based on their similarity to the former. As for their
meaning, some of the three-argument verbs are the special cases of say,
very reminiscent of Schank’s (see Section 2.2.3) mental transmission
mtrans: admit, allow, command, declare, emphasize, explain, express,
forbid, grateful, say, swear, teach, thank. Another group is related to
give, i.e. Schank’s physical transmission ptrans: bestow, have, help,
lend, let, make offering, offer, owe, owing to, pass, pay, present, sell,
show.

5.4.2.3 Unaccusatives, psychological experiencers, predicative arguments

The simplest argument structures are when there is an agentive sub-
ject with no further argument, or with an optional or obligatory object
(e.g. eat) or goal (e.g. join). The first deviation from these is those
optionally transitive verbs where the subject of the intransitive use
corresponds to the patient of the transitive use. Recall that in 4lang,
these verbs are also represented by a single item in which both par-
ticipants are indicated. There are a couple of dozen pure unaccusative
verbs (intransitive verbs with a patient): bath, become, belong to, bend,
burn, depend, develop, die, drown, fade, faint, fall, gain, hang, hear,
hope, improve, reduce, sleep, spoil, spread, think, tire. These are repre-
sented by pat. In 4lang, patient in not restricted to verbs: divorce is
a “psych-noun”.

In two-participant psych-verbs, where this specificity is reflected in a
difference between some languages (especially English and Hungarian),
e.g. the pony pleases Dave/Dave likes the pony, we decided to represent
the stimulus as a patient and the experiencer as a dative. In principle,
this should also be done with psych-verbs that resemble like in all the
languages under consideration, i.e. whose experiencer is the subject and
the stimulus is the object. In this, unfortunately, the annotation is not
fully consistent. On a semantic basis, we assigned both a patient and
a target TO to belong to and remember.

Among the three-participant verbs, as we have already mentioned,
those whose subject is the agent pose no problem: besides the well-
populated classes of give- and tell-verbs, help, and even most of those
with predicative arguments, such as let/allow and regard, can easily be
represented. Table 10 shows all predicative arguments in the authors
version8 of the hand-edited 4lang definitions. To select these words,

7 In addition to English and Hungarian, there is also a target case on the surface in
French (capable de).

8 See Section 5.6.
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English Hungarian Latin Polish id defining? POS def

able képes idoneus w stanie 1245 A can/1246[=AGT[=TO]]7

appear tűnik pareo wydawać sié 2450 yes U =DAT THINK [=PAT[=OBL]]
command parancs iussum rozkaz 1941 N speak, HAS authority, CAUSE =DAT[=PAT]
of -ból ex -any 16 yes G material[=REL]
recognize felismer cognosco rozpoznać 771 yes V =AGT KNOW[=PAT[=PAT]]
regard tart vminek arbitor uważać za 2312 V =AGT THINK[=PAT[=DAT]]
self önmaga ipse sam 1851 N =PAT[=AGT]
tendency tendendcia 2987 N =POSS[=TO[likely]]
try próbál tempto próbować 1976 yes V =AGT WANT =AGT[=PAT]
use használ utor używać 1008 yes V =FOR[purpose] INSTRUMENT =PAT, =AGT[=FOR]

Table 10: Predikatív bővítmények a 4lang-ben.

we searched for words whose definition includes a predicate on a node
that is labeled with a deep case. As can be seen here, we have not run
into an insoluble problem with predicative arguments in general.

There are three verbs left in the defining vocabulary: have, appear
and seem. Our method during the creation of the definitions was to
keep the number of deep cases limited by introducing only those that
had enough occurrences in the vocabulary to make an intuitive gener-
alization possible. If we are faithful to that principle, we cannot say
anything about these three verbs. If we had to, we could represent the
possessor with a dative in the case of have, and the possession with the
neutral patient (based on languages with a dative surface case).

The peculiarity of appear and seem is that two participants behave
dative-like on the surface: the predicative argument and the experiencer.
Which one should be considered a deep dative? =to remains for the
analysis of the other. Note that the dative is related to the goal cross-
linguistically, e.g. in Urdu the goal is usually expressed with a dative
(Butt 2006, Section 5.5.2. ).

Thus, the two possible analyses are

• seem: =dat think [=pat is-a =to]

• seem: =to think [=pat is-a =dat]

(is-a is written here just for the ease of presentation. The syntax im-
plemented in definitions is =pat[=to] or =pat[=dat].)

In the first alternative, the reader may recognize the familiar config-
uration of roles that the experiencer is a dative, and this alternative
also resembles the typical situation where the agent causes something
to the patient

• put: =agt cause[=pat at =to]

to the extent that the object of the embedded predicate is a goal. How-
ever, in order to choose between the two kinds of analysis, more lan-
guages should be considered.

To summarize analysis of psych-verbs: in principle, the stimulus is
a patient, and the experiencer is a dative. For verbs with both and
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experiencer and a predicative argument – of which there are only two
in the basic vocabulary of 4lang– we do not offer any generalization.

There are some further words in the defining vocabulary with dative
marked arguments in Hungarian (nehéz ‘difficult; heavy’, y tetszik x-
dat ‘x likes y’) or German (ähneln ‘resemble’, beitreten ‘join’, gleichen
‘equal’), but these are too sporadic to draw any generalization, so we
treat them as exceptional.

5.4.2.4 Locative cases

There are as many as three locative cases in 4lang, TO and FROM cor-
responding to the Fillmore Goal (Goal) and Source (Source), and the
essive AT. In Section 2.2.6, we reviewed Hayes (1979), in whose approach
“to really capture the notion of ‘above’, you probably have to go into
analogies to do with e.g. interpersonal status: Judge’s seats are raised;
Heaven is high, Hell is low; to express submission, lower yourself, etc.”
4lang has gone as far as possible in abstraction: if an argument in many
languages gets a surface case that is also used to express the goal of
movement (specific inflectional suffixes in Hungarian, and prepositions
in English), then we consider it a goal. We mean able, accustom, add,
addition, available, belong, gentle (hu:gyengéd, la:mollis, pl:delikatny),
include, invite, join, law, listen, load, mix, necessary, need, occasion,
put, ready, remind, sensitive, similar, skill, tendency. The other two
locative cases are the source (accept, borrow, buy, cut off, date, derive,
of, profit, remove, rent, rubber, separate, subtract, take) and the essive
location (situated, stay).

In the language-specific module already mentioned it is possible to
mark some arguments of some verbs with surface cases, if their case is
unpredictable from their deep case (quirky case). On the other hand,
it is already clear from English, Hungarian and German that there are
verbs where no generalization seems useful. In this case, we use the
same REL keyword as for predicates with a single surface argument,
e.g. prefer to something.

5.4.3 Relational nouns

Finally, consider the relationship between relational nouns and the
word associated with them (e.g. in the case of interest, the stakeholder).
The phenomenon that makes the noun interest relational is twofold. On
the surface, the proportion of possessed occurrences of the word inter-
est is significantly higher than among other nouns. On the other hand,
which is more interesting from a semantic point of view, no matter how
we want to describe the meaning of the word interest, we would prob-
ably refer to the “stakeholder”. The grammatical relationship between
the two words is possessive in most relational nouns, but we find some-
thing different in about one-tenth of the lexemes. In the case of the
words occasion and need, the participant which we call the goal for lack
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of a better word, is sublative in Hungarian (-rA, lit. onto) and for in
English. In the representation of relational nouns, we use the keywords
POSS or TO according to the grammatical relationship between the two
words to indicate the place where the representation of the related word
(the interested person and the target, respectively) goes. TO is the same
abstract goal we encountered at verbs. Thus deep cases mediate and
helps to find the semantic relationship between the two participants
(the interested and the interest; the occasion and the goal). We will
not handle relational nouns that are productively formed from a verb
(i.e. participles), because 4lang does not distinguish e.g. participles
from the corresponding verb.

5.5 linking

Recall from Section 3.7 that the manual definitions of 4lang have been
applied to word and sentence similarity and entailment (Recski and
Ács 2015; Recski 2016b; Recski, Borbély, and Bolevácz 2016; Recski
et al. 2016; Recski 2016a; Ács, Nemeskey, and Recski 2017; Kovács
and Recski 2018; Recski 2018).9 Both the agents (resp. patient) in the
manual definitions and the subjects (resp. object) in the dependency
analysis have been linked with a 1 (resp. 2) arrow. These applications
did not use the remaining deep cases. Specifically, no implementation
tested whether the treatment of relational nouns with POSS and TO
described above benefits NLP applications.

5.5.1 Ergative languages

Recall from Section 3.7 that Recski et al. (2016) and Kovács, Gémes,
Iklódi, et al. (2022) implemented 4lang-linking with Universal Depen-
dencies (UD). Marneffe et al. (2021, Chapter 4.4) describes the UD
treatment of ergative languages as follows:

A more frequent analysis is to say that such syntactically
ergative languages treat the intransitive core argument and
the patient-like argument of transitives together as a “pivot”
(Dixon 1994), which we would analyze as a subject (nsubj),
and then the agent-like argument of transitives is also a
core argument, which we would analyze as an object (obj).
The unusual thing, then, is the reversed alignment between
semantic roles and grammatical relations. This is a place
where the relation subtype :pass can be usefully used in an

9 The members of the HLT group can no longer recall exactly which of their pub-
lications used the manual definitions. The ones cited here mostly used them, and
those since 2019 probably did not, because the colleagues moved to a definitional
syntax whose parser in its present state can only check the definitions but it cannot
translate them to graphs.
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extended sense. If we regard it as marking not only passives
but all cases where the nsubj does not mark the agent-like
argument of the verb, then all transitive subjects in such
a language are nsubj:pass. In addition, we can reuse the
subtype :agent, which in other languages is optionally used
for an oblique modifier denoting a demoted agent, to mark
the ergative core argument as obj:agent.

The relations of such an analysis could be easily mapped to 4lang
deep cases.

5.6 an older and a newer approach

In Kornai and Makrai (2013) and Makrai, Nemeskey, and Kornai (2013),
we labeled argument locations, which we later called deep cases, by
names of surface cases (e.g. nom, acc, poss) and the names of classes
thereof (e.g. obl). There was no justification behind this, the name
(the literal used as a label) was not considered important.

In the article on deep cases itself, on which this chapter is based, we
switched to thematic roles because we thought that these were more in
line with the intended language-independent generalization. Our moti-
vation was to capture language-universal regular correspondences be-
tween the semantic role (e.g. agent) and the syntactic properties of the
arguments (the surface case of the argument, which sentence alterna-
tions the verb participates in). This is common in both theoretical and
computational linguistics.

Finally, Kornai (2023) parted with most of the earlier deep cases.
In this more minimalistic approach to linking, cross-lingual claims are
basically restricted to the agent and the patient, which directly corre-
spond to arrow 1 and arrow 2 respectively. For Kornai, it is not im-
portant that the “linkers” be named for thematic roles. There are still
binary relations, and no other levels. The approach of this recent book
is “explicitly formalistic, it looks for the minimum to get things done”
(András Kornai, personal communication). See Kornai (2023, Sec 5.6),
especially the last part (“This is of course not to deny that there are
such things as datives or locatives. . . ”). Some of the syntactio-semantic
information is expressed with a new relation mark_. The definition of
(mostly mental) transfer verbs will contain "dative" mark_ person
(where person is unified with the beneficient). Another frequent first
argument of mark_ is the object of to, e.g. "to/3600 _" mark_ act in
the definitions of able, difficulty, and ready. Kornai (2023, Chapter 8)
admits that in this system there are no universal tools for unaccusative
and other situations where the subject is placed in the first argument
position or the subject in the second.10

10 The last version which is compatible with the present thesis is https://github.com/
kornai/4lang/blob/1d19f167b9c0eace5bd874759860781be78f96ed/4lang.
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5.7 conclusion

We described how deep cases can work in a machine comprehension
resource that assigns deep cases directly to rather abstract language-
independent concepts. We have manually created the 4lang definitions
of the elements of a defining vocabulary. We labeled the locations of the
arguments with “deep cases”, thematic-role-sytle language-independent
syntacto-semantic generalizations, thus proposing a deep case inven-
tory.

Clearly, the most important deep cases are agent and patient. In the
next chapter we analyze the representation of these relations with the
tools of tensor decomposition.
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6.1 introduction

In the previous chapter, we investigated verb argument roles in a seman-
tic network, and the last two chapters will analyze word embeddings.
This chapter connects the two topics by word embedding experiments
in the verb structure domain.

Verbs have been characterized on the basis of how frequently var-
ious syntactic constituents occur in various grammatical relations to
them, which is, not surprisingly, related to the meaning of the verb
(Levin 1993). These selectional preferences have been analyzed with
machine learning tools (Van de Cruys 2009). Verb structures include
collocations, whose syntactic modifiability or semantic compositional-
ity is reduced: their linguistic distribution may be idiosyncratic or the
sense of the combination may be habitual or even fixed (Bouma 2009).

Tensors (>2-dimensional arrays) generalize matrices; while matrices
contain numbers aligned in two dimensions, rows and columns, tensors
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have more of these dimensions, also called axes or modes.1 The Singu-
lar value decomposition (SVD) of a co-occurrence matrix is a natural
tool to compute generalizations about the interactions between two
modes, like words and documents (LSA, Landauer and Dumais (1997),
Section 4.1.3), target and context words (words embeddings, Mikolov,
Sutskever, et al. (2013), Levy and Goldberg (2014c), and Pennington,
Socher, and Manning (2014)), or words and dependency contexts (Levy
and Goldberg 2014a). Four ways of looking at SVD (in LSA) can be
distinguished (Turney and Pantel 2010): the goal can be the modeling
of some latent meaning, noise reduction, indirect aka high-order co-
occurrences (when two words appear in similar contexts), or data spar-
sity reduction. Intuitively, language features multi-mode interactions:
the turntable playing the piano is strange (Van de Cruys 2009), while
the two-mode relations xplay, subj, turntabley and xplay, obj, pianoy

are perfect. Tensor generalizations of matrix decomposition (Kolda and
Bader 2009), especially low-rank factorizations, open the way for the
analysis of such interactions.

It seems that, after intensive early research (Van de Cruys 2009; Van
de Cruys, Poibeau, and Korhonen 2013; Polajnar, Rimell, and Clark
2014; Fried, Polajnar, and Clark 2015; Hashimoto and Tsuruoka 2015),
results obtained with skip-gram and related word embedding meth-
ods outshone tensor methods for verb argument structure. Yet tensor
decomposition remains relevant, as it is more interpretable than more
recent methods, and it has developed remarkably. NLP test-beds in the
domain of verb argument structure have been involved in cutting-edge
scalable, noise-robust tensor works (Sharan and Valiant 2017; Bailey,
Meyer, and Aeron 2018; Frandsen and Ge 2019). The data-driven lin-
guistic understanding of word ambiguity and especially that of verb
selection is still immature. Here we try to make progress in the lin-
guistic direction by further research on the tensorial analysis of verb
argument structure.

Tensor decomposition provides embedding vectors for each mode (in
our case, nouns as subjects, verb, and nouns as objects) analogous to
word embeddings in (shallow or deep) neural networks. In this paper,
we compute different association measures between subjects, verbs, and
objects, populate tensors with these measures, decompose the tensors
with different algorithms, and investigate the resulting word embed-
dings quantitatively and qualitatively to answer the following questions.
Our first four questions will be answered quantitatively in the model-
ing of English subject-verb-object triple similarity, while the last two
questions are qualitative.

1. Which association measure yields the best representations? We
experiment with several measures, including our novel generaliza-

1 The term mode is preferred when data from different modalities are fused.
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tion of normalized pointwise mutual information to the higher-
order (>2) case.

2. Should we include empty argument fillers (existentially bound
subjects or objects) in our co-occurrence statistics? Ideally, in-
cluding them may help generalization over the transitive and the
intransitive uses of the same verb, while discarding them may
help focusing on transitive structures cleanly as a separate phe-
nomenon.

3. The two tensor decomposition algorithms, CPD and Tucker, which
we will introduce in Section 6.3, have very different time-complexi-
ty: Tucker is much faster. Tensor decomposition has hyper-param-
eters like the decomposition rank and the frequency cutoff. Both
have an effect on the memory need, especially the latter. It would
be beneficial, if the two algorithms reached the best results with
similar hyper-parameters, because then a fast parameter tuning
with Tucker would also benefit CPD. Is this the case?

4. Do latent dimensions of our word embeddings reflect lexical knowl-
edge?

5. Can the difference between each noun as a subject versus an ob-
ject correspond to some intuitive difference between subjecthood
and objecthood?

Section 6.2 describes the linguistically motivated association mea-
sures between subjects, verbs, and objects we apply. These measures
include ones that are novel to the best of our knowledge. Section 6.3
offers an introduction to tensor decomposition. Finally, 6.4 to 6.6 de-
scribe our experiments, originally published in Makrai (2022).2 Our
code is available online.3

6.2 counts, weighting, and associations

Word co-occurrences form sparse arrays, as most words do not oc-
cur empirically with most words, and frequencies span many orders of
magnitude (Zipf or power-law distribution, Manin (2008) and Gittens,
Achlioptas, and Mahoney (2017)). Sparsity is desiderable for both cog-
nitive/linguistic and computational reasons. In computational terms,
sparsity can be regarded a way of regularization or simply a trick to
fit in memory. Whatever the main motivation is, in a data-driven sce-
nario, linguistic tensor decomposition methods have to be based on

2 The PhD candidate is grateful to Tülay Adalı, the enthusiastic lecturer at DeepLearn
Summer University 2018, who drew his attention to the potentials of tensor decompo-
sition, and to Gábor Berend, Gábor Borbély, Balázs Indig, Ágnes Kalivoda, András
Kornai, Eszter Simon, Tibor Szécsényi, and anonymous reviewers for their helpful
comments.

3 https://github.com/makrai/verb-tensor
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sparse tensors populated with possibly more sophisticated scores than
frequency. Now we turn to these weighting functions and especially to
linguistically motivated association scores.

The simplest and most popular (Pennington, Socher, and Manning
2014; Sharan and Valiant 2017) choice is the logarithm of the co-occur-
rence frequency, log fpx, y, zq. Jenatton et al. (2012) place the modeling
of the xsubject, verb, objecty triples in the context of multi-relational
learning, and apply a weighting function related to the log-bilinear
model (Mnih and G. Hinton 2007; Mikolov, Chen, et al. 2013), see
Table 11.

Van de Cruys (2009, 2011) and Van de Cruys, Poibeau, and Korho-
nen (2013), and Bailey, Meyer, and Aeron (2018) use three-mode gen-
eralizations of the information-theoretic association measure (Positive)
Pointwise Mutual Information ((P)PMI). Positivity is related to sparse
inputs: in order to attribute higher scores to actual co-occurrences than
unattested ones, in the case of PMI and the lexicographic association
scores introduced in the following paragraph, positive variants of the as-
sociation measures have to be used, e.g. PPMI, which replaces negative
PMI entries with zero. We discuss the two types of three-variable gener-
alization of PPMI in Section 6.2.1: the more standard total correlation
(that we still call PMI) and interaction information.

We also experiment with generalizing Log Dice (Rychlý 2008) to
three axes

log 3fpx, y, zq

fpxq ` fpyq ` fpzq
` c, (1)

where c is chosen so that the Log-Dice values are non-negative. (While
3 in the nominator is redundant, because it is subsumed under c, we
keep it in the formula to make it more reminiscent of the established
2-variable case.) The use of Log Dice as well as salience introduced
in the next paragraph has, to the best of our knowledge, mainly been
limited so far to lexicography.

6.2.1 Higher-order PMI

One would think that it’s obvious that the 3-variable generalization of
Pointwise Mutual Information (PMI) is

log ppx, y, zq

ppxqppyqppzq
, (2)

but it turns out that this is only one of the possible generalizations. Van
de Cruys (2011) introduces two pointwise association measures, whose
expected values are two different multivariate generalizations of mu-
tual information (Shannon and Weaver 1949): interaction information
(McGill 1954) and total correlation (Watanabe 1960).
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Pointwise interaction information is based on the notion of condi-
tional mutual information.4

log ppx, yqppx, zqppy, zq

ppx, y, zqppxqppyqppzq
(3)

Total correlation on the other hand quantifies the amount of infor-
mation that is shared among the variables, with a pointwise variant
defined by the formula in Equation (2). Following the literature (Vil-
lada Moirón 2005; Van de Cruys 2009; Van de Cruys, Poibeau, and
Korhonen 2013; Bailey, Meyer, and Aeron 2018), when we speak about
(multivariate Positive) Pointwise Mutual Information in this paper, we
will mean (pointwise) total correlation.

Van de Cruys (2011) reports that in their Dutch experiments both
methods are able to extract salient subject verb object triples (proto-
typical svo combinations like poll represents opinion and fixed expres-
sions). Narrowing the scope to the word play, they find that interaction
information picks up on prototypical svo combos, e.g. orchestra plays
symphony, while the more established one (which he calls specific cor-
relation) picks up on play a role and salient subjects that go with the
expression.

6.2.2 Salience and normalized PPMI

PPMI, despite of its nice information-theoretic interpretability, is bi-
ased towards rare events (Turney and Pantel 2010; Levy et al. 2015;
Zhuang et al. 2018). This motivates the Sketch Engine lexicographic
software (Kilgarriff et al. 2004) to multiply vanilla (two-order) PPMI
by log-frequency, to get the measure of salience. We apply similar mod-
ifications to every score introduced in Section 6.2 so far. We denote
vanilla PPMI (Equation (2)), interaction information (Equation (3))
and Log Dice (Equation (1)) by pmi-vanl, iact-vanl, and Dice-vanl,
respectively, and define pmi-sali, iact-sali, and Dice-sali as the
vanilla score multiplied by log fpx, y, zq.

There is a theoretically better motivated way of transforming PMI to
some measure which is less biased towards rare combinations. In Bouma
(2009)’s approach, normalization is related to boundedness. He looks
for measures whose absolute value is pointwise larger than that of PMI.
Entropy and negative log probability are two of those measures. The
corresponding normalized measures are called normalized mutual infor-
mation (NMI) and normalized pointwise mutual information (NPMI),
respectively. Both are used in the literature, e.g. the review by Sra
(2018) highlights NMI, while Balogh et al. (2020) opt for NPMI, and

4 Mnemonically, the formula of the pointwise variant generalizes the 2-mode case
along the inclusion and exclusion principle, except it has the numerator and the
denominator swapped to ensure a proper set-theoretic measure.
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6.3 tensor decomposition

Figure 14: Canonical Polyadic Decomposition, figure from Rabanser, Shchur,
and Günnemann (2017).

so do we. In our experiments, we apply this normalization to the two
multi-mode generalizations of PMI, pmi-vanl and iact-vanl.

While normalized interaction information (niact) does not excel in
our experiments, pmi-sali proves to be the best among the alterna-
tives. This best result is obtained with non-negative CPD. Our best
general (i.e. possibly negative) decomposition, both CPD and Tucker
is obtained with tree-variable normalized PMI, i.e.

log ppx,y,zq

ppxqppyqppzq

´ log fpx, y, zq
,

which we call npmi in the tables. These two measures are to the best of
our knowledge the novelties of the present thesis. Empirically, when di-
vided by ´ log ppx, y, zq, positive interaction information and the more
standard 3-mode PPMI is upper-bounded by 1 and 2, respectively.

6.3 tensor decomposition

The main entry point to tensor computation is Kolda and Bader (2009),
but Rabanser, Shchur, and Günnemann (2017) is also worth consulting.

There is no single generalization of the SVD concept: the two most
popular extensions, Canonical Polyadic Decomposition and the more
general Tucker, feature different generalized properties. Sidiropoulos
et al. (2017) discuss the interpretation of these two different ways of
decomposition in signal processing and machine learning points of view.

6.3.1 Canonical Polyadic Decomposition

Canonical Polyadic Decomposition (CPD, aka CanDecomp, Parallel
Factor model, ParaFac, rank decomposition, or Kruskal decomposition,
(Carroll and Chang 1970)) expresses a tensor as a minimum-length
linear combination of rank-1 tensors. A rank-1 tensors is the tensor
product of a collection of vectors, just as the dyadic product of two
vectors is a 1-rank matrix, see Figure 14.

The alternating least squares algorithm (ALS, Carroll and Chang
(1970) and Harshman (1970)) is an iterative method for CPD. In each
iteration, all but one of the modes are fixed and the remaining one is
fitted. ALS does not guarantee convergence, and even if it converges,
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Figure 15: Tucker Decomposition, figure from Rabanser, Shchur, and Günne-
mann (2017).

this cannot be detected in a trivial way. Orth-ALS (Sharan and Valiant
2017) improves on ALS.

6.3.2 Tucker decomposition

While CPD is more popular in the computational linguistic literature,
and its better parameter efficiency lends it better explanatory ade-
quacy, we also experimented with Tucker decomposition, because it can
be computed much more efficiently. Tucker decomposition (aka Higher
Order SVD, Tucker (1966)) factorizes a tensor into a core tensor G
multiplied by a matrix along each mode, see Figure 15. In the case of

subject ˆ verb ˆ object

tensors, rows of the three matrices contain embedding vectors of enti-
ties (subjects or objects) and those of verbs (“relation”), and entries of
the core tensor G determine the levels of interactions between the latent
dimensions. Tucker decomposition is not unique, because we can trans-
form G without affecting the fit if we apply the inverse of that trans-
formation to the factor matrices. Uniqueness can be improved (Kolda
and Bader 2009) by imposing e.g. sparsity, making the elements small,
or making the core “all-orthogonal”. Other priors and constraints in
tensor learning involve non-negativity and independence (Lahat, Adali,
and Jutten 2015).

6.4 experiments

In this section, we report our experiments. After the introduction (Sec-
tion 6.4.1) of the corpus that serves as the basis of our empirical in-
vestigations, Section 6.4.2 compares association measures, the two al-
ternatives for treating missing arguments, the two decomposition algo-
rithms, and some other hyper-parameters (the decomposition rank and
the frequency cutoff) in the classical task of predicting the similarity
of English subject-verb-object triples (Kartsaklis and Sadrzadeh 2014).
Then in Section 6.4.3, we investigate the latent dimensions qualitatively.
Section 6.4.4 compares the embedding vector of each noun as a subject
versus an object, to see how differently nouns behave in the two roles.
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cutoff shape with unfilled shape without unfilled SVO coverage

1 (324 196, 90 606, 287 967) (206 488, 41 075, 188 619) 1.00
10 (160 629, 37 427, 129 694) (109 432, 19 824, 92 635) 1.00

100 (92 999, 20 937, 69 536) (71 768, 13 907, 57 420) 1.00
1000 (44 168, 10 444, 32 359) (40 309, 8 838, 30 280) 1.00

10000 (13 765, 5 070, 12 313) (13 610, 4 895, 12 115) 0.97
100000 (3 474, 2 313, 4 120) (3 463, 2 308, 4 108) 0.86

1000000 (546, 814, 981) (545, 813, 980) 0.58
10000000 (36, 194, 87) (35, 194, 86) 0.06

Table 12: The length of each axis, i.e. the number of subjects, verbs, and
objects, at different frequency cutoffs.

6.4.1 Experimental setting: the corpus and the similarity task

In our experiments, we took the occurrence counts of xsubject, verb5, di-
rect objecty triples from the automatically dependency-parsed (Nivre et
al. 2016) English corpus DepCC (Panchenko et al. 2018), irrespectively
of whether there were other arguments or adjuncts. Regarding empty
fillers, we investigated two alternatives: including them (represented by
a fixed string) or discarding them from our statistics. tensorly (Kos-
saifi et al. 2016) was used for CPD and (general and non-negative)
Tucker decomposition of tensors. For tensor population in COOrdinate
format, we use the sparse Python library.

Our quantitative tests are based on a classical similarity data-set
for English transitive verb structures (SVO triples) by Kartsaklis and
Sadrzadeh (2014, KS14). We discussed shortcomings of this task (Sec-
tion 4.2.9), we still assume it is sufficient for the present purposes. The
data-set contains triples with gold (human) similarity scores. We rep-
resent SVO triples by concatenating the corresponding subject, verb,
and object embedding vector and computed the Spearman correlation
between the cosine similarities of the (long) vectors in each pair with
the human scores.

Normalizing the vectors to unit length benefits some tasks: see Sec-
tions 4.1.6, 4.2.8.3 and 4.3.2 and especially our experiments in Sec-
tion 8.4.2. The intuition behind normalization is that vector length is
related to word frequency, and words with quite different frequency
may have similar meaning. Motivated by this, we also experimented
with normalizing the vectors. However, this did not lead to better re-
sults, similarly to Section 8.4.2.

5 Verb means, in Universal Dependencies terms, that the upos starts with VB.
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6.4.2 Quantitative results in transitive structure similarity

We populated tensors with the association measures introduced in Sec-
tion 6.2. The statistics were based on either including empty argument
fillers (i.e. treating all arguments “optional”) or excluding these occur-
rences. We took different cutoffs and computed non-negative or general
CPD or Tucker decompositions in different ranks. Out-of-vocabulary
words are represented by an all-0 vector. Table 12 shows the length of
each axis, i.e. the number of subjects, verbs, and objects, at different
frequency cutoffs. The last column shows what ratio of the SVO pairs
is intact in the sense that all the 2 ˆ 3 words are covered in the cor-
responding embedding. The reader may object that these cutoffs are
very strict restrictions, compared to word2vec-based models where a
few dozen occurrences result in perfectly usable representations. Nev-
ertheless, it has to be borne in mind that the original motivation for
using a cutoff in tensor decomposition is not to have enough samples,
but to fit in the memory.

Correlations we obtain in the subject-verb-object task are shown in
Table 13. The properties of the original sparse tensor (the association
measure, the option whether empty fillers are included, and the fre-
quency cutoff) are show on the left of the vertical line, while those of
the decompositions (non-negative or general CPD or Tucker decompo-
sitions, and the rank of the decomposition) are shown on the right. The
table shows, in addition to the best setting, each setting obtained by
changing one hyper-parameter. (E.g. the second and the third entries
differ from the best one only in the decompositions rank: the rank of
the second one is double of the best rank, while that of the third one is
the half of the best value.) The best result is obtained by non-negative
CPD. The horizontal lines shows where our best general Tucker, general
CPD, and non-negative Tucker decompositions – which will be shown
in separate tables, Tables 14 and 15, to keep this one manageable – end
up. In Tucker decompositions, we use the same rank among all axes.

We obtained the best correlation, 0.7359, from the decomposition of
a tensor populated with salience-weighted PMI values, including empty
fillers, and setting the frequency cutoff to 1 million, i.e. restricting the
axes of the tensor to the subjects, verbs, and objects that appear at least
1 million times. This best correlation was obtained with non-negative
CPD in rank 64. This correlation value is in the same range as the 0.76
Hashimoto et al. (2014) obtained with a much more complex system.
Hashimoto et al.’s system used to be the state of the art, when this
task was fashionable.

The table shows the correlation obtained by changing each (meta)-
parameter. While the results seem to be relatively robust with respect
to the decompositions rank, it may be interesting that when we con-
catenate the subject, the verb, and the object embedding vectors, 64
dimensional each, we get a vector in the famous range of a couple of
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assoc measure unfilled cutoff non-negative decomp algo rank corr

pmi-sali included 1 000 000 non-neg CPD 64 0.7359

pmi-sali included 1 000 000 non-neg CPD 128 0.7097
pmi included 1 000 000 non-neg CPD 64 0.6857

pmi-sali included 1 000 000 non-neg CPD 32 0.6773
pmi-sali included 300 000 non-neg CPD 64 0.6630

npmi included 1 000 000 non-neg CPD 64 0.6602

dice-sali included 1 000 000 non-neg CPD 64 0.4709
pmi-sali excluded 1 000 000 non-neg CPD 64 0.4578
pmi-sali included 1 000 000 general CPD 64 0.4560

ldice included 1 000 000 non-neg CPD 64 0.4409
log-freq included 1 000 000 non-neg CPD 64 0.4322
iact-sali included 1 000 000 non-neg CPD 64 0.4112

niact included 1 000 000 non-neg CPD 64 0.4068
pmi-sali included 3 000 000 non-neg CPD 64 0.3936

iact included 1 000 000 non-neg CPD 64 0.3248
pmi-sali included 1 000 000 non-neg tucker 64 0.2989

Table 13: Quantitative results: correlations in the subject-verb-object triple
similarity task (Kartsaklis and Sadrzadeh 2014) obtained with word
embeddings of tensor decompositions.

hundreds of dimensions, which proved to work well in many different
scenarios like LSA and static word embeddings.

As for our association measures, different weighted variants (salience,
vanilla, or normalization) of PMI work the best, followed by log-Dice
and log frequency. Variants of interaction information performs the
worst.

The inclusion of empty fillers, the frequency cutoff, and the decom-
position rank are all related to the size of the tensors. While we have
already seen that the decomposition rank does not have a great influ-
ence on the results, if we exclude empty fillers, a more generous fre-
quency cutoff may theoretically lead to better results than if we change
only one of these two parameters. It turns out, that we can indeed
get relatively good result (0.694181) this way, but with general Tucker
decomposition (instead of non-negative CPD) and log-Dice (instead of
salience-weighted). The cutoff is 1 million.

Non-negative decomposition is advantageous from the interpretational
point of view, because in our experiments, they resulted in embedding
matrices which are sparse in the broad sense that most coordinates are
low. Figure 16 shows a histogram of the matrix elements. Note that
the vertical axis, which corresponds to the histogram count in each
bin, is logarithmic. The figure suggests that frequency decreases faster
than exponentially as larger weights are considered. The good perfor-
mance of non-negative CPD suggests that non-negativity introduces
meaningful structure. Sparsity raises the hope that coordinates are in-
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Figure 16: The histogram of the verb embedding matrix elements. Note that
the vertical axis, which corresponds to the histogram count in each
bin, is logarithmic. The figure suggests that frequency decreases
faster than exponentially as larger weights are considered.

terpretable, i.e. they correspond to concepts or properties. We will see
in Section 6.4.3 that they really do.

CPD has the advantage that it maps the modes in the same space.
In our case, this is the most interesting for subjects and objects: we
can compare the same noun in the two roles. We return to this in
Section 6.4.4.

While our best results have been obtained with non-negative CPD,
we discuss general Tucker and CPD and non-negative Tucker as well.
Results with general decompositions and non-negative Tucker are shown
in Table 14 and Table 15, respectively. General Tucker and CPD and
non-negative Tucker all prefer normalized PMI as the association mea-
sure, disfavor interaction information, and results with log frequency
and log Dice vary. General and non-negative Tucker obtains the best
results with the same rank as non-negative CPD, and the two non-
negative decomposition algorithms also share the value for a best cut-
off. It is inconclusive whether it is advantageous to include occurrences
with unfilled arguments in our statistics.

6.4.3 Qualitative analysis of latent dimensions

Now we investigate the latent dimensions obtained by tensor decomposi-
tion. We experimented with non-negative and general CPD and Tucker
decomposition with the respective hyper-parameters that reached the
best result in the SVO-similarity task.

The latent dimensions are shown in Tables 16 to 18. (Dimensions
with general Tucker are degenerate, and they are omitted to save space.)
Each line corresponds to a latent dimension. Dimensions are illustrated
by the words with the greatest coordinates in the dimension. Blocks rep-
resent dimension triples. H denotes that the corresponding grammati-
cal function is unfilled. Some latent dimensions, like the first one in our
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assoc measure unfilled cutoff rank correlation

npmi included 100 000 64 0.7191
pmi-sali included 100 000 64 0.7049
log-freq included 100 000 64 0.6883

pmi included 100 000 64 0.6759
npmi included 30 000 64 0.6729
ldice included 100 000 64 0.6685

ldice-sali included 100 000 64 0.6666
npmi included 300 000 64 0.6598
npmi included 100 000 128 0.6540
npmi included 100 000 32 0.6042
npmi excluded 100 000 64 0.5207

iact-sali included 100 000 64 0.5059
niact included 100 000 64 0.4632
iact included 100 000 64 0.4316

assoc measure unfilled cutoff rank correlation

npmi excluded 300 000 256 0.6383
pmi-sali excluded 300 000 256 0.6166

pmi excluded 300 000 256 0.5811
npmi excluded 1 000 000 256 0.5754
npmi excluded 100 000 256 0.5713
npmi excluded 300 000 512 0.5677
npmi excluded 300 000 128 0.5290
npmi excluded 30 000 256 0.5239
npmi included 300 000 256 0.5070

log-freq excluded 300 000 256 0.2465
ldice excluded 300 000 256 0.2093

iact-sali excluded 300 000 256 0.1280
niact excluded 300 000 256 0.0726
iact excluded 300 000 256 0.0615

Table 14: Results with general Tucker (top) and general CPD (bottom).
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assoc measure unfilled cutoff rank correlation

npmi excluded 1 000 000 64 0.5186
npmi excluded 1 000 000 128 0.5102
npmi excluded 300 000 64 0.4814
pmi excluded 1 000 000 64 0.4563

pmi-sali excluded 1 000 000 64 0.4387
npmi excluded 1 000 000 32 0.3753
npmi excluded 3000 000 64 0.3366
npmi optional 1 000 000 64 0.2889
iact excluded 1 000 000 64 0.0989

log-freq excluded 1 000 000 64 0.0763
ldice excluded 1 000 000 64 0.0698

ldice-sali excluded 1 000 000 64 0.0619
niact excluded 1 000 000 64 0.0454

iact-sali excluded 1 000 000 64 0.0064

Table 15: Results with non-negative Tucker.

non-negative CPD are dominated by (the empty filler and) pronouns.
In these cases we emphasize the first contentful filler. -rrb- stands
for right round brackets, and its appearance may be an artifact of the
corpus (i.e. parsing errors).

In the case of CPD, the dimensions are enumerated in the order as
returned by the algorithm. With Tucker, the values gijk in the core
tensor G represent the interaction between the ith latent dimension
for subjects, the jth one for verbs, and the kth one for objects. We
sorted the triples of SVO latent dimensions in our best non-negative
and general Tucker decomposition by this interaction strength. The
index of each dimension, as returned by the algorithm, is also shown
in the table. E.g. the first block in non-negative Tucker shows that the
strongest interaction is between the 5th latent dimension of subjects,
the 10th one for verbs, and the 7th one for objects. Note that in the
non-negative case, gijk ě 0, so we do not have to take the absolute
value. Dimensions obtained with the two non-negative algorithms seem
semantically interpretable, while those from general decomposition are
less convincing.

6.4.4 Comparing subject and object vectors

Tensor decomposition can shed light on how differently nouns behave
as subjects and as objects. This question is related to symmetric fac-
torization (Bailey, Meyer, and Aeron 2018), which imposes symmetry
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dim words

0 H, that, which, it, story, he, they, who, what, one, she, work, event, -rrb-, this, you. . .
0 catch, attract, draw, pay, deserve, capture, gain, grab, get, receive, focus, require,. . .
0 attention, eye, crowd, interest, fire, visitor, audience, conclusion, breath, people, . . .
1 H, who, we, he, I, you, she, they, -rrb-, student, member, people, group, Center, parti. . .
1 attend, host, hold, organize, schedule, enjoy, join, arrange, cancel, miss, watch, pla. . .
1 meeting, event, conference, session, party, show, school, class, dinner, church, tour,. . .
2 that, which, it, this, H, change, factor, they, choice, condition, decision, issue, -rr. . .
2 affect, impact, influence, improve, hurt, reflect, benefit, change, damage, enhance, a. . .
2 ability, performance, health, outcome, life, quality, result, business, development, e. . .
3 file, which, page, site, that, it, book, report, section, document, collection, websit. . .
3 contain, include, provide, have, list, feature, display, show, comprise, present, give. . .
3 information, link, material, number, list, datum, name, content, statement, reference,. . .

Table 16: Latent dimensions with Non-negative CPD

dim words

5 court, Court, judge, panel, official, we, he, it, authority, government, -rrb-, Board,. . .
10 reject, dismiss, deny, grant, hear, consider, decide, accept, throw, resolve, sustain,. . .
7 motion, appeal, claim, request, argument, case, challenge, application, complaint, att. . .
4 revenue, sale, share, price, stock, production, cost, rate, order, volume, number, fut. . .
3 rise, fall, increase, jump, drop, decline, climb, decrease, grow, gain, slip, represen. . .
1 percent, %, $, increase, point, most, rate, level, average, less, matter, value, cost,. . .
11 hotel, property, room, restaurant, home, Center, house, location, facility, House, are. . .
8 offer, boast, feature, have, provide, include, enjoy, serve, accommodate, occupy, prep. . .
9 room, pool, accommodation, access, facility, restaurant, variety, service, view, range. . .
6 board, Council, Board, Commission, Committee, member, committee, Congress, Court, cour. . .
2 approve, adopt, reject, pass, consider, review, endorse, propose, award, recommend, ac. . .
2 resolution, request, budget, plan, proposal, contract, change, application, project, i. . .

Table 17: Latent dimensions with Non-negative Tucker

dim words

0 Israel, group, government, Foundation, Association, company, -rrb-, military, army, Cl. . .
0 launch, wage, suspend, mount, begin, run, fund, organize, sponsor, administer, carry, . . .
0 campaign, attack, program, initiative, operation, strike, programme, website, effort, . . .
1 user, you, application, customer, developer, visitor, client, processor, device, User,. . .
1 access, select, specify, upload, view, enter, edit, browse, click, create, retrieve, m. . .
1 file, datum, content, document, page, parameter, site, folder, node, Internet, informa. . .
2 device, assembly, means, structure, system, element, plate, section, interface, unit, . . .
2 comprise, include, contain, have, utilize, employ, represent, say, mean, control, enab. . .
2 layer, element, device, tube, housing, spring, electrode, pump, plate, container, memb. . .
3 attorney, plaintiff, defendant, party, respondent, prosecutor, State, lawyer, governme. . .
3 file, receive, oppose, make, give, present, withdraw, handle, publish, drop, provide, . . .
3 motion, notice, petition, appeal, response, answer, objection, charge, request, submis. . .

Table 18: Latent dimensions with General CPD
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constraints between the embeddings of the same entities in different
modes (in our case, between the embeddings of the same noun as a
subject or an object). Our approach is complementary, based on that
CPD maps nouns as subjects and objects in the same space.

In our experiments, we consider (non-negative) CPD decomposition
with the hyper-parameters that proved best in English SVO-similarity.
We computed the (unnormalized) dot product similarity between the
subject and object vector of each noun, and sorted all the nouns by
this similarity. The largest distance is found with H, he, she, they,
I, device, system, that, you, it. . . , while the most symmetric nouns
are doubt, reality, future, same, hope, feeling, mine, reason, consumer,
plenty. . . A possible explanation is that the former lemmas, especially
personal pronouns (or their inflected forms), are arguably much more
frequent in agentive roles than other nouns, while they are infrequent
in patient roles. Words in the second group can be framed in language
both as animate and as inanimate. Future or hope are not alive in the
biological sense, but they are often attributed agentive roles (what can
be called a metaphorical use of language, but being metaphorical does
not mean that the usage is peripheral (Recski 2016b, Section 3.2)).

6.5 conclusion of the main experiments

Now we can answer the questions raised in Section 6.1:

1. Weighted variants of positive pointwise mutual information proved
better than the considered alternatives in modeling subject-verb-
object structure similarity.

2. It does not matter whether we include occurrences with unfilled
arguments in our statistics. Our best results were obtained with
non-negative CPD.

3. The best frequency cutoff and the decomposition rank is the same
for the two non-negative decomposition algorithms, which raises
the hope that these hyper-parameters of non-negative CPD can
be fine-tuned based on the much faster non-negative Tucker.

4 and 5 Our experiments provided lexically interpretable latent dimen-
sions, and our experiments with non-negative CPD suggest that
the difference between subject and object embeddings can be re-
lated to animacy.

6.6 follow-up

In this section, we report experiments, which did not appear in Makrai
(2022).
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# verbs verbs

702 have, do, get, go, take, think, know, want, need, give, look, work, provide, try, . . .

131 live, talk, stand, die, walk, wait, sit, stay, wonder, care, arrive, fly, gon, sleep, . . .
86 kill, catch, trust, bear, email, marry, fuck, date, judge, bless, honor, forgive, beg,. . .
85 add, eat, produce, deliver, prepare, drink, spread, cook, burn, taste, wash, supply, . . .
80 use, develop, manage, perform, complete, replace, install, connect, test, conduct, . . .
80 let, reach, hit, cost, exceed, rate, approach, /, -lsb-_VBD, rank, -lsb-_VB, \, -lsb-_. . .
79 put, break, pull, throw, push, lay, stick, grab, touch, press, suck, kick, shake, . . .
77 identify, commit, defend, repeat, expose, separate, dig, heal, dress, distinguish, . . .
76 send, check, view, click, display, generate, update, access, search, store, delete, . . .
65 leave, enter, visit, fill, explore, ride, clean, cross, surround, locate, clear, rent,. . .
59 be, come, start, happen, seem, begin, continue, appear, lead, end, occur, prove, . . .
58 help, keep, bring, remind, hurt, strike, worry, blow, inspire, bother, surprise, suit,. . .
57 tell, ask, call, thank, please, join, contact, become, assist, hire, name, engage, . . .
51 pay, spend, save, raise, determine, compare, charge, measure, adjust, predict, invest,. . .
46 make, see, find, love, like, hear, enjoy, remember, miss, guess, recommend, notice, . . .
43 understand, discover, recognize, examine, evaluate, investigate, acknowledge, assess, . . .
43 face, experience, address, fix, handle, suffer, solve, celebrate, resolve, mark, . . .
39 receive, win, lose, earn, gain, extend, deserve, capture, retain, lack, exercise, . . .
37 plan, fail, focus, vote, act, deal, attempt, rely, struggle, participate, benefit, . . .

Table 19: Verb clusters obtained from our verb embedding vectors in an un-
supervised fashion. The smallest cluster is omitted to save space.

6.6.1 Clustering verb vectors

Semantic classes of verbs like those in VerbNet (Section 2.4.5) may be
induced by clustering verb embedding vectors. If clusters obtained in
unsupervised fashion correspond to gold verb classes, ambiguous verbs
like play mentioned in Section 6.1 may be detected as outliers from the
clusters, as their uses are composed of occurrences corresponding to
different clusters.

Our method for obtaining verb clusters consists of mapping verb
embedding vectors to a lower dimensional space with UMAP (McInnes
et al. 2018) and clustering them with HDBScan (McInnes, Healy, and
Astels 2017), which is a hierarchical, density based clustering algorithm.
Dimensionality reduction is needed because density makes little sense in
hundreds of dimensions. Our choices of UMAP meta parameters are the
following: We map verb embedding vectors to 16 or 32 dimensions (fine-
tuned in a comparison to VerbNet, see later). In HDBScan, we set the
number of neighbors to 30 and the minimum distance to 0, following the
recommendations at readthedocs6. The metric in the ambient space
(i.e. the original, high-dimensional one) is cosine. Minimum cluster size
is 15 or 5, and the related parameter of min_samples is 5.

We compare non-negative and general CPD and Tucker decompo-
sitions. The parameters of the original tensor and its decompositions
are set to the value with the best score in the SVO-similarity task. We

6 https://umap-learn.readthedocs.io/en/latest/clustering.html#
umap-enhanced-clustering
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preverb verb args gloss

H bíz(ik) NOM -bAn ‘in’ trust sth
(rá) ‘onto’ bíz NOM ACC -rA ‘onto’ entrust sg to sy
meg perfect bíz(ik) NOM -bAn ‘in’ trust sy
meg perfect bíz NOM ACC INS entrust sy with sg
el ‘away’ bíz(za) NOM self-ACC get conceited

Table 20: Argument structure variants of the Hungarian verb bíz(ik) based on
Szécsényi (2019).

set one hyper-parameter of UMAP and HDBScan each, namely the di-
mension we map to and minimum cluster size, based on comparison to
VerbNet classes.

In these computations we take VerbNet from the nltk.corpus pack-
age. In many cases, there are more class IDs associated to a verb. We
take the first one, as returned by the corresponding function. Out-
of-vocabulary verbs are treated as a separate class. We compare our
clustering to VerbNet classes with adjusted rand score in scikit-learn
(Pedregosa et al. 2011). We get the greatest score with non-negative
Tucker (embeddings mapped to 16 dimensions, and minimum cluster
size set to 15).

Table 19 shows the greatest clusters of English verbs. The greatest
cluster, separated by a line in the table, is the one called -1 in HDBScan.
It contains points that “fall out” in the hierarchy as members of very
small would-be clusters. The algorithm considers them outliers7. In
our case, it seems that they are general verbs, especially those that
we find in light verb constructions. The remaining clusters seem to be
semantically coherent.

6.6.2 Hungarian data and preverbs

Finally, we mention pilot experiments in Hungarian, where two phe-
nomena interfere with verb agument structure and ambiguity. Table 20,
based on Szécsényi (2019), illustrates these with the verb bíz(ik) ‘trust’.
We can see that preverbs (verb particles, which can modify both the
aspect and the meaning of a verb, Kalivoda (2021)) interfere with verb
meaning, and the apparently incidental appearance of the suffix -ik
(which can be argued to be related to unaccusativity) increases data
sparsity. In our preliminary experiments, we built a subject ˆ preverb
ˆ verb ˆ object tensor from verb constructions in the data-base of
the Mazsola verb argument browser (Sass 2015). In this earlier, unpub-
lished phase of the project, we used CPD decomposition, solved by the
Orth-ALS (Sharan and Valiant 2017) algorithm. For the future, we sug-
gest introducing a mode for -ik. The “vocabulary” of this axis would

7 See https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html#
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consist of only two choices: with or without -ik. The hypothesis is that
this tensor would profit from denser data representation.

6.7 conclusion

Tensor decompositions offers a direction orthogonal to the mainstream
(Rogers, Kovaleva, and Rumshisky 2020) in the data-driven understand-
ing of linguistic structure. We may want to learn semantic verb classes
in an unsupervised fashion. If verb embedding vectors represent in-
formation like Levin’s (1993) verb classes, ambiguous verbs could be
identified in the form of outliers in the clustering. This line of research
can be extended cross-lingually (Vulić, Mrkšić, and Korhonen 2017;
Majewska et al. 2018; Sun et al. 2010).

We have generalized association measures to the higher-order case,
and we show in the tensor decomposition modeling of English SVO
triples that some are better than the existing alternatives. By exploring
the hyper-parameters of the experiment, we have shown that the best
better results (non-negative CPD and general Tucker) are obtained
if include the occurrences when one of the arguments (typically the
subject) is unfilled. The experiments gave lexically meaningful latent
dimensions, and the non-negative CPD experiments qualitatively sug-
gest that the difference between subject and object embeddings can be
related to agentivity.

These experiments evidence that intransitive uses of verbs can be
represent by the same item as their transitive use. This finely fits to our
monosemic method in the previous chapter in the symbolic framework.
In the remaining two chapters of the thesis, we investigate whether
relations which intuitively hold between concepts can also be detected
in data-driven distributional representations, more specifically, static
word embeddings (word representations obtained with shallow neural
networks).
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Nekem szavakról szavak jutnak az eszembe és viszont.
‘Words remind me of words and vice versa’

— Péter Esterházy
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The last two chapters in this thesis investigate how relations between
words are represented in word embeddings. While classical lexical re-
lations, such as hypernymy, antonymy, and causality, have long been
studied in semantic networks, we expand our exploration to translation
and word analogy as well.

Symbolic approaches rely on explicit, structured representations of
relations. On the other hand, distributed word embeddings are neu-
ral network-based models that learn continuous vector representations
from large corpora of text. These embeddings are capable of capturing
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intricate semantic patterns, thereby offering a data-driven perspective
on word relations. By systematically investigating these diverse word re-
lations, we aim to gain a comprehensive understanding of how various
types of semantic information are embedded within word representa-
tions. Our analysis seeks to shed light on the strengths and limitations
of word embeddings by showing to what extent they represent different
lexical relations in this broadened sense.

We start with lexical relations proper: hypernymy (what basic cate-
gory a word belongs to, e.g. dogs are animals, Section 7.1), antonymy
(opposite meaning, Section 7.2), and causality (Section 7.3). Then we
broaden our focus to word analogies and translation (Sections 7.4 and 7.5).

This line of research is also related to semantic networks. In 4lang,
the semantic networks we introduced in Chapter 3, genus is formalized
in by 0-edges like dog 0

Ñ animal, but much information is included
in binary relations like cow 1

Ð make 2
Ñ milk. The utility of word def-

initions depends on whether these binary relations capture the right
pieces of information. Word embeddings can provide complementary
information on whether a putative relation really exists.

As we already discussed in Chapter 4, the empirical support for both
the syntactic properties and the meaning of a word form consists in the
probabilities with that the word appears in different contexts. Contexts
can be documents as in latent semantic analysis (LSA, Section 4.1.3)
or other words appearing within a limited distance (window) from the
word in focus. In these approaches, the corpus is represented by a matrix
with rows corresponding to words and columns to contexts, with each
cell containing the conditional probability of the given word in the
given context. The matrix has to undergo some regularization to avoid
overfitting. In LSA this is achieved by approximating the matrix as the
product of special matrices.

In the last decade, deep neural networks have taken over the state of
the art in many areas of artificial intelligence including vision (Krizhevsky
and Sutskever 2012), speech processing (Dahl et al. 2011), and language
(Peters et al. 2018), reducing the error in the respective tasks by a re-
spectable factor. In language, the first wave of the revolution was word
embeddings, word models learned by neural networks, which became
very popular since Mikolov, Chen, et al. (2013) and Mikolov, Sutskever,
et al. (2013). These more accurate variants of earlier VSMs map “sim-
ilar” words to similar vectors in space of some hundred dimensions.
Word similarity covers that in syntactic and semantic respect, and vec-
tor similarity is mostly measured by cosine similarity. In this chapter,
we bulid on the finding of (Mikolov, Yih, and Zweig 2013) that em-
beddings reflect analogical relations – a.k.a. relational similarity (Levy
and Goldberg 2014b) – like

woman ´ man « queen ´ king
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The first three sections investigate individual lexical relations with
the tools of distributional modeling: hypernymy with sparse coding,
antonymy with an embedding obtained by spectral clustering, and the
geometry of causality. Our question remains whether relations which
intuitively hold between concepts can also be detected in data-driven
distributional representations (in the most cases, static word embed-
dings).

The main protagonist of Section 7.2 is the definition graph, which
we already used for the analysis of the importance of each word as they
define each other (Section 3.3). Theoretically, the same graph plays an
important role in activation spreading, but this thesis does not make
claims about the implementations of this process (the interested reader
should consult Nemeskey et al. (2013)). In the follow section, it plays
a third role: Makrai, Nemeskey, and Kornai (2013) used it to com-
pute a word embedding, which we compared to some other embeddings
which were famous at the time from the aspect of antonymy: we tested
which subtype of antonymy is represented in each word embedding.
We compared the embedding obtained from the definition graph to
two word embeddings which were standard before the word2vec revo-
lution: the Hierarchical Log-Bilinear Model (Section 4.2.2) and Senna
(Section 4.2.3). Our embeddings turned out to be more similar in this re-
spect to variants of HLBL, (Mnih and G. E. Hinton 2009) than Senna
is – which suggests that our embedding was sound.

7.1 hypernymy as interaction of sparse attributes

The distributional hypothesis (Z. S. Harris 1954) says that a word can
be described (in more computational terms, represented) based on how
frequently it cooccurs with every other word. More specifically, the
distributional inclusion hypothesis (Weeds and Weir 2003; Chang et
al. 2018) says that hypernymy can be modeled based on that if animal is
a hypernym of dog, animal will be grammatical in every context where
dog is. It is less clear whether animal will appear in every context at
least as frequently as dog does. Now we test this method for hypernym
extraction with the tools of sparse coding.

Sparse vectors are vectors most of whose coordinates are zero, and
non-zero coordinates ideally correspond to interpretable properties. It
varies with models whether interpretability follows from the construc-
tion of the vectors, or the interpretation needs to be inferred from
some latent structure. Even in the latter case, sparse representations
tend to be more interpretable than less restricted ones. As far as sparse
attributes (i.e. non-zero coordinates in sparse word representations) cor-
respond to contexts, if follows from the distributional inclusion hypoth-
esis discussed above that hypernymy should boil down to pointwise
comparison. ‘Dog’ is an ‘animal’ if and only if it has all the properties
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animals have, i.e. if all the non-zero coordinates of ‘animal’ are also
non-zero for ‘dog’.

This section originally appeared as Berend, Makrai, and Földiák
(2018)1, and describes 300-sparsans’ participation in SemEval-2018 Task
9: Hypernym Discovery, with a system based on sparse coding and a
formal concept hierarchy obtained from word embeddings. Our system
took first place in subtasks (1B) Italian (all and entities), (1C) Spanish
entities, and (2B) music entities.

7.1.1 Introduction

Natural language phenomena are extremely sparse by their nature,
whereas continuous word embeddings employ dense representations of
words. Turning these dense representations into a much sparser form
can help in focusing on the most salient parts of word representations
(Faruqui et al. 2015; Berend 2017; Subramanian et al. 2018).

Sparsity-based techniques often involve the coding of a large number
of signals over the same dictionary (Rubinstein, Zibulevsky, and Elad
2008). Sparse, over-complete representations have been motivated in
various domains as a way to increase separability, interpretability (Ol-
shausen and Field 1997), and stability with respect to noise.

Non-negativity has also been argued to be advantageous for inter-
pretability (Faruqui et al. 2015; Fyshe et al. 2015; Arora et al. 2016).
As Subramanian et al. (2018) illustrates this in the language domain,
where sparse features can be interpreted as lexical attributes, “to de-
scribe the city of Pittsburgh, one might talk about phenomena typical
of the city, like erratic weather and large bridges. It is redundant and
inefficient to list negative properties, like the absence of the Statue of
Liberty”.2 Prior to our work, Berend (2018) utilized non-negative sparse
coding for word translation by training sparse word vectors for the two
languages such that coding bases correspond to each other.

Here we apply sparse feature pairs to hypernym extraction. The role
of an attribute pair xi, jy P ϕpqq ˆ ϕphq (where q is the query word, h

is the hypernym candidate, and ϕpwq is the set of indices of non-zero
components in the sparse representations of w) is similar to interaction
terms in regression, what we will detail in Section 7.1.2.

Sparse representation is related to hypernymy in various natural
ways. One of them is through Formal concept Analysis (FCA). Cimiano,
Hotho, and Staab (2005) already strove to acquire concept hierarchies
from a text corpus with the tools of FCA. Our submissions experiment

1 Berend and Makrai worked together (both coding and writing the paper), but
Berend’s contribution is larger, say 2:1. Makrai created the poster and presented
it. Földiák’s contribution was focused on the FCA idea.

2 These representations are supposed to specify inherited default properties dierctly.
E.g. the representation of a sparrow will contain, besides (being a) bird, (the capa-
bility to) fly. Exceptional subordinate concepts like penguins and ostriches will of
course lack (the ability to) fly.
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with an FCA tool by Endres, Földiák, and Priss (2010). We return in
the next subsection to a description of formal concept lattices, and how
hypernyms can be found in them.

Another natural formulation is related to hierarchical sparse coding
(Zhao, Rocha, and Yu 2009), where trees describe the order in which
variables “enter the model” (i.e. take non-zero values). A node may
take a non-zero value only if its ancestors also do: the dimensions that
correspond to top level nodes should focus on “general” meaning com-
ponents that are present in most words. Yogatama et al. (2015) offer
an implementation that is efficient for gigaword corpora. Exploiting the
correspondence between the variable tree and the hypernym hierarchy
offers itself as a natural choice.

The task (Camacho-Collados et al. 2018) evaluated systems on their
ability to extract hypernyms for query words in five subtasks (three
languages, English, Italian, and Spanish, and two domains, medical
and music). Queries were categorized as either concepts or as entities.
Results were reported for each category separately as well as in com-
bined form, thus resulting in 5 ˆ 3 combinations. Our system took first
place in subtasks (1B) Italian (all and entities), (1C) Spanish enti-
ties, and (2B) music entities. Detailed results for our system appear in
Section 7.1.3. Our source code is available online3.

7.1.1.1 Formal concept analysis

Formal concept Analysis (FCA) is the mathematization of concept and
conceptual hierarchy (Ganter and Wille 2012; Endres, Földiák, and
Priss 2010). In FCA terminology, a context is a set of objects O, a set
of attributes A, and a binary incidence relation I Ď O ˆ A between
members of O and A. In our application, I associates a word w P O
to the indices of its non-zero sparse coding coordinates i P A. FCA
finds formal concepts, pairs xO, Ay of object sets and attribute sets
(O Ď O, A Ď A) such that A consists of the shared attributes of objects
in O (and no more), and O consists of the objects in O that have all
the attributes in A (and no more). (There is a closure-operator related
to each FCA context, for which O and A are closed sets if and only if
xO, Ay is a concept.) O is called the extent and A is the intent of the
concept.4

3 https://github.com/begab/fca_hypernymy
4 Those who are familiar with closure operators may note the following. We can define

the prime operator 1 both for objects and attributes in a dual way: O 1 is defined as
the set ta P A | @o P O, xo, ay P Iu, i.e. that of the shared attributes of objects in O,
and A 1 as to P O | @a P A, xo, ay P Iu i.e. the set of the objects in O that have all
the attributes in A. Then the double application of 1 is a closure operation both on
objects and attributes: with notation S “ S 2, for either S Ď O or S Ď A, we have
S Ď S and S “ S, and the following conditions are equivalent for all O Ď O and
A Ď A:

• xO, Ay is a concept
• O is a closed set with respect to O ÞÑ O, and A “ O 1
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There is an order defined in the context: if xA1, B1y and xA2, B2y are
concepts in C, xA1, B1y is a subconcept of xA2, B2y if A1 Ď A2 which is
equivalent to B1 Ě B2. The concept order forms a so called complete
lattice. The smallest concept whose extent contains a word is said to
introduce the object. If npwq denotes the node in the concept lattice
that introduces w, we expect that h will be a hypernym of q if and only
if npqq ď nphq.

The closedness of extents and intents has an important structural
consequence. Adding attributes to A (e.g. responses of additional neu-
rons) will very probably grow the model. However, the original concepts
will be embedded as a substructure in the larger lattice, with their or-
dering relationships preserved.

7.1.2 Our approach

Here we describe our system that is based on sparse non-negative word
representations and FCA besides more traditional features.

We use the popular skip-gram (SG) approach (Mikolov, Chen, et
al. 2013) to train d “ 100 dimensional dense distributed word represen-
tations for each subcorpus. The word embeddings are trained over the
text corpora provided by the shared task organizers with the default
training parameters of word2vec (w2v), i.e. a window size of 10 and 25
negative samples for each positive context.

We derived multi-token units by relying on the word2phrase soft-
ware accompanying the w2v toolkit. An additional source for identify-
ing multi-token units in the training corpora was the list of potential
hypernyms released for each subtask by the organizers.

Given the dense embedding matrix Wx P Rdˆ|Vx|, for some subcorpus
of the shared task x P t1A, 1B, 1C, 2A, 2Bu, where |Vx| is the size of
the vocabulary and d is set to 100. As a subsequent step, we turn Wx

into sparse word vectors akin to Berend (2017) by solving for

min
DPC,αPRě0

∥Dα ´ Wx∥F ` λ∥α∥1, (4)

where C refers to the convex set of Rdˆk matrices consisting of d-
dimensional column vectors with norm at most 1, and α contains the
sparse coefficients for the elements of the vocabulary. The only differ-
ence compared to Berend (2017) is that here we ensure a non-negativity
constraint over the elements of α.

For the elements of the vocabulary we ran the formal concept analysis
tool of Endres, Földiák, and Priss (2010)5. In order to keep the size
of the DAG outputted by the FCA algorithm manageable, we only
included the query words and those hypernyms in the analysis which

• A is a closed set with respect to A ÞÑ A, and O “ A 1.

5 www.compsens.uni-tuebingen.de/pub/pages/personals/3/concepts.py
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Core feature name

cosine q⊺h
∥q∥2∥h∥2

difference ∥q ´ h∥2

normRatio ∥q∥2

∥h∥2

queryBeginsWith Qr0s “ h

queryEndsWith Qr´1s “ h

hasCommonWord Q X H ‰ H

sameFirstWord Qr0s “ Hr0s

sameLastWord Qr´1s “ Hr´1s

logFrequencyRatio log10
countpqq

countphq

isFrequentHypernym c P MF50pq.typeq

sameConcept nphq “ npqq

parent npqq ă nphq

child nphq ă npqq

overlappingBasis ϕpqq X ϕphq ‰ H

sparseDifferenceqzh |ϕpqq ´ ϕphq|
sparseDifferencehzq |ϕphq ´ ϕpqq|
attributePairij xi, jy P ϕpqq ˆ ϕphq

Table 21: The features employed in our classifier. MF50pq.typeq refers to the
set of top-50 most f requent hypernyms for a given query type. At
submission time, this feature did not work properly.

occur in the training dataset for the corpora. As we will see in the next
subsection, this restriction turns out to be very useful.

Next, we determine a handful of features for a pair of expressions
pq, hq consisting of a query q and its potential hypernym h. Table 21
provides an overview of the features employed for a pair pq, hq. We
denote with q and h the 100-dimensional dense vectorial representa-
tions of q and h. Additionally, we denote with Q and H the sequence
of tokens constituting the query and hypernym phrases. Finally, we
refer to the set of basis vectors (in the FCA terminology, attributes)
which are assigned non-zero weights in the reconstruction of the vecto-
rial representation of q and h as ϕpqq and ϕphq. It is also considered as a
feature (isFrequentHypernym) whether a particular candidate hyper-
nym h belongs to the top-50 most frequent hypernyms for the category
of q (i.e. concept or entity). The fact that this feature is useful signals
that the test dataset is not ideal (recall Section 4.2.12). Modeling the
two categories separately played an important role in the success of our
systems.

184



7.1 hypernymy in sparse representations

Three additional features are defined for incorporating the concept
lattice output by FCA. Denoting with npwq the concept that introduces
w, i.e. the most specific location within the DAG for w, our features
indicate whether npqq (1) coincides with that of h, (2) is the parent
(immediate successor) for that of h, or (3) is the child (immediate pre-
dictions) for that of h. Parents, and even the inverse relation, proved to
be more predictive than the conceptually motivated q ď h. In Table 21,
n1 ă n2 denotes that n1 is an immediate predecessor of n2. We will see
in post-evaluation ablation experiments, where we refer to the above
three features as the FCA features, that they were not useful in our
submissions.

The attributePairij features above, our most important features,
are indicator features for every possible interaction term between the
sparse coefficients in α. That means that for a pair of words pq, hq

we defined ϕpqq ˆ ϕphq, i.e. candidates get assigned with the Cartesian
product derived from the indices of the non-zero coefficients in α. Note
that this feature template induces k2 features, with k being the number
of basis vectors introduced in the dictionary matrix D according to
Eq. 4.

In order to rank potential hypernym candidates over the test set we
trained a logistic regression classifier for concepts and entities utilizing
the sklearn package (Pedregosa et al. 2011)6 with the regularization
parameter defaulting to 1.0.

For each appropriate pq, hq pair of words for which h is a hypernym
of q, we generated a number of negative samples pq, h 1q (Section 4.2.3)),
such that the training data does not include h 1 as a valid hypernym
for q. For a given query q, either concept or entity, we sampled h 1

from those hypernyms which were included as a valid hypernym in the
training data with respect to some q 1 ‰ q query phrase.

When making predictions for the hypernyms of a query, we relied
on our query type sensitive logistic regression model to determine the
ranking of the hypernym candidates. In our official submission, the
ranking was restricted to the phrases which appeared in the training
data as a proper hypernym at least once.

After the appropriate model ranked the hypernym candidates, we se-
lected the top 15 ranked candidates and applied a post-ranking heuristic
over them, i.e. reordered them according to their background frequency
from the training corpus. Our assumption here is that more frequent
words tend to refer to more general concepts and more general hyper-
nymy relations potentially tend to be more easily detectable than more
special ones.

6 scikit-learn.org
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without attribute pairs with attribute pairs

MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

1A offic 8.6 18.0 13.0 8.9 8.2 7.9 8.9 19.4 14.9 9.3 8.6 8.1
1A reprod 9.07 18.7 13.5 9.4 8.8 8.5 9.2 19.9 14.9 9.5 8.7 8.4
1B offic 9.4 19.9 13.2 9.5 9.3 8.8 12.1 25.1 17.6 12.9 11.7 11.2
1B reprod 9.2 19.5 12.8 8.9 8.9 8.7 12.8 26.7 18.9 13.6 12.4 11.9
1C offic 12.5 25.9 16.6 13.6 12.6 11.5 17.9 37.6 27.8 19.7 17.1 16.3
1C reprod 12.9 26.0 16.2 13.9 13.0 11.9 18.3 38.4 28.5 20.2 17.4 16.6
2A offic 15.0 32.2 24.8 17.7 15.8 11.6 20.8 40.6 31.6 23.5 21.4 17.1
2A reprod 15.1 32.4 24.4 18.0 16.2 11.8 21.5 43.7 35.6 25.3 21.8 17.0
2B offic 19.1 36.7 27.2 23.0 20.1 15.4 29.5 46.4 33.0 31.9 28.9 27.7
2B reprod 21.5 40.9 29.6 25.6 22.1 18.0 30.4 46.8 33.8 31.8 29.5 28.9

Table 22: Our submissions results: official and those that can be reproduced
with the code in the project repo (with the isFrequentHypernym
feature being turned off).

7.1.3 Results

7.1.3.1 Our submissions

Our submissions were based on k “ 200 dimensional sparse vectors
computed from unit-normed 100-dimensional dense vectors with λ “ .3.
The sum of the two dimensions d and k motivates our group name 300-
sparsans. For training the regression model with negative samples, 50
false hypernyms were sampled for each query q in the training dataset.
One of our submissions involved attribute pairs, the other not. Both
submissions used the conceptually motivated but practically harmful
FCA-based features.

Table 22 shows submission results. The figures that can be repro-
duced with the code in the project repo (reprod) is slightly different
from our official submissions (offic) for two reasons: because the im-
plementation of isFreqHyp contained a bug, and because of the natural
randomness in negative sampling. For reproducibility, we report result
without the isFreqHyp feature. The randomness introduced by nega-
tive sampling is now factored out by setting the random seed.

7.1.3.2 Query type sensitive baselining

Our submission with attribute pairs achieved first place in categories
(1B) Italian (all and entities), (1C) Spanish entities, and (2B) music
entities. This is in part due to our good choice of a fallback solution
in the case of OOV queries: we applied a category-sensitive baseline
returning the most frequent training hypernym in the corresponding
query type (concept or entity). Table 23 shows how frequently we had
to rely on this fallback, and Table 24 shows the corresponding pure
baseline results.
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7.1 hypernymy in sparse representations

Train Test

1A 975(4) 0.41% 1055(4) 0.38%
1B 709(1) 0.14% 767(2) 0.26%
1C 776(2) 0.26% 625(2) 0.32%
2A 442(58) 11.60% 433(67) 13.40%
2B 366(21) 5.43% 341(17) 4.75%

(a) concept

Train Test

1A 379(142) 27.26% 344(99) 22.35%
1B 249(41) 14.14% 205(26) 11.26%
1C 184(38) 17.12% 328(45) 12.06%
2A 0(0) — 0(0) —
2B 79(34) 30.09% 102(40) 28.17%

(b) entity

Table 23: Number of in-vocabulary (and out-of-vocabulary, OOV) queries per
query type. The ratio of the latter is also shown.

MAP MRR P@1 P@3 P@5 P@10

1A 9.8 22.6 19.8 10.0 9.0 8.6
1A 8.8 21.4 19.8 8.9 7.8 7.5

1B 8.9 21.2 17.1 9.1 8.3 7.9
1B 7.8 19.4 17.1 8.3 6.8 6.5

1C 16.4 33.3 24.6 17.5 16.1 14.9
1C 12.2 29.8 24.6 12.0 11.3 11.0

2A 29.0 35.9 32.6 34.3 34.2 21.7
2A 28.9 35.8 32.6 34.3 34.2 21.4

2B 40.2 58.8 50.6 44.6 40.3 35.5
2B 33.3 51.5 36.2 40.1 35.8 28.4

Table 24: Baseline results, most frequent training hypernyms. We (upper) con-
sider the most frequent hypernym in the given query type (concept
or entity). For comparison, we also show the MFH baseline provided
by the organizers (lower) that is based on the most frequent hyper-
nyms in general.
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candidate filtering off candidate filtering on

k ns MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

200 50 6.5 14.9 13.1 7.4 6.1 5.5 12.1 25.4 18.9 12.9 11.6 10.9
200 all 6.9 15.8 14.1 7.6 6.3 5.8 13.0 27.1 19.9 14.2 12.5 11.8

300 50 6.9 15.8 13.9 7.6 6.4 5.9 12.1 25.7 19.5 13.0 11.5 11.0
300 all 8.0 17.8 15.4 8.9 7.4 6.8 13.5 28.0 21.1 14.5 12.9 12.3

1000 50 9.0 20.0 17.2 9.8 8.3 7.7 13.3 28.1 21.3 13.8 12.6 12.3
1000 all 11.6 26.1 22.5 12.5 10.8 10.0 13.6 27.2 19.4 13.9 13.2 12.8

Table 25: Post evaluation results on the 1A dataset investigating the effect
of various hyperparameter choices. k and ns denotes the number
of basis vectors and negative samples generated during training per
each positive pq, hq pair. Best results obtained for each metric are
marked as bold.

MAP MRR P@1 P@3 P@5 P@15

off off 10.3 21.3 15.0 10.6 10.1 9.6
off on 10.1 21.1 14.9 10.5 9.9 9.5
on off 12.1 25.4 18.9 12.9 11.6 10.9
on on 12.1 25.3 18.7 13.0 11.6 11.0

Table 26: Ablation experiments, on the 1A dataset with k “ 200, ns “ 50 (and
the implementation of isFreqHyp fixed). The first two columns indi-
cate whether attributePairij and FCA-derived features are utilized,
respectively.

7.1.3.3 Post-evaluation analysis

After the evaluation closed, we conducted ablation experiments, the
results of which are shown in Table 26. In these experiments, we inves-
tigated the contribution of the features derived from sparse attribute
pairs and FCA. These ablation experiments corroborate the importance
of features derived from sparse attribute pairs and reveal that turning
off FCA-based features does not hurt performance at all. For this reason
– even though our official shared task submission included FCA-related
features – we no longer employed them in our post-evaluation experi-
ments.

Table 25 contains the detailed behavior of our model on subtask 1A
with respect to three factors, that is

1. the number of basis vectors employed during sparse coding
(k P t200, 300, 1000u),

2. the number of negative training samples per positive sample
(ns P t50, allu), and

3. candidate filtering being turned on/off.

In our original submission we generated 50 negative samples (ns) per
query q during training. In our post evaluation experiments we investi-
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7.1 hypernymy in sparse representations

MAP MRR P@1 P@3 P@5 P@15

1A 76.1 92.2 92.2 82.3 76.4 71.6
1B 71.2 93.4 93.4 78.5 70.9 65.7
1C 81.0 95.9 95.9 87.2 81.7 76.4
2A 72.6 89.6 89.6 81.0 75.3 64.1
2B 95.4 98.8 98.8 97.3 96.0 93.7

Table 27: Test results of an oracle system which uses candidate filtering.

gated the effects of generating more negative samples, i.e. we regarded
all the valid hypernyms over the training set – not being a proper hy-
pernym for q – as h 1 upon the creation of the pq, h 1q negative training
instances. This latter strategy is referenced as ns “ all in Table 25.

In our official submission we regarded only those hypernyms as po-
tential candidates to rank during test time which occurred at least once
as a correct hypernym in the training data. We call this strategy as can-
didate filtering. Historically, we applied this restriction to speed up the
FCA algorithm because this way the size of the concept lattice could be
made smaller. As there are valid hypernyms on the test set which never
occurred in the training data, our official submission would not be able
to obtain a perfect score even in theory. As ceiling analysis, Table 27
contains the best possible metrics on the test set that we could achieve
when candidate filtering is applied. In our post evaluation experiments
we also investigated the effects of turning this kind of filtering step off.
As Table 25 illustrates, however, our scores degrade without candidate
filtering.

Our post evaluation experiments in Table 25 suggest that it is ad-
vantageous to apply sparse representation of more expressive power,
i.e. with a higher number of basis vectors. Generating more negative
samples also provides some additional performance boost. These pre-
vious observations hold irrespective whether candidate filtering is em-
ployed or not, however, their effects are more pronounced when hyper-
nym candidates are not filtered.

Finally, we report our post-evaluation results for all the subtasks
and compare them to the official scores of the best performing systems
in Table 28. It can be seen that with these enhanced results that we
would won category “all” (concepts and entities mixed) in languages
(1B) Italian and (1C) Spanish. Our post-evaluation system – which only
differs from our participating system that it fixes the calculation of the
features, does not rely on FCA-based features, and uses k “ 1000 –
would also place third in the rest of the subtasks.
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MAP MRR P@1 P@3 P@10 P@15

1A 13.3 28.1 21.3 13.8 12.6 12.3
1A 19.8 36.1 29.7 21.1 19.0 18.3

1B 12.5 24.2 14.5 13.4 12.5 12.0
1B 12.1 25.1 17.6 12.9 11.7 11.2

1C 21.8 43.8 33.7 22.9 21.4 19.9
1C 20.0 28.3 21.4 20.9 21.0 19.4

2A 21.9 39.5 34.2 25.5 22.6 18.5
2A 34.0 54.6 49.2 40.1 36.8 27.1

2B 31.5 43.6 29.8 30.3 30.3 31.5
2B 41.0 60.9 48.2 44.9 41.3 38.0

Table 28: Post evaluation results for the different subtasks using k “

1000, ns “ 50 and hypernym candidate filtering. Upper: our sys-
tem, lower: subtask winner.

7.1.4 Conclusion

In this section we experimented with the integration of sparse word
representations into the task of hypernymy discovery. We strove to uti-
lize sparse word representations in two ways, i.e. via building concept
lattices using formal concept analysis and modeling the hypernymy re-
lation with the help of interaction terms. While our former approach
for deriving formal concepts from sparse word representations was not
successful, the interaction terms derived from sparse word representa-
tions proved to be highly beneficial, placing first in more categories of
SemEval 2018 Task 9.

7.2 antonyms in an embedding from definitions

In this section, which originally appeared as Makrai, Nemeskey, and
Kornai (2013)7, we test which putative semantic features like gender
are captured by VSMs. We assume that the difference between two vec-
tors, for antonyms, distills the actual property which is the opposite in
each member of a pair of antonyms. So, for example, for a set of male
and female words, such as xking, queeny, xactor, actressy, etc., the dif-
ference between words in each pair should represent the idea of gender.
To test the hypothesis, we associated antonymic word pairs from the

7 Makrai classified the antonymic relation pairs, and prepared the statistical test.
Nemeskey created the embedding, and finished the experiments. The function-
applicational idea (mapping a deep case to a function), which gave the title of
the paper, is due to Kornai. We thank Zsófia Tardos and the anonymous reviewers
for useful comments.
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7.2 antonyms from the definition graph

good vertical

safe out raise level
peace war tall short

pleasure pain rise fall
ripe green north south

defend attack shallow deep
conserve waste ascending descending

affirmative negative superficial profound
...

...
...

...

Table 29: Word pairs associated to features good and vertical

WordNet (Miller (1995), see Section 2.4.3) to 26 classes, e.g. end/be-
ginning, good/bad, . . . , see Table 29 and Table 31 for examples.

7.2.1 Our method: comparison to random permutation

The intuition to be tested is that the first member of a pair relates to
the second one in the same way among all pairs associated to the same
feature. For k pairs x⃗i, y⃗i we are looking for a common vector a⃗ such
that

x⃗i ´ y⃗i “ a⃗ (5)

Given the noise in the embedding, it would be naive in the extreme
to assume that (5) can be a strict identity. Rather, we take the mean
of the offsets xi ´ yi, which minimizes the error

Err “
ÿ

i

||x⃗i ´ y⃗i ´ a⃗||2 (6)

The question is simply the following: is this error obtained with the
mean vector any better than what we could expect from a bunch of
random x⃗i and y⃗i?

We selected 26 potentially antonymic datasets from WordNet such
as the ‘gender’ set discussed above. For example, the ‘hard’ set contains
the pairs hardened/soft, hardball/softball, hardware/software, still/s-
parkling, hard/soft, solid/gaseous, tough/tender, liquid/gaseous, hard-
ness/softness, hard_drug/soft_drug, hard_water/soft_water and the
‘distance’ set contains the pairs express/local, distant/close, repulsive/at-
tractive, open/close, far/near, distribution/concentration, distributed/-
concentrated, expanded/contracted, ultimate/proximate, distal/proximal.
Since the sets are of different sizes, we took 100 random pairings of the
words appearing on either sides of the pairs to estimate the error dis-
tribution, computing the minima of
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# feature HLBL original HLBL scaled Senna
pairs name Err m σ r Err m σ r Err m σ r

156 good 1.92 2.29 0.032 11.6 4.15 4.94 0.0635 12.5 50.2 81.1 1.35 22.9
42 vertical 1.77 2.62 0.0617 13.8 3.82 5.63 0.168 10.8 37.3 81.2 2.78 15.8
49 in 1.94 2.62 0.0805 8.56 4.17 5.64 0.191 7.68 40.6 82.9 2.46 17.2
32 many 1.56 2.46 0.0809 11.2 3.36 5.3 0.176 11 43.8 76.9 3.01 11
65 active 1.87 2.27 0.0613 6.55 4.02 4.9 0.125 6.99 50.2 84.4 2.43 14.1
48 same 2.23 2.62 0.0684 5.63 4.82 5.64 0.14 5.84 49.1 80.8 2.85 11.1
28 end 1.68 2.49 0.124 6.52 3.62 5.34 0.321 5.36 34.7 76.7 4.53 9.25
32 sophis 2.34 2.76 0.105 4.01 5.05 5.93 0.187 4.72 43.4 78.3 2.9 12
36 time 1.97 2.41 0.0929 4.66 4.26 5.2 0.179 5.26 51.4 82.9 3.06 10.3
20 progress 1.34 1.71 0.0852 4.28 2.9 3.72 0.152 5.39 47.1 78.4 4.67 6.7
34 yes 2.3 2.7 0.0998 4.03 4.96 5.82 0.24 3.6 59.4 86.8 3.36 8.17
23 whole 1.96 2.19 0.0718 3.2 4.23 4.71 0.179 2.66 52.8 80.3 3.18 8.65
18 mental 1.86 2.14 0.0783 3.54 4.02 4.6 0.155 3.76 51.9 73.9 3.52 6.26
14 gender 1.27 1.68 0.126 3.2 2.74 3.66 0.261 3.5 19.8 57.4 5.88 6.38
12 color 1.2 1.59 0.104 3.7 2.59 3.47 0.236 3.69 46.1 70 5.91 4.04
17 strong 1.41 1.69 0.0948 2.92 3.05 3.63 0.235 2.48 49.5 74.9 3.34 7.59
16 know 1.79 2.07 0.0983 2.88 3.86 4.52 0.224 2.94 47.6 74.2 4.29 6.21
12 front 1.48 1.95 0.17 2.74 3.19 4.21 0.401 2.54 37.1 63.7 5.09 5.23
22 size 2.13 2.69 0.266 2.11 4.6 5.86 0.62 2.04 45.9 73.2 4.39 6.21
10 distance 1.6 1.76 0.0748 2.06 3.45 3.77 0.172 1.85 47.2 73.3 4.67 5.58
10 real 1.45 1.61 0.092 1.78 3.11 3.51 0.182 2.19 44.2 64.2 5.52 3.63
14 primary 2.22 2.43 0.154 1.36 4.78 5.26 0.357 1.35 59.4 80.9 4.3 5
8 single 1.57 1.82 0.19 1.32 3.38 3.83 0.32 1.4 40.3 70.7 6.48 4.69
8 sound 1.65 1.8 0.109 1.36 3.57 3.88 0.228 1.37 46.2 62.7 6.17 2.67
7 hard 1.46 1.58 0.129 0.931 3.15 3.41 0.306 0.861 42.5 60.4 8.21 2.18

10 angular 2.34 2.45 0.203 0.501 5.05 5.22 0.395 0.432 46.3 60 6.18 2.2

Table 30: Error of approximating real antonymic pairs (Err), mean and stan-
dard deviation (m, σ) of error with 100 random pairings, and the
ratio r “

|Err´m|

σ for different features and embeddings

Errrand “
ÿ

i

||x⃗i
1
´ y⃗ 1

i ´ a⃗||2 (7)

For each distribution, we computed the mean and the variance of
Errrand, and checked whether the error of the correct pairing, Err is
at least 2 or 3 σs away from the mean.

Table 30 summarizes our results for three embeddings: the original
and the scaled HLBL (Section 4.2.2, Mnih and G. E. Hinton (2009))
and Senna (Section 4.2.3). The first two columns give the number of
pairs considered for a feature and the name of the feature. For each
of the three embeddings, we report the error Err of the unpermuted
arrangement, the mean m and variance σ of the errors obtained under
random permutations, and the ratio

r “
|m ´ Err|

σ
.

Horizontal lines divide the features to three groups: for the upper group,
r ě 3 for at least two of the three embeddings, and for the middle group
r ě 2 for at least two.
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7.2 antonyms from the definition graph

primary angular

leading following square round
preparation resolution sharp flat

precede follow curved straight
intermediate terminal curly straight
antecedent subsequent angular rounded

precede succeed sharpen soften
question answer angularity roundness

...
...

...
...

Table 31: Features that fail the test

For the features above the first line we conclude that the antonymic
relations are well captured by the embeddings, and for the features
below the second line we assume, conservatively, that they are not. (In
fact, looking at the first column of Table 30 suggests that the lack of
significance at the bottom rows may be due primarily to the fact that
WordNet has more antonym pairs for the features that performed well
on this test than for those features that performed badly, but we did
not want to start creating antonym pairs manually.) For example, the
putative sets in Table 31 does not meet the criterion and get rejected.

7.2.2 Embedding from a definition graph

The 4lang embedding is created in a manner that is notably different
from HLBL and Senna. Our input is a graph whose nodes are concepts,
with edges running from A to B if and only if B is used in the man-
ually written 4lang definition (Chapter 3) of A. The base vectors are
obtained by the spectral clustering method pioneered by Ng, Jordan,
and Weiss (2001): the incidence matrix of the conceptual network is
replaced by an affinity matrix whose ij-th element is formed by com-
puting the cosine distance of the ith and jth row of the original matrix,
and the first few (in our case, 100) eigenvectors are used as a basis.

Since the concept graph includes the entire Longman Defining Vo-
cabulary (LDV), each LDV element wi corresponds to a base vector bi.
For the vocabulary of the whole dictionary, we simply take the Long-
man definition of any word w, strip out the stopwords (we use a small
list of 19 elements taken from the top of the frequency distribution),
and form V pwq as the sum of the bi for the wis that appeared in the
definition of w (with multiplicity).

We performed the same computations based on this embedding as
in Section 7.2.1, and the results are presented in Table 32. Judgment
columns under the three embeddings in the previous section and 4lang
are highly correlated, see table 33.
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# feature 4lang

pairs name Err m σ r

49 in 0.0553 0.0957 0.00551 7.33
156 good 0.0589 0.0730 0.00218 6.45
42 vertical 0.0672 0.1350 0.01360 4.98
34 yes 0.0344 0.0726 0.00786 4.86
23 whole 0.0996 0.2000 0.02120 4.74
28 end 0.0975 0.2430 0.03410 4.27
32 many 0.0516 0.0807 0.00681 4.26
14 gender 0.0820 0.2830 0.05330 3.76
36 time 0.0842 0.1210 0.00992 3.74
65 active 0.0790 0.0993 0.00553 3.68
20 progress 0.0676 0.0977 0.00847 3.56
18 mental 0.0486 0.0601 0.00329 3.51
48 same 0.0768 0.0976 0.00682 3.05
22 size 0.0299 0.0452 0.00514 2.98
16 know 0.0598 0.0794 0.00706 2.77
32 sophis 0.0665 0.0879 0.00858 2.50
12 front 0.0551 0.0756 0.01020 2.01
10 real 0.0638 0.0920 0.01420 1.98
8 single 0.0450 0.0833 0.01970 1.95
7 hard 0.0312 0.0521 0.01960 1.06

10 angular 0.0323 0.0363 0.00402 0.999
12 color 0.0564 0.0681 0.01940 0.600
8 sound 0.0565 0.0656 0.01830 0.495

17 strong 0.0693 0.0686 0.01111 0.0625
14 primary 0.0890 0.0895 0.00928 0.0529
10 distance 0.0353 0.0351 0.00456 0.0438

Table 32: The results on 4lang

HLBL HLBL Senna 4lang

original scaled

HLBL original 1 0.925 0.422 0.856
HLBL scaled 0.925 1 0.390 0.772
Senna 0.422 0.390 1 0.361
4lang 0.856 0.772 0.361 1

Table 33: Correlations between judgments based on different embeddings
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7.3 causality in vector space language models

Unsurprisingly, the strongest correlation is between the original and
the scaled HLBL results. Both the original and the scaled HLBL cor-
relate notably better with 4lang than with Senna, making the latter
the odd one out.

The contribution of this section is that we showed that a dictionary-
based embedding, when used for a purely semantic task, the analysis of
antonyms, does about as well as the more standard embeddings based
on cooccurrence data. Clearly, a VSM could be obtained by the same
procedure from any machine-readable dictionary. Using LDOCE is com-
putationally advantageous in that the core vocabulary is guaranteed to
be very small, but finding the eigenvectors for an 80k by 80k sparse
matrix would also be within CPU reach.

7.2.3 Conclusion

We created word embeddings from monolingual dictionary definitions
and compared them with two standard embeddings (HLBL, (Mnih and
G. E. Hinton 2009) and Senna (Collobert et al. 2011)) regarding which
potential subrelations of antonymy is represented in them. In the three-
way comparison, Senna proved to be the off man out, suggesting that
the dictionary-based embedding encodes similar information as HLBL.

The vector offset method for solving analogical questions assumes
that the four words (e.g. king, queen, man, and woman) form a paral-
lelogam. In the next section we investigate causality, and find a different
geometry.

7.3 causality in vector space language models

In this section, which originally appeared as Makrai (2014a), we take a
semantic relation with a rich literature in linguistics (Section 2.3.5) and
philosophy and with many applications in knowledge representation:
causality (see Figure 17). We are interested in the geometric function
mapping the vector representation of a cause (e.g. hurt) to the vector
representing the corresponding effect (ache). These results exemplify
an exploratory data science approach to the computational analysis of
the cognitive structures underlying linguistic understanding: To quote
(Schank 1973) in a different context, inferences are generally made “to
see what they can see”.

We took causal word pairs from one of the most popular natural
language processing resources containing lexical information of various
kinds, WordNet (Miller (1995), see Section 2.4.3). The pairs are ex-
emplified in Table 34. We took several VSMs: Senna (Section 4.2.3),
those published along with the papers Turian, Ratinov, and Bengio
(2010) and Huang et al. (2012), HLBL (Section 4.2.2, Mnih and G. E.
Hinton (2009)), the English Polyglot (Al-Rfou’, Perozzi, and Skiena
2013), and 24 variants of the model created from 4lang, the semantic
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discourage
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Figure 17: The definition of discourage in the 4lang concept lexicon exem-
plifies the use of ‘cause’ in associative network representations of
linguistics knowledge. The graph expresses that discourage means,
that the agent (=AGT) causes the participant that is called patient
in linguistics (=PAT) to lack confidence.

network we introduced in Chapter 3. (These variants differ in minor
hyper-parameters, e.g. whether there is a link from the headnode of
the graph back to the definiendum.) Causal pairs were projected to a
2-dimensional plane by principal component analysis, a machine learn-
ing technique often used for visualizing high-dimensional data. The
visualization suggested that there is a center in the vector space of the
words, that approximately fits the lines containing each causal pair, see
Figure 18.

For testing the centrality property in the original, unreduced space,
we took random word pairs of the same number as we have causal pairs.
The point closest to all the lines fitting each pair was computed for both
the real and the random sample of word pairs using a formula by Han
and Bancroft (2010). The distances of the lines to the corresponding
center was also computed. We formalize centrality as that the expected
value of the distances is lower in the real case than in the random
case. An unpaired t-test showed that this condition holds in the case
of Senna (p ă 0.001).

Some of the models created from 4lang also show significant (p ă

0.05) difference, but this statistical result has to be taken with cau-
tion, because of the phenomenon known as multiple testing (Domingos
2012).8

Standard statistical tests assume that only one hypothesis
is being tested, but modern learners can easily test millions
before they are done. As a result what looks significant may
in fact not be. [. . . ] This problem can be combatted by cor-
recting the significance tests to take the number of hypothe-
ses into account [. . . ]

8 I would like to thank Balázs Szalkai for reminding me to this problem.
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give have
show see
encourage hope
feed eat
kill die
raise rise
...

...

Table 34: Word causes and effects in WordNet. WordNet contains semantic
relations like is-a (a chair is a furniture), instance-of (Mozart is an
instance of ‘composer’), antonym (cold and hot), part-of (Monday
is a part of ‘week’) as well.

Multiplying the p values by 24 significance is lost, so unless we motivate
the choice of some specific model among all 4lang models on some
independent grounds, we have to conclude that in the 4lang models,
the centrality hypothesis has to be rejected.

7.3.1 Discussion and conclusion

Looking for an insightful interpretation of causality in VSMs, we have
found a center point c in the VSM Senna with the property that the
lines connecting the two members of causal word pairs run close to c.
In algebraic terms this means that

veffect « λvcause ` p1 ´ λqc

with a verb-dependent λ P R. This linear algebraic property reflects
the linguistic intuition that the meaning of the effect is a combination
of the meaning of the cause and a causal element.

While more sophisticated connections may exist between cause and
effect vectors in a boroader family of embedding models, we focused on
this easily interpretable relation.

Exploring the geometry of the causality in a 2d visualization, we
formulated the hypothesis that the lines connecting causal pairs run
close to a common point. We put this in the context that causes are
intuitively composed of the cause and a constant causal element (lexical
feature). We tested this hypothesis in various embeddings. In Senna
(Collobert et al. 2011), the hypothesis holds, in the other embeddings
studied it does not do so (taking the problem of multiple testing into
account).

197



lexical relations

Figure 18: A 2-d visualization of causal pairs in the VSMs suggest that lines
connecting causal pairs run close to a common center point.

7.4 analogy and translation

We saw in Chapter 4, especially Section 4.2.4 that static word embed-
dings represent analogical relations in a simple linear algebraic form.
These properties were originally discovered for English, where mor-
phology is marginal, and syntactic roles are marked by word order.
Now we ask whether word embeddings of a morphologically rich and
consequently relatively free phrase-order language, Hungarian, exhibit
similar structure. To do so, we published the Hungarian equivalent of
the analogical benchmark. While the consequent representation of word
relations is interesting for lexical theory on its own, from an engineering
point of view, it is important to see to what extent such an “in vitro” or
“intrinsic” task predicts the accuracy of the embedding at hand when
applied to some “in vivo” or “extrinsic” task like word translation. This
section revolves around these two questions.

In Section 4.2, we introduced word2vec and GloVe as the two most
successful tools that create static word embeddings (a.k.a. vector space
language models, VSMs) from gigaword corpora. word2vec implements
the neural network style architectures skip-gram and cbow, learning
parameters using each word as a training sample, while GloVe factorizes
the co-occurrence matrix (or more precisely a matrix of conditional
probabilities) as a whole.

In this section, most of which originally appeared as Makrai (2015),
we test the two systems in two tasks. First we are interested in how
analogical relations are represented in a static word embedding of a mor-
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phologically rich (and accordingly, free phrase-order) language. More
precisely, we test Hungarian word embeddings in a Hungarian equiv-
alent of the popular word analogy task. We also test the gluten-free
method (Section 4.2.11.1) in the analogical question benchmark.

In Section 7.4.2, we test static word embeddings in word translation
between European languages including medium-resourced ones: Hun-
garian, Lithuanian and Slovenian. This task is related to statistical ma-
chine translation. The goal of the project to which the line of research
reported here belonged, was to generate proto-dictionaries for Euro-
pean languages with fewer speakers. We collected translational word
pairs between English, Hungarian, Slovenian, and Lithuanian. We took
the method of Mikolov, Le, and Sutskever (2013) who train VSMs for
the source and the target language from monolingual corpora, and com-
pute word translation by learning a mapping between these supervised
by a seed dictionary of a few thousand items.

The collection of word translations can be compared to the indepen-
dent and simpler task of analogy. For this, we created the Hungarian
equivalent of the test question set by Mikolov, Yih, and Zweig (2013)
and Mikolov, Chen, et al. (2013).9 We compare results in the two tasks,
monolingual analogies and translation in Section 7.4.4.3.

It turns out that vanilla static embeddings of Hungarian trained
on the semi-gigaword corpora of the time model semantic relations
poorly. Section 7.4.6 investigate to what extent the gluten-free method
(Section 4.2.11.1) or a larger corpus can solve this problem.

The only related work that evaluated vector models of a language
other than English on word analogy in these early years of word em-
beddings we know is Sen and Erdogan (2014) who compared different
strategies to deal with the a morphologically rich Turkish language10.
As far as we know, the application of GloVe to word translation was a
novelty of Makrai (2015).

7.4.1 A Hungarian analogical benchmark

Measuring the quality of VSMs in a task-independent way (a.k.a. in-
trinsic evaluation) is motivated by the idea of representation sharing.
VSMs that capture something of language itself are better than ones
just tailored for a single task (Section 4.2.3).

Section 4.2 (especially Sections 4.2.4 and 4.2.7 and the critical Sec-
tions 4.2.12 and 4.2.13) introduced analogical questions (also called
relational similarities (Turney 2006) or linguistic regularities (Mikolov,
Yih, and Zweig 2013)) as intrinsic measures of merit for vector mod-
els. This test gained remarkable popularity in the VSM community.
Mikolov, Yih, and Zweig (2013) observe that analogical questions like

9 For data and else visit the project page http://corpus.nytud.hu/efnilex-vect.
10 I’m grateful to Mehmet Umut Sen for sending me the English translation the essence

of Sen and Erdogan (2014).
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“good is to better what rough is to . . . ” or “man is to woman what king
is to . . . ” can be answered by basic linear algebra in neural VSMs:

good ´ better « rough ´ x (8)
x « rough ´ good ` better (9)

In this example, the difference corresponds to the morphological re-
lation of the comparative. So the vector nearest to the right side of
Equation (9) is supposed to be rougher, which is really the case.

Recall that analogical benchmarks as the methods of in vitro evalua-
tion have been criticized for various reasons. On the engineering level,
Levy et al. (2015, summarized in our Section 4.2.12) showed that the
offset method learns superficial features of individual words like being
a typical hypernym/holonym, rather than relations; that in morpho-
logical questions, the offset is so short that the parallelogram search
simplifies to nearest neighbor search; and that the whole idea is hacked
by excluding the question words (i.e. man, woman, and king in the
queen example) from among the answer candidates. The latter is es-
pecially problematic in the light of analogical relational pairs where
the correct answer is actually one of the question words (Gladkova and
Drozd (2016) and Rogers, Drozd, and Li (2017), summarized in our Sec-
tion 4.2.13). Nevertheless, analogical question remain one of the basic in
vitro evaluations of static word embeddings, so we find it advantageous
to have them at hand for Hungarian.

We created a Hungarian equivalent of the analogical questions made
publicly available by Mikolov, Yih, and Zweig (2013) and Mikolov,
Chen, et al. (2013). More precisely, we followed the main ideas reported
in Mikolov, Yih, and Zweig (2013), and targeted the sizes of the data-set
accompanying Mikolov, Chen, et al. (2013).

Analogical pairs are divided to “grammatical” (i.e. morphological)
and “semantic” (mostly world knowledge) ones. The morphological
pairs in Mikolov, Yih, and Zweig (2013) were created in the following
way:

[We test] base/comparative/superlative forms of adjectives;
singular/plural forms of common nouns; possessive/non-possessive
forms of common nouns; and base, past and 3rd person
present tense forms of verbs. More precisely, we tagged
267M words of newspaper text with Penn Treebank POS
tags (Marcus, Santorini, and Marcinkiewicz 1993). We then
selected 100 of the most frequent comparative adjectives
(words labeled JJR); 100 of the most frequent plural nouns
(NNS); 100 of the most frequent possessive nouns (NN POS);
and 100 of the most frequent base form verbs (VB).

The Hungarian morphological pairs (Table 35) were created accord-
ingly: For each grammatical relationship, we took the most frequent
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English Hungarian
plural singular plural singular

decrease decreases lesznek lesz
describe describes állnak áll

eat eats tudnak tud
enhance enhances kapnak kap
estimate estimates lehetnek lehet

find finds nincsenek nincs
generate generates kerülnek kerül

Table 35: Morphological word pairs

English Hungarian
# pairs # questions # pairs

gram1-adjective-to-adverb 32 992 40
gram2-opposite 812 29 30
gram3-comparative 37 1332 40
gram4-superlative 34 1122 40
gram5-present-participle 33 1056 40
gram6-nationality-adjective 41 1599 41
gram7-past-tense 40 1560 40
gram8-plural-noun 37 1332 40
gram9-plural-verb 30 870 40
capital-common-countries 23 506 20
capital-world 116 4524 166
city-in-state 68 2467
county-center 19
county-district-center 175
currency 30 866 30
family 23 506 20

Table 36: Sizes of the question sets
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English Hungarian

Athens Greece Budapest Magyarország
Baghdad Iraq Moszkva Oroszország
Bangkok Thailand London Nagy-Britannia
Beijing China Berlin Németország
Berlin Germany Pozsony Szlovákia
Bern Switzerland Helsinki Finnország
Cairo Egypt Bukarest Románia

Table 37: Semantic word pairs

English Hungarian

Athens Greece Baghdad Iraq Budapest Magyarország Moszkva Oroszország
Athens Greece Bangkok Thailand Budapest Magyarország London Nagy-Britannia
Athens Greece Beijing China Budapest Magyarország Berlin Németország
Athens Greece Berlin Germany Budapest Magyarország Pozsony Szlovákia
Athens Greece Bern Switzerland Budapest Magyarország Helsinki Finnország
Athens Greece Cairo Egypt Budapest Magyarország Bukarest Románia

Table 38: Analogical questions

inflected forms from the Hungarian Webcorpus (Halácsy et al. 2004).
The suffix in question was restricted to be the last one. See sizes in
Table 36. In the case of opposite, we restricted ourselves to forms with
the derivational suffix -tlan (and its other allomorphs) to make the task
morphological rather then semantic. plural-noun includes pronouns as
well.

For the semantic task (Table 37), data were taken from Wikipedia.
For the capital-common-countries task, we choose the one-word capitals
appearing in the Hungarian Webcorpus most frequently. The English
task city-in-state contains USA cities with the states they are located in.
The equivalent tasks county-center contains counties (megye) with
their centers (Bács-Kiskun – Kecskemét), and currency contains the
currencies of the most frequent countries in the Webcorpus. The family
task targets gender distinction. We filtered for the pairs where the
gender distinction is sustained in Hungarian (but dropped e.g. he –
she, where it is not). We put some relational nouns in the possessive
case (bátyja – nővére). We note that this category contains the royal
“family” as well, e.g. the famous king – queen, and even policeman –
policewoman.

Column “# questions” in Table 36 shows how many questions are
formed in the English dataset we follow. In the Hungarian case, both
morphological and semantic questions were created by matching every
pair with every other pair resulting in e.g.

`

20
2

˘

questions for family.
Some examples for questions are shown in Table 38.
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cos ą vocab gold prec@1 prec@5

0.7 3803 301 68.4% 84.4%
0.6 9967 711 54.7% 74.1%
0.5 12949 958 46.6% 65.6%
0.4 13451 988 45.3% 64.0%

Table 39: Trade-off between precision and recall in Hungarian to English word
translation

7.4.2 Word translation in European languages

For the collection of word translations, we follow the method of Mikolov,
Le, and Sutskever (2013) who start with creating a VSM for the source
and the target language from monolingual corpora in the magnitude
of billion(s) of words. VSMs represent words in vector spaces of some
hundred dimensions. The key point of the method is learning a linear
mapping from the source vector space to the target space supervised
by a seed dictionary of 5 000 words. Training word pairs are taken
from among the most frequent ones skipping out-of-vocabulary pairs
i.e. those with a source or target word unknown to the respective lan-
guage model. The learned mapping is used to find a translation for
each word in the source model. The computed translation is the target
word with a vector closest to the image of the source word vector by the
mapping. Mikolov, Le, and Sutskever report their best results when the
dimension of the source model is 2–4 times the dimension of the target
model, e.g. 800 Ñ 300. The closeness (cosine similarity) between the
image of the source vector and the closest target vector provides a confi-
dence measure for the translation. We will make further use of this inter-
lingual similarity score in Section 7.5, to filter translation pairs obtained
with more traditional methods. We generate word translations in the
following language pairs: Hungarian-Lithuanian, Hungarian-Slovenian,
and Hungarian-English.

The measure of confidence for each translational pair (the distance
of the vector computed by mapping the source word vector, and the
nearest target word vector) makes some tuning between precision and
recall possible (see Table 39). With a higher cosine similarity cut-off
(column “cos ą”), we get word translations for a smaller vocabulary
(“vocab”) with a higher precision, while lower cosine similarities pro-
duce a greater vocabulary with translations of a lower precision. prec@1
is the ratio of words, for which the first candidate translation coincides
with that provided in the seed dictionary, prec@5 is the ratio of words
with the seed translation in the first 5 candidates. These are strict met-
rics, as synonyms of the gold translation count as incorrect. gold is the
number of words with a gold translation in the corresponding part of
the test data.
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language corpus # words

Lithuanian webcorpus (Zséder et al. 2012) 1.4 B
Slovenian slWaC (Ljubešić and Erjavec 2011) 1.6 B
Hungarian Webcorpus (Halácsy et al. 2004) 0.7 B
Hungarian HNC (Oravecz, Váradi, and Sass 2014) 0.8 B

Table 40: Corpora for medium-resourced languages.
Word counts are given in billions.

While the (pre-training) model of word2vec is based on the dot prod-
uct, Mikolov, Yih, and Zweig (2013) use the least squares fitting of the
Euclidean distance for training the mapping, and, surprisingly, cosine
similarity for translation generation. We also found this combination
of distances to be the only one that works. We return to techniques
related to this peculiarity in Section 8.4.2.

7.4.3 Data

7.4.3.1 Corpora and vectors

For English, we use vector models downloaded from the home pages
of the tools, while for the medium-resourced languages, we train new
models on the corpora in Table 40,11 using the tokenization provided
by the authors of the text collection.

The basis for our deglutination experiments is the POS-disambiguated
Webcorpus 2.0 (Nemeskey 2020). To train the gluten-free embeddings,
we split compositional derivational and inflectional suffixes from the
stem. More precisely, accidentally we tried two variants. each-separate
separates each compositional morpheme (like [_Mod/V] in the example
of Table 7) to its own token, as proposed by Nemeskey (2020). paradigm-
cell on the other hand splits the word in two, a stem (érdekel) and an
affix series ([/V][_Mod/V][Prs.Def.3Sg]).

Some noun and verb forms are unmarked in Hungarian (namely
the nominative case [Nom] and present, indefinite, 3rd person singular
[Prs.NDef.3Sg] respectively), and, in a somewhat analogous fashion,
punctuation [Punct] is default on abbreviations, it is nevertheless re-
flected in the emMorph analysis (e.g. pl. is analyzed as [/Adv|Abbr][Punct]).
Thus we disregard the corresponding substrings of the analysis. Em-
beddings were trained with gensim (Řehůřek and Sojka 2010) in 300
dimensions and 1 epoch. The remaining hyper-parameters were set to
their default values.

11 I would like to thank Vladimír Benko for information on corpora.
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efnilex12 wikt wikt triang OSub12 OSub13 Europarl

en-hu 83 K 47 K +134 K 97 K 19 K 21 K
hu-lt 152 K 6 K +21 K 11 K 9 K 27 K
hu-sl 235 K 2 K +26 K 63 K 45 K 29 K

Table 41: Number of translational word pairs in the seed dictionaries

7.4.3.2 Seed dictionaries

Mikolov, Le, and Sutskever (2013) use Google translate as a seed dic-
tionary. We experimented with three seed dictionaries: (1) efnilex12,
the proto-dictionaries collected within the EFNILEX project (Héja and
Takács 2012), (2) word pairs computed using wikt2dict with and with-
out triangulation (See Ács, Pajkossy, and Kornai (2013), and, for sizes,
Table 41), and (3) dictionaries from the opus collection (Europarl, Open-
Subtitles2012 and OpenSubtitles2013, Tiedemann (2012))12. efnilex12
contains directed dictionaries (ranked by the conditional probability
(of co-occurrence) of the target word conditioned on the source word).
In running automatic word alignment on the corresponding parallel
data set, Tiedemann (2012) used “GIZA++ (Och and Ney 2003) and
the symmetrization heuristics (grow-diag-final-and) implemented in
Moses (Koehn et al. 2007) to extract probabilistic phrase tables”. These
tables are routinely used in phrase-based statistical machine transla-
tion.

7.4.4 Results

In the remainder of Section 7.4, we will use the abbreviations d for
dimension, w for window radius (w “ 15 means that (a maximum of)
15 words are considered on both sides of the word in focus), i for number
of training iterations over the corpus (epochs), m for minimum word
count in the vocabulary cutoff, and n for number of negative samples
(in the case of word2vec).

7.4.4.1 Results with analogical questions

For comparing the results with the Hungarian analogical questions to
those on the English ones, we trained sgram models on the concate-
nation of HNC and the Hungarian Webcorpus with d “ 300, m “ 5,
either negative sampling or hierarchical softmax (two techniques to
avoid computing the denominator of softmax that is a sum with as
many terms as there are words in the embedding, the latter is based
on a self-supervised hierarchical organization of the vocabulary, see
Section 4.2.2 for both), and different levels of subsampling of frequent

12 http://opus.lingfil.uu.se/

205

http://opus.lingfil.uu.se/


lexical relations

morph semant total

en, Mikolov et al (2013)
n “ 5 61 58 60
n “ 15 61 61 61
HS 52 59 55

hu
n “ 5 63.0 3419/5430 38.5 269/699 60.2 3688/6129
n “ 15 61.9 3359/5430 39.2 274/699 59.3 3633/6129
HS 48.9 2653/5430 22.5 157/699 45.8 2810/6129

Table 42: Comparison of results in our Hungarian word analogies (below the
line) to those of the authors of the original Mikolov, Sutskever, et
al. (2013)

words, see Mikolov, Sutskever, et al. (2013) for details. In Table 42, it
can be seen that, in the morphological questions, we (below the line) get
similar results in the Hungarian equivalent as the authors of the origi-
nal task (Mikolov, Sutskever, et al. (2013), above the line), while in the
semantic questions, Hungarian results are worse, suggesting that the se-
mantic questions are too hard. We call attention to Novák and Novák
(2018, in Hungarian) and the experiments by Döbrössy et al. (2019)
summarized in Section 4.2.11.2 as well.

7.4.4.2 Proto-dictionary generation

In this paragraph we report our results in Slovenian/Hungarian/Lithua-
nian to English proto-dictionary generation. We take four source em-
beddings: two Slovenian ones trained on slWaC, one trained on the
Hungarian Webcorpus, and one on the Lithuanian webcorpus by Zséder
et al. (2012), all in d “ 600. One of the Slovenian models is a GloVe one,
the other models are cbow models with n “ 15 and w “ 10. The tar-
get model is always glove.840B.300d13 from the GloVe site, the seed
dictionary is OpenSubtitles2012. Either the source (rs), the target (rt)
embedding, or both (rst) was restricted to words accepted by Hunspell.
In Table 43 we compare our results (below the line) to those of Mikolov,
Le, and Sutskever (2013) (above the line) with slightly different hyper-
parameters. The vocabulary cutoff m of the source embedding is speci-
fied for each word2vec model we trained. (The tables in this section are
unfortunately not directly comparable, as some hyper-parameters may
differ, but we hope that the individual message of each table is clear.)

7.4.4.3 Comparison of results in the two tasks

In Figure 19, we show the results of some Hungarian VSMs in the ana-
logical and the word translation task plotted against each other. The
horizontal axis shows precision in the semantic analogical questions,
while the vertical axis shows precision (@5) in proto-dictionary gen-

13 http://nlp.stanford.edu/projects/glove/
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prec@1 prec@5

en Ñ sp 33 51
sp Ñ en 35 52
en Ñ cz 27 47
cz Ñ en 23 42
en Ñ vn 10 30
vn Ñ en 24 40
GloVe-sl Ñ en rs 44.80 63.40
word2vec-sl Ñ en m “ 100 rs 41.70 60.40
word2vec-hu Ñ en m “ 50 rst 32.80 54.70
word2vec-lt Ñ en m “ 100 rt 21.20 36.50

Table 43: Results in proto-dictionary collection

source word cos translations

öt 0.9101 five six eight three
jó 0.8961 good really too very
de 0.8957 but though even just
bár 0.8955 though but even because
hit 0.8904 faith belief salvation truth
ugyan 0.8880 though but even because
vöröshagymát 0.8878 onion garlic onions tomato

Table 44: Example word translations. cos is the cosine similarity of the image
of the source word vector by the learned mapping and the nearest
target vector. Words in the target language are listed in the (de-
scending) order of their similarity to the image vector.
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Figure 19: The precision of some of our models in monolingual (horizontal
axis) vs bilingual (vertical axis) task. Unfortunately, the choice of
the hyper-parameters was not systematic.

eration to the Google News model14 restricted to words accepted by
Hunspell and using seed pairs collected with wikt2dict. It can be seen
that the result in the two tasks are unfortunately uncorrelated.

7.4.5 Parameter analysis

7.4.5.1 Corpus

quality In Table 45, we compare how our models trained on two
different corpora shine in analogical questions. The corpora are the
Hungarian National Corpus v2.0.3 (Oravecz, Váradi, and Sass 2014),
which is a curated corpus of Hungarian, and the Hungarian Webcorpus
(Halácsy et al. 2004) that is a similarly sized webcorpus. The numbers
suggest that a word embedding trained on a curated corpus represents
analogical relations better, especially the semantic part, or when GloVe
is used.

size Table 46 shows how the performance depends on the size of
the corpus. It is clear that a much larger corpus is needed to answer
semantic questions.

7.4.5.2 word2vec, LBL4word2vec and GloVe

We compared word2vec, LBL4word2vec, and GloVe (with two parameter
settings) in the analogical task. LBL4word2vec15 implements the ideas in
Mnih and Kavukcuoglu (2013), what makes it more parameter-efficient.
The two parameter settings were needed for a fair comparison, because

14 https://code.google.com/p/word2vec/#Pre-trained_word_and_phrase_vectors
15 https://github.com/qunluo/LBL4word2vec
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model question type Webcorpus HNC

word2vec
morphological 54.9 2924/5326 51.8 2856/5514
semantic 8.3 40/482 16.0 123/769
total 51.0 2964/5808 47.4 2979/6283

GloVe
morphological 47.4 2525/5326 48.2 2658/5514
semantic 9.3 45/482 14.4 111/769
total 44.2 2570/5808 44.1 2769/6283

Table 45: Comparison of results on two different corpora. The denominator of
each fraction is the number of questions with all three words known
to the vector model, while the numerator is the number of correct
answers for these questions. Parameters: d “ 152, m “ 10, i “ 5 in
both models. For word2vec, w “ 5 and n “ 5 while for GloVe, w “ 3.
The different window sizes mean that these results are not suitable
for comparing the models just the corpora.

morph sem total

1M 1.8 58/3256 0.0 0/84 1.7 58/3340
2M 6.1 191/3130 0.0 0/60 6.0 191/3190

10M 24.9 986/3954 7.4 8/108 24.5 994/4062
100M 55.1 2530/4594 31.4 37/118 54.5 2567/4712
754M 63.2 3486/5514 49.8 383/769 61.6 3869/6283

Table 46: The effect of corpus size

the default (recommended) values of d, w, i and m are different in the
two architectures: see Table 47, where the more computation-intensive
setting is in bold.

We trained two models with each architecture on HNC: a small one
with the less computation-intensive one of the two default values (ex-
cept for using d “ 52 for historical reasons) and a big one with the
more costly one. For the number of negative samples, which is specific
for word2vec, we use the default n “ 5. See results in Table 48. Note
that GloVe could be further improved by taking the average of the two
vectors, the “focus” and context vector learned by the model for each
word (see Section 4.2.6).

word2vec GloVe

d 100 50
w 5 15
i 5 25
m 5 10

Table 47: Default values of parameters shared by word2vec and GloVe
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morph sem total

sm
al

l word2vec sgram 49.0% 2703 20.3% 156 45.5% 2859
LBL4word2vec sgram 46.6% 2567 19.4% 149 43.2% 2716
word2vec cbow 49.9% 2751 15.7% 121 45.7% 2872
glove 41.3% 2277 11.1% 85 37.6% 2362

bi
g

word2vec sgram 57.8% 3186 42.0% 323 55.8% 3509
LBL4word2vec sgram 55.5% 3058 36.3% 279 53.1% 3337
glove 58.1% 3206 31.3% 241 54.9% 3447
word2vec cbow 57.8% 3187 30.7% 236 54.5% 3423

Table 48: Comparison of models trained in different architectures. Rows
within each model “size” are sorted by precision in the semantic
task, which we consider more relevant to lexicography than mor-
phology. The total number of questions that do not contain out-of-
vocabulary words is 5514 in morphological questions and 6283 in
semantic ones.

morph semant total

cbow hs “ 0, n “ 5 59.4% 3276/5514 24.1% 185/769 55.1% 3461/6283
cbow hs “ 1, n “ 0 49.0% 2702/5514 13.9% 107/769 44.7% 2809/6283
cbow hs “ 1, n “ 5 49.5% 2730/5514 14.3% 110/769 45.2% 2840/6283
sgram hs “ 0, n “ 5 59.1% 3261/5514 33.6% 258/769 56.0% 3519/6283
sgram hs “ 1, n “ 0 49.8% 2744/5514 23.1% 178/769 46.5% 2922/6283
sgram hs “ 1, n “ 5 50.4% 2781/5514 23.1% 178/769 47.1% 2959/6283

Table 49: Hierarchical softmax (HS) and negative sampling

7.4.5.3 word2vec: Hierarchical softmax and negative samples

Hierarchical softmax (HS) and negative sampling are alternative solu-
tions for the partition function problem (Section 4.2.2). (We already
used the latter in Section 7.1.) Nevertheless, in Makrai (2015) we also
tried whether the two can be combined to get better result than with
either of the techniques. A negative answer can be seen in Table 49
(HNC, d “ 100, w “ 5, i “ 5, m “ 5).

7.4.5.4 proto-dictionaries: Seed dictionary

We compare the results obtained in the proto-dictionary generation
task with different English-Hungarian seed dictionaries in Table 50. The
source language model is always glove.840B.300d, the target model is
also a GloVe model trained on HNC (d “ 300, m “ 1, w “ 15, i “ 25).
For details of the seed dictionaries see Section 7.4.3.2.
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seed dictionary prec@1 prec@5

Europarl 17.70% 34.10%
wikt triang 13.10% 25.30%
wikt 12.50% 25.40%
OpenSubtitles2012 10.30% 23.40%
efnilex12 enÑhu 10.10% 23.80%

Table 50: Accuracy of proto-dictionary generation with different seed dictio-
naries

7.4.6 Gluten-free embeddings for better analogical relations

Attila Novák (personal communication) proposed to test whether gluten-
free word embeddings better represent analogical relations. Indeed, Nemeskey
(2017) obtained better language modeling scores (perplexity values)
with the gluten-free method than with the vanilla word-level model,
but, as far as we know, the method was not evaluated in word analo-
gies. Döbrössy et al. (2019, Section 4.2.11.2) evaluated other sub-word
methods.

Of course, the offset method is vacuous for most of the grammatical
relations (gram1-adjective-to-adverb, gram3-comparative, gram4-superlati-
ve, gram8-plural-noun and gram9-plural-verb) as the corresponding mor-
phemes (e.g. -an/en ‘-ly’) are represented separately. Nevertheless, at
least some of the derivatives in a few relations (gram2-opposite, gram5-
present-participle, gram6-nationality-adjective, and gram7-past-tense) are
considered non-productive or even non-compositional by emMorph, so
they still allow this kind of analysis.

This experiment is somewhat retrospective: we evaluate static word
embeddings for a medium-resourced language in the age of deep, contex-
tualized language models. A couple of years ago, obtaining a clean giga-
word corpus of Hungarian was difficult, but the introduction of Webcor-
pus 2.0 (Nemeskey 2020) led to a somewhat new situation. For that rea-
son, we conduct experiments on increasing slices of the new webcorpus.
Webcorpus 2.0 is published in the form of a few thousand files. We start
with the degenerate case of a single file 2017_2018_2956.tsv.gz, then
consider the files whose name starts with 2017_2018_295, 2017_2018_29,
or 2017_2018_2, which mean more and more files. The size of a typi-
cal corpus ten years ago, in the golden age of static word embeddings,
used to be between the last two, 2017_2018_29 and 2017_2018_2. In
addition, we repeated our experiments on all the Wikipedia files for
comparison.

We saw in Section 7.4.1 that Mikolov-style analogical benchmarks,
both the English ones and that proposed by Makrai (2015), consist of
different relations. In the gluten-free experiments, we found that the
capital oriented relations, the more limited capital-common-countries
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files 2017_2018_2956* 2017_2018_295* wiki* 2017_2018_29* 2017_2018_2*

co
rp

us
siz

e

sentence 66 798 879 317 11 798 744 12 058 626 133 832 368
token 1 246 317 23 261 396 200 357 761 310 703 112 3 395 599 678
type 9 388 149 981 920 965 1 028 343 4 730 753

al
l

paradigm-cell 3.33% 4.85% 30.10% 33.57% 50.56%
each-separate 1.67% 5.05% 33.29% 31.80% 51.96%
word-level 0.06% 7.33% 46.18% 46.97% 57.94%

se
m

an
tic

s paradigm-cell 10.00% 7.94% 17.10% 32.01% 33.49%
each-separate 5.00% 7.94% 24.68% 24.68% 34.59%
word-level 0.00% 10.00% 28.89% 34.14% 47.78%

m
or

ph
. paradigm-cell 0.00% 2.53% 37.91% 34.75% 60.80%

each-separate 0.00% 2.88% 38.46% 37.14% 62.39%
word-level 0.07% 6.33% 52.66% 51.78% 61.74%

Table 51: Mean accuracy scores of word-level and gluten-free (each-separate
and paradigm-cell) word embeddings in word analogies. Each row
corresponds to a word embedding trained on a different part of
Webcorpus 2.0. The left pane shows size statistics of the corpora.

with its 20 atomic relations in Hungarian and especially the more gen-
eral capital-world with its 166 countries, are instable. The non-Wikipedia
corpora cover at most 6 of the “common” atomic relations (i.e. both
the country and the capital), and 22 of the broader selection, which
makes the results for these relations unreliable. For this reason, in the
following we disregard these two relations.

The results can be seen in Table 51 and Figure 20, along with size
statics of the corpora slices in the former. Surprisingly, we see that deg-
lutination makes the representation of analogical relations worse. This
may be due to the fact that deglutination decreases the effective win-
dow size. It would be possible to measure whether the smaller effective
window size is really the cause: One could widen the window according
to the average number of chunks in words. But our understanding is
that this would not advance the matter: at best, we would only show
what is already obvious, that with the same parameters (or, what is
the same, equal computational demand), deglutination does not help.
The semantic/world-knowledge results on the greatest corpus slice are
still worse than those reported by Mikolov, Le, and Sutskever, which
suggests that the Hungarian questions are more difficult.

Nevertheless, corpus size saves the day to the extent that with all
methods (word-level and both variants of deglutination), scores increase
with corpus size. The only exception for this is that with each-separate
the 310K-word corpus results in slightly worse word embeddings than
Wikipedia, which is smaller. This can be explained with the high qual-
ity of Wikipedia as a corpus. Which variant of deglutination is better
changes inconsistently between corpus sizes.
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7.5 smoothed triangulation

Figure 20: Mean accuracy scores of word-level and gluten-free (each-separate
and paradigm-cell) word embeddings in word analogies. Points on
the horizontal axis correspond to word embedding trained on a
different parts of Webcorpus 2.0.

7.4.7 Conclusion

We have created the Hungarian equivalent of the analogical benchmark,
which is one of the main evaluations test-beds of static word vectors. We
trained Hungarian word embeddings and tested how they representa-
tion analogies. To the best of our knowledge, this made Hungarian the
third language (after English and Turkish), where analogy was tested.
The result for morphological analogies is positive, while weak in se-
mantic ones. Besides, we extended the linear translation method to the
GloVe model and applied it to medium-resourced European languages.

7.5 smoothed triangulation for lexical induction

Triangulation infers word translations in a pair of languages based on
translations to other, typically better resourced ones called pivots. This
method may introduce noise if words in the pivot are polysemous. The
reliability of each triangulated translation has traditionally been esti-
mated by the number of pivot languages (Tanaka and Umemura 1994).

As we have seen in Section 7.4.2, and will return to in Chapter 8,
Mikolov, Le, and Sutskever (2013) introduced a method for generat-
ing or scoring word translations. Translation is formalized as a linear
mapping between distributed vector space models (VSM) of the two
languages. VSMs are trained on unlabeled monolingual data, while the
mapping is learned in supervised fashion, using a seed dictionary of
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some thousand word pairs. The mapping can be used to associate ex-
isting translations with a real-valued similarity score.

In this section, which originally appeared as Makrai (2016), we apply
linear mapping to filter triangulated translations, and show that scores
by the mapping are a smoother measure of merit than the number of
pivots. Theoretically, smoothness can be interpreted as that there is
some extra noise in triangulation that is eliminated by linear transla-
tion. The methods we use are language-independent, and the training
data is easy to obtain for many languages. For the line of research
reported in this section, we chose the German-Hungarian pair for eval-
uation, in which the filtered triangles resulting from our experiments
were, to the best of our knowledge, the greatest freely available list of
word translations by the time.

7.5.1 Introduction

Word translations arise in dictionary-like organization as well as via ma-
chine learning from corpora. The former is exemplified by Wiktionary,
a crowd-sourced dictionary with editions in many languages. Ács, Pa-
jkossy, and Kornai (2013) obtain word translations from Wiktionary
with the pivot-based method, also called triangulation, that infers word
translations in a pair of languages based on translations to other, typi-
cally better resourced ones called pivots. Triangulation may introduce
noise if words in the pivot are polysemous. The reliability of each tri-
angulated translation is traditionally estimated by the number of pivot
languages (Tanaka and Umemura 1994).

The project reported in this section exploits human labor in Wik-
tionary combined with distributional information in VSMs. We train
VSMs on gigaword corpora, and the linear translation mapping on di-
rect (non-triangulated) Wiktionary pairs. This mapping is used to filter
triangulated translations based on the similarity scores. The motivation
is that scores by the mapping may be a smoother measure of merit than
considering only the number of pivots for the triangle. We evaluate the
scores against dictionaries extracted from parallel corpora (Tiedemann
2012). In running automatic word alignment on a parallel data set,
Tiedemann (2012) used “GIZA++ (Och and Ney 2003) and the sym-
metrization heuristics (grow-diag-final-and) implemented in Moses
(Koehn et al. 2007) to extract probabilistic phrase tables”, which are
standard in statistical machine translation. We show that linear trans-
lation really provides a more reliable method for triangle scoring than
pivot count.

The methods we use are language-independent, and the training data
is easy to obtain for many languages. We chose the German-Hungarian
pair for evaluation, in which the filtered triangles resulting from our
experiments are the greatest freely available list of word translations
we are aware of.
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hu:letartóztat de:verhaften

en:arrest

Figure 21: Triangulation

7.5.2 Triangulation

A method for creating dictionaries is triangulation through better re-
sourced languages called the pivot (Tanaka and Umemura 1994). The
idea is that if the English translation of the Hungarian word letartóztat
is arrest, and the German translation of arrest is verhaften, then the
German translation of letartóztat should be verhaften, see Figure 21.

Triangles are corrupted by ambiguity in the pivot word (the one in
the middle): German Dose can be translated as can to English (as a
synonym of tin), which, as a verb, translates to tud in Hungarian, which
is unrelated to Dose. Saralegi, Manterola, and Vicente (2011) analyze
two methods for pruning wrong triangles: one is based on exploiting the
structure of the source dictionaries, and the other one is based on an
estimate of distributional similarity acquired from comparable corpora.
The project reported in this section is more similar to the latter in
that it uses distributional information, but in the framework of neural
language modeling.

7.5.3 Linear translation

As we already mentioned in Section 4.2.4, Mikolov, Le, and Sutskever
(2013) discovered that VSMs of different languages have such similar-
ities that a linear transformation can map representations of source
language words to the representations of their translations. The reader
who remembers well, even to the confidence score provided by the map-
ping, can safely skip the following paragraph.

The method belongs to the paradigm of supervised machine learning:
specifically it makes use of a great amount of monolingual data i.e. gi-
gaword corpora for training, plus a seed dictionary of some thousand
words for supervision. Mikolov, Le, and Sutskever formalize translation
as linear mapping W P Rd2ˆd1 from the source (monolingual) VSM Rd1

to the target one Rd2 : the translation zi P Rd2 of a source word xi P Rd1

is approximately its image Wxi by the mapping. The translation model
is trained with linear regression on the seed dictionary

min
W

ÿ

i

||Wxi ´ zi||
2,

215



lexical relations

and can be used to collect translations for the whole vocabulary (by
choosing zi to be the nearest neighbor of Wxi) or to score a translation
z coming from some other source (with the score being the distance
between Wxi and zi).16 In the original setting of the collection mode,
evaluation is done on another thousand seed pairs.

As we introduced in Section 4.2.14, a common error in linear trans-
lation is when there are hubs, i.e. target words that are returned as the
translation of many words, which is wrong in most of the cases. Dinu,
Lazaridou, and Baroni (2015) propose a method for downplaying the
importance of such target words they call global correction. Our experi-
ments here use this method. We return to this problem in Section 8.4.1
in more detail.

7.5.4 Data

Direct and triangulated Wiktionary translations were extracted with
wikt2dict (Ács, Pajkossy, and Kornai 2013)17 that handles 43 editions
of Wiktionary.

The German VSMs have been trained on SdeWaC (Baroni et al. 2009)
and the Hungarian one on the concatenation of the Hungarian Web-
corpus (Halácsy et al. 2004) and the Hungarian National Corpus (Ora-
vecz, Váradi, and Sass 2014) with word2vec18 (Mikolov, Chen, et al. 2013).19

For training and using the linear mapping, we forked20 the imple-
mentation by Dinu, Lazaridou, and Baroni (2015). The German to
Hungarian mapping was trained on the 5K direct word pairs that are
supported by the most pivots in Wiktionary. All the triangles were
scored. The Hungarian word embedding (and some glue code we wrote
for this project) is freely available21.

The scoring was evaluated against a dictionary in the OPUS project22

that has been extracted by Tiedemann (2012) from the OpenSubti-
tles2013 parallel corpus, a collection of translated movie subtitles23.
OpenSubtitles2013 contains 59 languages. The sizes of the German–
Hungarian subsection are shown in Table 52.

16 Mikolov et al. use a surprising combination of vector distances, Euclidean distance in
training and cosine similarity (and distance) in collection (and, respectively, scoring)
of translations. This choice is theoretically unmotivated, but we (Makrai 2015) also
found it to work better than more consistent combinations of metrics. However, see
Xing et al. (2015) for opposing results. We return to this topic in Section 8.5.5.

17 https://github.com/juditacs/wikt2dict
18 https://code.google.com/p/word2vec/
19 The German VSM has been a continuous bag of words model in 300 dimensions

(infrequent words have been cut off at 100 occurrences), the Hungarian one a 600
dimensional one (with a cut-off of 10). The choice of hyper-parameters was not fully
systematic.

20 https://github.com/makrai/dinu15/
21 https://github.com/makrai/efnilex-vect
22 http://opus.lingfil.uu.se/
23 http://www.opensubtitles.org/
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7.5 smoothed triangulation

documents 3208
sentences 3.2 M
German tokens 23.3 M
Hungarian tokens 19.7 M
extracted word pairs 29.1 K

Table 52: The German Hungarian subsection of the OpenSubtitles2013 paral-
lel corpus (Tiedemann 2012)

Most of our training data are general in their domain: web corpora
(SdeWaC, the Hungarian Webcorpus), a curated corpus (the Hungar-
ian National Corpus, as far as a corpus of 754 million words may be
curated), and a crowd-sourced but otherwise standard dictionary (Wik-
tionary). One may ask whether the domain of the reference dictionary
extracted from movie subtitles is general to an appropriate extent, or
how far a problem of domain mismatch between train and test may
arise. We hypothesize that the mismatch is negligible.

7.5.5 Evaluation

We evaluated the vector-based scoring of triangulated translational
word pairs (triangles) in comparison with a dictionary created from
the parallel corpus OpenSubtitles2013. For each (German) word, we
consider as gold translations all the (Hungarian) words that are listed
in the OpenSubtitles2013 dictionary as a translation. Note that the gold
dictionary is automatically generated. A traditional dictionary would
be more reliable, but these are difficult to obtain, so we opted for a
surrogate.

For evaluation, we sort the triangles in two orders: as baseline, by the
number of pivots for the triangle, and more importantly, by the score
in the linear mapping (cos). Then in each order, we compute accuracy
(the ratio of correct translations among the whole set of translations) on
each 1000-word slice of the list (e.g. triangles 1–1000, then 1001–2000,
etc.) taking OpenSubtitles2013 translations as gold.

While the overall accuracy of the linear scoring24 (8.58%) is slightly
worse than that of pivot counting (9.32%), Figure 22 suggests that in
the order by cos, accuracy descends more smoothly than in the order by
pivot count. (The last 22.73% of the nearly 160 K triangles is out of the
vocabulary of one or both of the VSMs, so cos cannot be computed.)
Now we turn to a more quantitative support of this visual analysis.

24 By accuracy, we mean the ratio of good translations among all the words that have
to be translated.

217



lexical relations

0 0.5 1 1.5
¨105

0

0.2

0.4

0.6

0.8

rank of word

ac
cu

ra
cy

by pivot counting
by score in linear mapping

Figure 22: Accuracy curve of triangles sorted by their pivot count as baseline,
or score in linear translations (cos). The later is smoother.

scoring method exp power law

pivot counting 6.1859e-04 5.2182e-04
linear mapping 2.4574e-04 1.1789e-04

ratio 2.51 4.42

Table 53: The mean squared error of fitting parametric curves to the accuracy
values obtained by translation scoring methods. Linear mapping
produces a smoother accuracy decay than pivot counting.

7.5.6 Quantitative analysis of smoothness

We measure the smoothness of the accuracy curves by how well they
can be approximated by a function in some parametric family, see Fig-
ures 23 to 26. We tried two families with similar results. The fist family
is exponential functions of the form

a ¨ expp´bxq ` c,

where x is the index of the vocabulary slice (0 for words 0–1000, 1 for
1001–2000, etc), and a, b, and c are parameters to fit. The second family
is that of power-law functions

a ¨ pbx ` cqk,

where k is another parameter to fit, and the remaining variables play
similar roles as in the exponential case. The error of the fit (i. e. the
lack of smoothness) is quantified as the mean squared error (MSE, not
to be confused with multi-sense word embeddings, which are the topic
of Chapter 8) between the two curves.
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Figure 23: The accuracy curve of pivot counting approximated by an expo-
nential function.

The MSE of the two accuracy curves (scoring translations by pivot
counting or cosine score) approximated by the two families (exponen-
tial or power-law functions) are shown in Table 53. The MSE of the
accuracy curve in pivot counting is 2.51 (resp. 4.42) times more than
that in scoring by the linear mapping, when both curves are modeled
as exponential (resp. power-law) functions. It is probably also worth
mentioning that if we take the 20–30 000 words with the greatest con-
fidence with the two methods, the accuracy is slightly better with the
proposed method than in the baseline, see especially Figures 27 and 28.

7.5.7 Conclusion

We enhanced triangulation, a traditional method in dictionary induc-
tion, by computing a reliability measure for word pairs with linear
translation, which is a smoother method than counting the triangula-
tion pivots. We showcased the method by creating the then largest25

freely available German-Hungarian dictionary. All the 159 K word pairs
were published.

25 In 2023, when this thesis is submitted, the largest Hungarian–German word list
(Schwenk et al. 2019) in OPUS consists of 265 K pairs.
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Figure 24: The accuracy curve of scores by the linear mapping approximated
by an exponential function.
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Figure 25: Accuracy curves of scores by pivot count approximated by power-
law functions.
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Figure 26: Accuracy curves of scores by the linear mapping approximated by
power-law functions.
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Figure 27: The exponential approximations of the accuracy curves.
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Figure 28: The power-law approximations of the accuracy curves.
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The name of the song is called “Haddocks’ Eyes.”’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.

‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what
the name is called. The name really is “The Aged Aged Man.”’

‘Then I ought to have said “That’s what the song is called”?’ Alice corrected herself.
‘No, you oughtn’t: that’s quite another thing! The song is called “Ways and

Means”: but that’s only what it’s called, you know!’
‘Well, what is the song, then?’ said Alice, who was by this time completely

bewildered.
‘I was coming to that,’ the Knight said. ‘The song really is “A-sitting On A Gate”:

and the tune’s my own invention.’

— Lewis Carroll
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8.1 do multi-sense embeddings learn more senses?

Word ambiguity poses a significant challenge for NLP. Contextualized
word representations, such as those provided by deep language models
(Section 4.3), have undoubtedly revolutionized many natural language
processing (NLP) tasks by capturing the context-dependent meanings
of words. Nevertheless, one of the fundamental aspects of language
understanding is capturing lexical semantics, i.e. the meanings and re-
lationships of lexemes. Context-independent representations, such as
static word embeddings, remain valuable for certain tasks, especially
for theoretical ones involving psycholinguistics and beyond. Now we
turn to this topic and its connection to multilinguality and translation.

Multi-sense word embeddings (MSEs) have modeled different mean-
ings of word forms with different (static) vectors since before the ad-
vent of deep language models/contextualized word representations (Sec-
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cross-lingual word sense induction

finom
durva

finom
ízletes

fine
coarse

delicious
tasty

Figure 29: Linear translation of word senses. The Hungarian word finom is
ambiguous between ‘fine’ and ‘delicious’.

tion 4.3). In this final section of the thesis, which originally appeared as
Borbély, Makrai, Nemeskey, and Kornai (2016) and Makrai and Lipp
(2018)1, we propose a method for evaluating MSEs by their degree
of semantic resolution, measuring the detail of the sense clustering,
more precisely their precision as the detectors of word ambiguity. The
method exploits the principle that words may be ambiguous as far as
the postulated senses translate to different words in some other lan-
guage. (Specifically the method does not detect false negatives: words
that are actually ambiguous, but the system attributes them a single
vector.) Besides, in the context of embedding-based dictionary induc-
tion, we also test whether the orthogonality constraint and related vec-
tor preprocessing techniques help in reverse nearest neighbor search.
These more technical questions receive a negative answer.

8.2 towards a less delicious inventory

Word sense induction (WSI) is the task of discovering senses of words
without supervision (Schütze 1998). The goal of WSI can be set at two
levels. We may more modestly aim to distinguish homophony from pol-
ysemy (see Section 2.3.7). Ideally, we could even differentiate between
metonymy and metaphor, two subtypes of polysemy. Approaches in-
clude multi-sense word embeddings (MSEs), i.e. vector space models
of word distribution with more vectors for ambiguous words. In MSEs,
each vector is supposed to correspond to a different word sense, but
in practice, models frequently have different sense vectors for the same
word form without an interpretable difference in meaning.

1 The 2016 paper measured the sense granularity with two methods: Section 2 was
based on computer readable lexica, and Section 3 presented the multilingual method.
The former was the work of Nemeskey. The latter is the joint work of Borbély and
Makrai, with equal contribution.
In the 2018 paper, Veronika Lipp wrote a section on the different kinds of polysemy,
which is not included in this thesis. In the remainder of this second paper, which
appropriately corresponds to that from Section 8.4.1 in this thesis, Makrai went on
alone to elaborate the multilingual method.
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8.2 towards a less delicious inventory

Our first publication in this topic (Borbély, Makrai, et al. 2016) ap-
peared at the 1st Workshop on Evaluating Vector-Space Representa-
tions for NLP. In a progammatic paper of the workshop, Gladkova and
Drozd (2016) called polysemy “the elephant in the room” as far as
evaluating embeddings are concerned. We attacked this problem head
on, by proposing a method for evaluating multi-sense word embeddings
(MSEs).

We emphasize at the outset that our evaluation proposal probes an
aspect of MSEs, semantic resolution, which is not well measured by
the well-known word sense disambiguation (WSD) task that aims at
classifying occurrences of a word form to different elements of a sense
inventory pre-defined by some experts. Our goal is to probe the granu-
larity of the inventory itself.

As we discussed in Section 3.1.1, the central linguistic/semantic/psy-
chological property we wish to capture is that of a concept, the underly-
ing word sense unit. To the extent standard lexicographic practice offers
a reasonably robust notion (this is of course debatable, but we consider
a straight correlation of 0.27 and and a frequency-effect-removed cor-
relation of 0.60 over a large vocabulary2 a strong indication of consis-
tency), this is something that MSEs should aim at capturing. We expect
that the inter-dictionary (inter-annotator) agreement can be improved
considerably by (manual or automated) alignment of word senses in
different dictionaries, to provide a more robust gold standard.

The differentiation of word senses is fraught with difficulties, espe-
cially when we wish to distinguish homophony, using the same written
or spoken form to express different concepts, such as Russian mir ‘world’
and mir ‘peace’ from polysemy, where speakers feel that the two senses
are very strongly connected, such as in Hungarian nap ‘day’ and nap
‘sun’. To quote Zgusta (1971) “Of course it is a pity that we have to rely
on the subjective interpretations of the speakers, but we have hardly
anything else on hand”. Etymology makes clear that different languages
make different lump/split decisions in the conceptual space, so much
so that translational relatedness can, to a remarkable extent, be used
to recover the universal clustering (Youn et al. 2016).

One of the confounding factors is part of speech (POS, recall Sec-
tion 3.1.2). Very often, the entire distinction is lodged in the POS,
as in divorce (noun) and divorce (verb), while at other times this is
less clear, compare the verbal to bank ‘rely on a financial institution’
and to bank ‘tilt’. Clearly the former is strongly related to the nominal
bank ‘financial institution’ while the semantic relation ‘sloping side-
ways’ that connects the tilting of the airplane to the side of the river
is somewhat less direct, and not always perceived by the speakers. The
Collins-COBUILD (CED, Sinclair (1987)) dictionary starts with the se-

2 These results are published in the same Borbély, Makrai, et al. (2016), but this
thesis does not discuss them in detail, because they were conducted mainly by Dávid
Nemeskey.
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mantic distinctions and subordinates POS distinctions to these, while
the Longman dictionary (LDOCE, Boguraev and Briscoe (1989)) starts
with a POS-level split and puts the semantic split below. Of the Hungar-
ian lexicographic sources, the Comprehensive Dictionary of Hungarian
(NSZ, Ittzés (2011)) is closer to CED, while the Explanatory Dictio-
nary of Hungarian (EKSZ, Pusztai (2003)), is closer to LDOCE in this
regard.

Our method is based on the principle that words may be ambigu-
ous to the extent to which their postulated senses translate to different
words in some other language. For the translation of words, we applied
the method by Mikolov, Le, and Sutskever (2013) who train a trans-
lation mapping from the source language embedding to the target as
a least-squares regression supervised by a seed dictionary of the few
thousand most frequent words. The translation of a source word vector
is the nearest neighbor of its image by the mapping in the target space.
In the multi-sense setting, we have translated from MSEs. (The target
embedding remained single-sense, as that is sufficient for our purposes,
and this way we restrict the less know effects of multi-sense modeling
to the model under evaluation.)

Section 8.3 introduces MSEs. In section 8.4, we elaborate on the
cross-lingual evaluation. Part of the evaluation task is to decide on
empirical grounds whether different good translations of a word are
synonyms or translations in different senses. Reverse nearest neighbor
search, the orthogonality constraint on the translation mapping, and
related techniques are also discussed. Section 8.5 offers experimental
results with quantitative and qualitative analysis. It should be noted
that our evaluation is not very strict, but rather a process of looking for
something conceptually meaningful in these unsupervised MSE models.
We make our Hungarian multi-sense embeddings3 and the code for
these experiments4 available on the web.

8.3 multi-sense word embeddings

Vector-space language models with more vectors for each meaning of a
word originate from Reisinger and Mooney (2010). Huang et al. (2012)
trained the first neural-network-based MSE. Both works use a uniform
number of clusters for the subset of words that they select before train-
ing as potentially ambiguous. The first system with adaptive sense
numbers and an effective open-source implementation is a modification
of skip-gram (Mikolov, Sutskever, et al. 2013), multi-sense skip-gram
by Neelakantan et al. (2014), where new senses are introduced during
training by thresholding the similarity of the present context to earlier
contexts.

3 https://hlt.bme.hu/en/publ/makrai17
4 https://github.com/makrai/wsi-fest
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Bartunov et al. (2016) and Li and Jurafsky (2015) improve upon
the heuristic thresholding by formulating text generation as a Dirichlet
process. In AdaGram (Bartunov et al. 2016), senses may be merged as
well as allocated during training. mutli-sense skip-gram5 (Li and Juraf-
sky 2015) applies the Chinese restaurant process formalization of the
Dirichlet process. neela, AdaGram, and mutli have a parameter each
for semantics resolution (more or less senses): λ, α, and γ, respectively.

MSEs are still in the research phase: Li and Jurafsky (2015) demon-
strate that, when hyper-parameters are carefully controlled for, MSEs
introduce a slight performance boost in semantics-related tasks (seman-
tic similarity for words and sentences, semantic relation identification,
part-of-speech tagging), but similar improvements can also be achieved
by simply increasing the dimension of a single-sense embedding.

8.4 linear translation from mses

As we already discussed in Sections 7.4.2 and 7.5.3, Mikolov, Le, and
Sutskever (2013) discovered that embeddings of different languages are
so similar that a linear transformation can map vectors of the source
language words to the vectors of their translations. The reader who
remembers well, even to the confidence score provided by the mapping,
can safely skip the following paragraph.

The method uses a seed dictionary of a few thousand words to learn
translation as a linear mapping W Rd1 Ñ Rd2 from the source (mono-
lingual) embedding to the target: the translation zi P Rd2 of a source
word xi P Rd1 is approximately its image Wxi by the mapping. The
translation model is trained with linear regression on the seed dictio-
nary

min
W

ÿ

i

||Wxi ´ zi||
2

and can be used to collect translations for the whole vocabulary by
choosing zi to be the nearest neighbor of Wxi. We follow Mikolov, Le,
and Sutskever (2013) in (i) using different metrics, Euclidean distance
in training and cosine similarity in collection of translations, and in
(ii) training the source model with approximately three times greater
dimension than that of the target embedding.

In a multi-sense embedding scenario, Borbély, Kornai, Makrai, and
Nemeskey (2016) take an MSE as the source model, and a single-sense
embedding as target. The quality of the translation has been measured
by training on the most frequent 5k word pairs and evaluating on an-
other 1k seed pairs. Details of the data will be specified in Section 8.5.1.

5 Note the l Ø t metathesis in the name of the repo which is the only way of distin-
guishing it from the other two multi-sense skip-gram models.
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8.4.1 Reverse nearest neighbor search

As we introduced in Section 4.2.14, a common problem when looking
for nearest neighbors (NNs) in high-dimensional spaces (Radovanović,
Nanopoulos, and Ivanović 2010; Suzuki et al. 2013; Tomašev N. 2013),
and especially in embedding-based dictionary induction (Dinu, Lazari-
dou, and Baroni 2015; Lazaridou, Dinu, and Baroni 2015) is when there
are hubs, data points (target words) returned as the NN (translation)
of many points (Wxs), resulting in incorrect hits (translations) in most
of the cases. Dinu, Lazaridou, and Baroni (2015) attack the problem
with a method they call global correction. Here, instead of the original
NN, which we will call forward NN search to contrast with the more
sophisticated method, they first rank source words by their similar-
ity to target words. In reverse nearest neighbor (rNN6) search, source
words are translated to the target words to which they have the lowest
(forward) NN rank.7

In reverse NN search, we restricted the vocabulary to some tens of
thousands of the most frequent words. We introduced this restriction
for saving memory, because the |Vsr| ˆ |Vtg| similarity matrix has to
be sorted column-wise for forward and row-wise for reverse ranking, so
at some point of the computation we keep the whole integer matrix
of forward NN ranks in memory. It turned out that the restriction
makes the results better: a vocabulary cutoff of 215 “ 32 768 both
on the source and the target size yields slightly better results (74.3%)
than the more ambitious 216 “ 65536 (73.9%). This is not the case
for forward NN search, where accuracy increases with vocabulary limit
(but remains far below that of reverse NN).

8.4.2 Orthogonal restriction and other tricks

Xing et al. (2015) note that the original linear translation method is the-
oretically inconsistent because it is based on three different similarity
measures: word2vec pre-training itself uses the dot-product of unnor-
malized vectors, the translation is trained based on Euclidean distance,
and neighbors are queried based on cosine similarity. They make the
framework more coherent by length-normalizing the embeddings, and
restricting W to preserve vector length. Mathematically this means
that the matrix W is orthogonal, i.e. the mapping is a rotation.

Faruqui and Dyer (2014) achieve even better results by mapping the
two embeddings to a lower-dimensional bilingual space with canonical
correlation analysis. Artetxe, Labaka, and Agirre (2016) analyze ele-

6 We use lowercase r in the abbreviation, to avoid confusion with recurrent neural
networks.

7 If more target words have the same forward rank, Dinu, Lazaridou, and Baroni (2015)
make the decision based on cosine similarity. This tie breaking has not proven useful
in our experiments.
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ments of these two works both theoretically and empirically, and find
a combination that improves upon dictionary generation and also pre-
serves analogies (Mikolov, Yih, and Zweig 2013) like

woman ` king ´ man « queen

among the mapped points Wxi. They find that the orthogonality con-
straint is key to preserve performance in analogies, and it also im-
proves bilingual performance. In their experiments, length normaliza-
tion, when followed by centering the embeddings to 0 mean, obtains
further improvements in bilingual performance without hurting mono-
lingual performance.

8.5 experiments

8.5.1 Data

We trained neela, AdaGram8, and mutli models on (the original and
stemmed9 forms of) two semi-gigaword (.7–.8 B words) Hungarian cor-
pora, the Hungarian Webcorpus (Webkorpusz, Halácsy et al. (2004))
and the Hungarian National Corpus v2.0.3 (HNC, Oravecz, Váradi, and
Sass (2014)). We used (non-triangulated) Wiktionary as our seed dic-
tionary, extracted with wikt2dict10 (Ács, Pajkossy, and Kornai 2013).
We tried several English embeddings as target, including the 300 dimen-
sional skip-gram with negative sampling model GoogleNews released
with word2vec (Section 4.2.4, Mikolov, Chen, et al. (2013))11, and those
released with GloVe Section 4.2.6, Pennington, Socher, and Manning
(2014))12. We report the best results, which were obtained with the
release GloVe embeddings trained on 840 B words in 300 dimensions.

8.5.2 Orthogonal constraint

We implemented the orthogonal restriction by computing the singular
value decomposition

UΣV “ SJ
t Tt

where St and Tt are the matrices consisting of the embedding vectors of
the training word pairs in the source and the target space, respectively,
and taking

8 I would like to thank Sergey Bartunov for help with his tool.
9 Follow-up work reported in section 8.5.5 applied a third option in preprocessing.

10 https://github.com/juditacs/wikt2dict
11 https://code.google.com/archive/p/word2vec/
12 https://nlp.stanford.edu/projects/glove/
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8192 16384 32768
general linear orthogonal general linear orthogonal general linear orthogonal

any disamb any disamb any disamb any disamb any disamb any disamb

fw
d

vanilla 28.7% 2.40% 32.1% 2.40% 36.2% 3.40% 42.0% 4.70% 36.7% 4.20% 44.5% 6.00%
normalize 28.2% 2.20% 33.7% 3.40% 35.1% 2.80% 44.4% 5.80% 36.6% 3.80% 48.2% 6.00%
+ center 26.6% 2.10% 32.8% 2.90% 32.9% 2.70% 42.0% 4.50% 34.6% 3.50% 43.9% 5.50%

re
v

vanilla 53.8% 11.85% 51.7% 11.37% 58.3% 11.99% 56.6% 12.59% 74.3% 23.60% 73.6% 22.30%
normalize 53.3% 11.61% 50.0% 10.90% 58.0% 12.35% 56.5% 12.59% 73.7% 24.20% 72.8% 22.10%
+ center 51.7% 11.37% 53.3% 11.14% 57.1% 11.99% 57.7% 12.35% 69.7% 22.20% 73.5% 23.00%

Table 54: Precision@10 of forward and reverse NN translations with and with-
out the orthogonality constraint and related techniques at vocabu-
lary cutoffs 8192 to 32768. any and disamb are explained in sec-
tion 8.5.3. The source was an AdaGram model in 800 dimensions,
α “ .1, trained on Webkorpusz with the vocabulary cut off at 8192
sense vectors.

W “ U1V

where 1 is the rectangular identity matrix of appropriate shape. The or-
thogonal approximation was implemented following a code13 by Gábor
Borbély.

Table 54 shows the effect of these factors. (Recall the evaluation pro-
tocol from Section 8.4.) Precision in forward NN search follows a similar
trend to that by Xing et al. (2015) and Artetxe, Labaka, and Agirre
(2016): the best combination is an orthogonal mapping between length-
normalized vectors; however, centering did not help in our experiments.
Reverse NNs yield much better results than the simpler method, but
none of the orthogonality-related techniques give further improvement
here.

8.5.3 Results

We evaluate MSE models in two ways, referred to as any and disamb.
The method any has been used for tuning the (meta)parameters of
the source embedding and to choose the target: a traditional, single-
sense translation was trained between the first sense vector of each
word form and its translations. If the training word is ambiguous in
the seed dictionary, all translations were included in the training data.
Exploiting the multiple sense vectors, one word can have more than
one translation. Attila Novák (personal communication) suggests that
restricting the training to monosemous source words would provide a
cleaner signal. However, with that method, many seed word pairs would
be used for training, and evaluation would have to happen in the lower-
frequency domain. During test, a source word was accepted if any of
its sense vectors had at least one good translation among its k reverse
nearest neighbors (rNN@k).

13 https://github.com/hlt-bme-hu/eval-embed
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dim α{γ p m any disamb

HNC 800 .02 100 48.5% 7.6%
neela Wk 300 – 2 big 54.0% 12.4%
HNC stem 800 .05 big 55.1% 10.4%
HNC 160 .05 3 200 62.2% 15.0%
mutli Wk 300 .25 71 62.9% 17.4%
Webkorpusz 800 .05 100 65.9% 17.4%
HNC 600 .05 5 100 68.6% 16.6%
HNC 600 .1 3 50 69.1% 18.8%
Webkorpusz 800 .1 100 73.9% 23.9%

Table 55: Our measures, any and disamb, for different MSEs. The source em-
bedding was trained with AdaGram, except for when indicated oth-
erwise (neela, mutli). The meta-parameters are dimension, the
resolution parameter (α in AdaGram and γ in mutli), the maximum
number of prototypes (sense vectors), and the vocabulary cutoff
(min-freq, the two models with big have practically no cut-off).

In disamb, we used the same translation matrix as in any, and in-
spected the translations of the different sense vectors to see whether
the vectors really model different senses rather than synonyms. The
lowest requirement for the non-synonymy of sense vectors s1, s2 is that
the sets of corresponding good rNN@k translations are different. The
ratio of words satisfying this requirement among all words with more
than one sense vector is shown as disamb in table 55.

The values in Table 55 are low. This can in part be due to that the
neela and the mutli models were trained with lower dimension than
the best-performing model. This also means that results here are not
comparable among these different architectures. Follow-up experiments
(conducted after the paper review) are reported in section 8.5.5.

Table 56 shows the successfully disambiguated words sorted by the
cosine similarity s of good rNN@1 translations of different sense vectors.
This human evaluation was done by a senior computational semanti-
cist. (We found that most of the few cases when there are more than
two sense vectors with a good rNN@1 translation are due to the fact
that the seed dictionary contains some non-basic translation, e.g. kap-
csolat ‘relationship, conjunction’ has ‘affair’ among its seed translations.
In these cases, we chose two sense vectors arbitrarily. When there are
sense vectors with more than two rNN@k hits, the choice of the corre-
sponding target words is also arbitrary.) Relying on s is similar to the
monolingual setting of clustering the sense vectors for each word, but
here we restrict our analysis to sense vectors that prove to be sensible
in linear translation.
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s covg

E -0.04849 függő addict, aerial 0.4
S 0.01821 alkotó constituent, creator 0.5
S 0.05096 előzetes preliminary, trailer 1.0
S 0.0974 kapcsolat affair, conjunction, linkage 0.33
I 0.1361 kocsi coach, carriage 1.0
S 0.136 futó runner, bishop 1.0
S 0.1518 keresés quest, scan 0.67
S 0.1574 látvány outlook, scenery, prospect 0.6
S 0.1626 fogad bet, greet 1.0
S 0.1873 induló march, candidate 1.0
I 0.187 nemes noble, peer 0.67
E 0.1934 eltérés variance, departure 0.4
E 0.1943 alkalmazás employ, adaptation 0.33
S 0.2016 szünet interval, cease, recess 0.43
E 0.2032 kezdeményezés initiation, initiative 1.0
S 0.2052 zavar disturbance, annoy, disturb, turmoil 0.57
S 0.2054 megelőző preceding, preventive 0.29
IE 0.2169 csomó knotI , lumpI , matE 1.0
E14 0.21 remény outlook, promise, expectancy 0.6
S 0.2206 bemutató exhibition, presenter 0.67
E 0.2208 egyeztetés reconciliation, correlation 0.5
S 0.237 előadó auditorium, lecturer 0.67
E 0.2447 nyilatkozat profession, declaration 0.4
I 0.2494 gazda farmer, boss 0.67
I 0.2506 kapu gate, portal 1.0
I 0.2515 előbbi anterior, preceding 0.67
I 0.2558 kötelezettség engagement, obligation 0.67
E 0.265 hangulat morale, humour 0.5
E 0.2733 követ succeed, haunt 0.67
SE 0.276 minta normS , formulaE , specimenS 0.75
S 0.2807 sorozat suite, serial, succession 1.0
S 0.2935 durva coarse, gross 0.18
I 0.3038 köt bind, tie 0.67
E 0.3045 egyezmény treaty, protocol 0.67
I 0.3097 megkülönböztetés discrimination, differentiation 0.5
I 0.309 ered stem, originate 0.5
I 0.319 hirdet advertise, proclaim 1.0
E 0.3212 tartós substantial, durable 1.0
I 0.3218 ajánlattevő bidder, supplier, contractor 0.6
I 0.3299 aláírás signing, signature 0.67
I 0.333 bír bear, possess 1.0
I 0.3432 áldozat sacrifice, victim, casualty 1.0
IE 0.3486 kerület wardI , boroughI , perimeterE 0.3
I 0.3486 utas fare, passenger 1.0
I 0.3564 szigorú stern, strict 0.5
I 0.3589 bűnös sinful, guilty 0.5
I 0.3708 rendes orderly, ordinary 0.5
I 0.3824 eladó salesman, vendor 0.5
I 0.3861 enyhe tender, mild, slight 0.6
I 0.3897 maradék residue, remainder 0.33
I 0.3986 darab chunk, fragment 0.4
E 0.4012 hiány poverty, shortage 0.5
I 0.4093 kutatás exploration, quest 0.5
...

...
I 0.4138 tanítás tuition, lesson 0.67
I 0.4196 őszinte frank, sincere 0.67
I 0.4229 környék neighborhood, surroundings, vicinity 0.38
I 0.4446 ítélet judgement, sentence 0.67
I 0.4501 gyerek childish, kid 0.67
I 0.4521 csatorna ditch, sewer 0.4
I 0.4547 felügyelet surveillance, inspection, supervision 0.43
E 0.4551 ritka rare, odd 0.5
S 0.4563 szerető fond, lover, affectionate, mistress 0.67
I 0.4608 szeretet affection, liking 0.67
I 0.4723 vizsgálat inquiry, examination 0.67
I 0.4853 tömeg mob, crowd 0.5
I 0.4903 puszta pure, plain 0.22
I 0.4904 srác kid, lad 1.0
I 0.4911 büntetés penalty, sentence 0.29
I 0.4971 képviselő delegate, representative 0.67
I 0.4975 határ boundary, border 0.67
I 0.5001 drága precious, dear, expensive 1.0
S 0.5093 uralkodó prince, ruler, sovereign 0.5
I 0.5097 válás separation, divorce 0.67
I 0.5103 ügyvéd lawyer, advocate 0.67
I 0.5167 előnyös advantageous, profitable, favourable 1.0
I 0.5169 merev rigid, strict 1.0
I 0.5204 nyíltan openly, outright 1.0
I 0.5217 noha notwithstanding, albeit 1.0
I 0.5311 hulladék litter, garbage, rubbish 0.43
I 0.5311 szemét litter, garbage, rubbish 0.43
I 0.5612 kielégítő satisfying, satisfactory 1.0
E 0.5617 vicc joke, humour 1.0
I 0.5737 szállító supplier, vendor 1.0
I 0.5747 óvoda nursery, daycare, kindergarten 1.0
I 0.5754 hétköznapi mundane, everyday, ordinary 0.75
I 0.5797 anya mum, mummy 1.0
I 0.5824 szomszédos neighbouring, neighbour 0.4
E 0.5931 szabadság liberty, independence 1.0
I 0.6086 lelkész pastor, priest 0.4
I 0.6304 fogalom notion, conception 1.0
I 0.6474 fizetés salary, wage 0.67
I 0.6551 táj landscape, scenery 1.0
I 0.6583 okos clever, smart 0.67
I 0.6707 autópálya highway, motorway 0.5
I 0.6722 tilos prohibited, forbidden 1.0
I 0.6811 bevezető introduction, introductory 1.0
I 0.7025 szövetség coalition, alliance, union 0.75
I 0.7065 fáradt exhausted, tired, weary 1.0
I 0.7066 kiállítás exhibit, exhibition 0.67
I 0.7135 hirdetés advert, advertisement 1.0
I 0.7147 ésszerű rational, logical 1.0
I 0.7664 logikai logic, logical 1.0
I 0.7757 szervez organise, organize, arrange 1.0
I 0.8122 furcsa strange, odd 0.4
I 0.8277 azután afterwards, afterward 0.67
I 0.8689 megbízható dependable, reliable 0.67

Table 56: Hungarian words with the rNN@1 translations of their sense vectors.
The first column is a post-hoc annotation by András Kornai (E error
in translation, I identical, S separate meanings), s is the cosine
similarity of the translations, and covg denotes the coverage of the
@1 translations over all gold (good) translations.

14 The basic translation hope is missing
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any disamb

AdaGram 73.3% 18.53%
mutli sense vectors 71.0% 19.46%
mutli context vectors 69.9% 20.76%

Table 57: The resolution trade-off between translation precision and sense
distinctiveness. The source models are 600-dimensional Hungarian
models trained on the de-glutinized version of the Hungarian Na-
tional Corpus. Other meta-parameters have been set to default.

We see that most words with s ă .25 are really ambiguous from a
standard lexicographic point of view, but the translations with s ą .35

tend to be synonyms instead.

8.5.4 Part of speech

The clearest case of homonymy is when unrelated senses belong to dif-
ferent parts-of-speech (POSs), and the translations reflect these POSs,
e.g. nő ‘woman; increase’ or vár ‘wait; castle’.15 In purely semantic
approaches, like 4lang (see Section 3.1.2), POS-difference alone is not
enough for analyzing a word as ambiguous, e.g. we see the only differ-
ence between the noun and participle senses of alkalmazott, ‘employee;
applied’ as employment being the application of people for work. Simi-
larly, in the case of belső ‘internal; interior’, the noun refers to the part
of a building described by the adjective.

More interesting are word forms with related senses in the same
POS, e.g. cikk, ‘item; article’ (an article is an item in a newspaper);
eredmény, ‘score; result’ (a score is a result measured by a number);
magas, ‘tall; high’ (tall is used for people rather than high); or idegen,
‘stranger, alien; foreign’, where the English translations are special cases
of ‘unfamiliar’ (person or language).

Finally we mention two cases where the relation between the two
senses is more idiosyncratic, but in a monosemic approach, they will
have a single representation: beteg means ‘ill, sick; patient’. Though ill
is a health state and patient is a situational role, patients of doctors
are usually ill. A monosemic system is designed to give account of
metaphorical relations like the one between the meanings of világos,
‘bright; clear’ as well.
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8.5.5 Comparison of AdaGram and mutli

After the compilation of the 2017 edition of the Festschrift where Makrai
and Lipp (2018) appeared, we trained models that enable a more fair
comparison of AdaGram and mutli in terms of semantic resolution: we
trained 600-dimensional models for Hungarian to have the 2:1 ratio
between the source and the target dimension that has been reported
to be optimal for this task (Mikolov, Le, and Sutskever 2013; Makrai
2016). This time we used the deglutinized version (Section 4.2.11.1) of
the Hungarian National corpus for better morphological generalization.
Recall from Section 7.4.6, that was not necessarily a good choice. The
word embeddings are available online16.

We can see in table 5717 that there is a trade-off between the two
measures, which may be interpreted to indicate that the more specific a
vector is, the easier it is to translate, but if the vectors are too specific,
then the translations may coincide.

While contextualized word representations of deep language models
offer themselves as a starting point for the computational analysis of
word ambiguity, the researcher interested specifically in the Dirichlet
Process modelnig of word ambiguity may analyse the observed and
inferred number of word senses as a function of word frequency in these
models.

8.6 conclusion

We proposed a method for measuring the precision of multi-sense word
embeddings as detectors of word ambiguity. The method is based on
linear translation. Investigating the effect of a couple of standard tricks
of linear translation, it turns out that inverse neighbors are important,
while orthogonal restriction and related techniques are not, even slightly
harmful.

By comparing the two main MSE models, AdaGram and mutli, we
found that taking former as the source space, we get good translations
more often, however over-disambiguiation also happens more frequently
than with the latter. This is in line with the intuition that the more sub-
tle the meaning inventory, even to the extent of over-disambiguiation,
the easier it is to translate.

15 We note that some POSs in Hungarian have blurred borders, e.g. it is debatable
whether the nominal önkéntes ‘voluntary; volunteer’ is ambiguous for its POS.

16 https://hlt.bme.hu/en/publ/makrai17
17 There are two mutli models because Skip-gram and the related MSE models rep-

resent each word with two vectors, u and v in the formula ppwi | wjq 9 exppuJ
i vjq,

that mutli calls sense versus context vectors, respectively.
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These results display two properties, one of them remarkable.

— Levelt, Roelofs, and Meyer 1999
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Learning, and then understanding what we have learned, what more
we could learn. The dual role of distributional and symbolic mean-
ing representations can be summarized this way. The past decade and
even more the past few years made it possible to train neural language
models. Shallow models show already remarkable properties, and the
process towards human level linguistic understanding has continued
with deep language models. However, in order to understand what the
model has really learned, the researcher has to investigate the represen-
tation by testing hypotheses stated in discrete terms. While the focus of
present natural language processing is deep modeling, investigating the
linguistic content of the model is not trivial even with shallow, static
word embeddings. This thesis is a collection of works within this under-
taking. Here, we summarize the most important result of the previous
chapters.

9.1 pagerank for the importance of concepts

One of our contributions to this connection is related to the definition
graph (Section 3.3.2), which is computed from word definitions, and
can be transformed to word embeddings (see Sections 9.4.2 and 9.4.3).
As a kind of feedback, the definition graph can be used to measure the
importance of each defining symbol (in the case of 4lang: concepts, bi-
nary relations, deep cases, and encyclopedic references). Indeed, in Sec-
tion 3.3, we quantified the importance each node of the seman-
tic network plays in the recursive process of defining words by
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each other. It turned out that the greatest burden is worn by special
elements in the formalism, especially deep cases (i.e. the place-holders
of the representation of an argument within the representation of a
function), nodes corresponding to lexical relations (e.g. the compara-
tive -er), more or less contentful unary or binary predicates (e.g. exist,
want), and special nodes in the formalism, e.g. other, which blocks the
unification of two nodes in a definition with the same label.

9.2 thematic placeholders of arguments in 4lang

It is not surprising that for the representation of a phrase headed by
a predicate, the representation of the arguments is very important. Ar-
gument labels are needed to indicate where the representation of each
argument has to be inserted. Accordingly, in Chapter 5 we proposed
a set of deep cases along with the hand-written formulaic def-
initions of the core vocabulary of 4lang (Section 3.2). Deep cases
denote the nodes in the graph representing the meaning of a predicate
where the representation of the argument (single word, entity or phrase)
has to be inserted. In theory, the interpretation of a verb along with
an argument (i.e. the satisfaction of selectional preferences) is lead by
spreading activation (Section 2.2.2) in the definition graph, which is
the second role of this graph in the thesis.

Our theoretical principle has been to capture syntactic-semantic reg-
ularities that appear in many languages. In the radically monosemic
approach of 4lang, the transitive and the intransitive use of the same
verb is represented with the same formula, which contains both the
agent (AGT) and the patient (PAT). Unaccusative verbs were attributed
a deep patient. The recipient of both physical and mental transfer verbs
have been represented as a deep dative. While the inventory of deep
cases consists of just eight members, three of these are locative (TO,
FROM, and the static AT). While most relational nouns are linked to
the related entity with a possessive (POSS, e.g. the absence of war), our
radical monosemic approach also implies that relational nouns whose ar-
guments have similar linguistic markers as goals of verbs are attributed
a deep goal (TO, e.g. need for peace). The roots of affixes, the objects
of adpositions, the referents of adjectives (e.g. money is necessary for
war), and some exceptional relations are marked as semantically neural
relations (REL).

9.3 subject-verb-object association modeling

The verb is the pivot of a sentence, and we were interested in what a
purely distributional approach tells us about argument structure, espe-
cially about the subject and the object. In Chapter 6, we investigated
the following questions:
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9.3 subject-verb-object association modeling

• Which association measures are the best to characterize the co-
occurrences of English verbs with their subjects and objects?
The simplest testbed for distributional methods is how they pre-
dict similarity, so we chose to experiment with the comparison
of English subject-verb-object triples. We implemented sev-
eral measures, including multiple novel generalizations of
weighted positive pointwise mutual information (PPMI)
to the higher-order (>2) case. Pointwise mutual information
(PMI) has two higher-order generalizations, the more popular one
which is still called PMI in the literature, and interaction informa-
tion. We combined both generalizations with salience (Kilgarriff
et al. 2004) and normalization (Bouma 2009). The former is mo-
tivated by lexicographic practice and the latter by making the
function bounded.
Modeling the three-way interactions of English subject-
verb-object triples with tensor decomposition, these weighted
higher-order PPMI variants have proven better than the
baselines (log frequency, vanilla PPMI, and log Dice).
Specifically the best result was obtained by the non-negative
Canonical Polyadic Decomposition (CPD) of a salience-weighted
PMI tensor, followed by the general Tucker decomposition of a
normalized PMI tensor.

• We also asked whether empty argument fillers (subjects or, more
importantly, objects, e.g. John drinks) should be included in our
co-occurrence statistics for better generalization over the tran-
sitive and the intransitive uses of the same verb, or they just
introduce noise. Our two best results (non-negative CPD and
general Tucker) suggest that the inclusion of empty objects
does benefit word representation. This is also in line with our
monosemic approach discussed in the previous chapter, i.e. that
the 4lang formulas of verbs with optional objects represent the
two uses with the same formula.

• Our two tensor decomposition algorithms, CPD and Tucker, have
very different time-complexity: Tucker is much faster. On the
other hand, tensor decomposition has hyper-parameters like the
decomposition rank and the frequency cutoff. Both are related
to memory limitation, especially the latter. Nevertheless, while
the cutoff is only to ensure that the decomposition fits within
the memory limits, the rank is an essential parameter. Already
Landauer and Dumais (1997) argued that the 300 dimensions of
LSA (Section 4.1.3) are psychologically real. We found that the
two algorithms reach the best results with similar rank, what is
beneficial, because a fast parameter tuning with Tucker provides
the hyper-parameter value for CPD. Specifically, we found that,
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the best results are obtained with a rank of 64, either with non-
negative CPD or with general Tucker.

• How does the trade-off between the three hyper-parameters re-
lated to the size of the decomposition (i.e. the decomposition
rank, the inclusion of empty fillers, and the frequency cutoff) look
like? If we exclude empty fillers, a more generous frequency cut-
off may theoretically lead to better results than if we change only
one of these two parameters, i.e. a larger training sample can
compensate for the loss of intransitive information. It turns out,
that we can indeed get relatively good Spearman correlation this
way (0.6942 with a cutoff of 1 million, instead of our overall best
0.7359)1, but with general Tucker decomposition (instead of non-
negative CPD) and log-Dice (instead of salience-weighted PMI).

• Do latent dimension of our word embeddings reflect lexical knowl-
edge? Dimensions obtained with the two non-negative al-
gorithms are indeed semantically interpretable (e.g. story
catch(es) attention), while those from general decomposition are
less convincing. This is in parallel with the general motivation
of non-negative representations by interpretability, what we also
saw in our hypernym extraction experiments (Section 9.4.1).

• Can the difference between each noun as a subject versus
as an object correspond to some intuitive difference between
subjecthood and objecthood? Indeed, the greatest difference be-
tween the two roles is found with personal pronouns (or the miss-
ing filler, what is not surprising: an empty subject is not similar
to an empty object), while the smallest is with abstract nouns
like doubt. A possible explanation is that the former are much
more frequent in agentive roles than other nouns, while they
are infrequent in patient roles. Words in the second group can
be framed in language both as if they were animate and as inan-
imate. Future or hope are not alive in the biological sense, but
they are often attributed agentive roles. This again supports the
monosemic/force-dynamic (Section 2.3.4) approach to the treat-
ment of metaphorical word usage that we follow in 4lang: when
future shows something is essentially the same as when a teacher
shows something on the blackboard.

9.4 lexical relations, analogy, and translation

The last two chapters returned to our main question, the relation be-
tween symbolic and neural representations. How are lexical relations
like hypernymy, antonymy, and causality represented? Is the similar-
ity of relations captured by the vector offset method (Section 4.2.4)

1 A correlation of 0 means independence and 1 is the theoretical maximum.
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9.4 lexical relations, analogy, and translation

in morphologically rich languages like they are in English? Is a lin-
ear mapping of GloVe vectors suitable for word translation between
medium resourced languages as word2vec vectors are between English
and Spanish?

Before applying analogical tests, which benchmark the flexible pro-
cessing of any kind of relation, we paid special attention to three indi-
vidual relations: hypernym, antonymy, and causality.

9.4.1 Hypernym extraction with sparse word representations

Section 7.1 investigated hypernym with the tools of sparse coding. A
variant of the distributional hypothesis, the distributional inclusion
hypothesis (Weeds and Weir 2003; Chang et al. 2018) says that hyper-
nymy can be modeled based on that if animal is a hypernym of dog,
animal will be grammatical in every context where dog is. It is less clear
whether animal will appear in every context at least as frequently as
dog does.

Sparse vectors are embedding vectors most of whose coordinates are
zero, and non-zero coordinates ideally correspond to interpretable prop-
erties. It varies with models whether interpretability follows from the
construction of the vectors, or the interpretation needs to be inferred
from some latent structure. Even in the latter case, sparse representa-
tions tend to be more interpretable than less restricted ones. As far
as sparse attributes (i.e. non-zero coordinates in sparse word repre-
sentations) correspond to contexts, it follows from the distributional
inclusion hypothesis discussed above that hypernymy should boil down
to pointwise comparison: ideally, animal is a hypernym of dog if and
only if dog has all the properties animal has, which in turn is equivalent
that all the coordinates which are non-zero in animal are non-zero in
dog. Formal concept analysis (FCA) captures this same idea in strict
discrete terms. Our experiments2 showed that while the discrete
FCA approach is brittle, and the resulting features are counterpro-
ductive in the task, the probabilistic distributional relaxation
implemented with sparse coding gave much better results, and
enabled us to win three subtasks of SemEval-2018 Task 9.

9.4.2 Antonymy in classical and definition-based word embeddings

In Section 7.2, we took a word embedding computed from the
definition graph with spectral clustering, and tested it in the task
of representing sub-types of antonymy. This was the third role
that this graph played in this thesis. (The first one was Section 9.1, and
the second one was mentioned in Section 9.2.) In this third case, we
used it to compute a word embedding, which we compared to some

2 The ratio of contributions is Berend: Makrai = 2:1
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other embeddings which were famous at the time. Specifically,
we tested3 which subtype of antonymy is represented in each
word embedding. The embedding obtained from the definition
graph turned out to be similar in this respect to variants of
HLBL (Section 4.2.2) which used to be a famous word embedding
set, what means that our embedding passed the sanity check. This
alternative way of embedding creation enables full interpretability and
control over the content of the word representations.

9.4.3 The geometry of causal word pairs

Our investigation of causality in Section 7.3 exemplifies exploratory
computational linguistics: we started with a visual inspection of cause-
effect pairs in the word embeddings space. The 2D plots sug-
gested a very interesting property: the lines connecting each cause
with its effect run close to a common “center of causality”.
We used statistical tests to see whether the property holds
in the original space. Senna, a classical early word embedding for En-
glish (Section 4.2.3) showed the property, while many other early
word embeddings and some of ours computed from the definition graph
did not. (This was the third role that this graph had in the thesis.)
Nevertheless, another linear algebraic formulation makes this finding
cognitive linguistically appealing: we can say, at least in Senna, that
the meaning of an effect is a combination of the meaning of
the corresponding cause and a uniform causal element.

9.4.4 Analogy in word embeddings for a morphologically rich language

After investigating the classical lexical relaxations of hypernym, anto-
nymy and causality, we created a benchmark of analogical re-
lations for the morphologically rich Hungarian, and applied
them to test static word embeddings (Section 7.4). To our best
knowliedge, Hungarian was the third language to be tested for analogy
(after English and Turkish). While for the semantic relations, the
results were poor, even if we change to gluten-free embed-
dings, we found that morphological relations are reflected in
a similarly clear fashion as in the better-resourced languages.

3 See the specific contributions of Makrai and Nemeskey in Footnote 7 in Section 7.2
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9.4.5 Linear translation

9.4.5.1 Mid-resourced European languages

In translation from mid-resourced European languages (also in
Section 7.4), we obtained similar scores as the seminal papers “out of
the box” even with GloVe instead of word2vec.

9.4.5.2 Smooth filtering of triangulated translations

Besides, in Section 7.5, we combined linear word translation with
the old method of triangulation, a.k.a. pivot-based word trans-
lation. We filtered a list of triangulated translational word
pairs based on the distance cospt, Msq between the embedding vec-
tor t of the word in the target language, and the vector obtained by
mapping the source vector s, where M is the translation mapping. Accu-
racy decreases both with the number of the pivots and with the cosine,
but we found that the latter score is smoother than the more tra-
ditional measure, which suggests that some factor of noise is
eliminated, and good translations can be selected based on the cosine
score more reliably. We demonstrated the method by publishing the
largest German-Hungarian dictionary (word pair list) of the
time.

9.5 linear translation for word sense induction

One of the motivations for the tensor decomposition approach to word
modeling (see Section 9.3) is that three-order co-occurrences like subject-
verb-object triples cannot be reduced to two-order ones (subject-verb
pairs and verb-object pairs). It goes without saying that this higher-
order behavior is related to that verbs are polysemous, they are used
in very flexible ways, a phenomenon Pustejovsky (Section 2.3.7) calls
co-composition. More generally, other major parts of speech are also
often ambiguous, which is one of the greatest problems in lexical se-
mantics.

Distributional models including static word embeddings basically rep-
resent each word form with a single embedding vector. Nowadays a dis-
crete representation with more vectors for ambiguous words could be
obtained from contextualized word representations. Nevertheless the
problem could be targeted before the advent of deep language mod-
els as well, by learning discrete representations direly. These are static
multi-sense word embeddings (MSE).

Word ambiguity can be divided to homonymy and polysemy. In Chap-
ter 8, we4 proposed an evaluation method for MSEs as detec-

4 The idea is joint work with Borbély and Kornai, the elaboration is individual con-
tribution, see Footnote 1 in Chapter 8.

241



summary

tors of homonymy. The method fits in the context of embedding-
based dictionary induction, and we also analyzed the interaction
between some techniques of this paradigm, especially reverse nearest
neighbor search and the orthogonality constraint. We found that re-
verse nearest neighbors yield much better results than the
forward method (e.g. 74.3% instead of 36.6% with the greatest vo-
cabulary cutoff). While the orthogonality constraint helps in the for-
ward case (48.2%), none of the orthogonality-related techniques
give further improvement in the reverse case.

Using our two measures, any, which quantifies translation
quality in general, and disamb, which measures the precision
of ambiguous word detection, we compared the two SOTA
MSE models, AdaGram and mutli. We found a trade-off between
the two measures: the more specific a vector is, the easier it
is to translate, but if the vectors are too specific, then the
translations may coincide.

9.6 final remarks

The direct message of this thesis is that the conceptual structure of
word meaning can be read out from distributional models. Hypernymy
is a relatively straightforward testbed, where we showed the remarkable
role of sparse attribute pairs (Section 9.4.1). Causality, which would
appear to lie out of the range of word-level computational methods,
also shows some simple geometric structure (Section 9.4.3).

Taking a step further, this thesis proposes two very general principles
for data-driven computational linguistics: First, we found that it is
beneficial to treat similar phenomena with a unified mechanism, what
is strongly related to 4lang’s monosemic principle. One example is the
transitive and the intransitive use of the same verb, the other one is
concrete and metaphoric uses of the same word.

Our second lesson is that it is often beneficial to apply methods from
some branch of computational lexicography to another one. Firstly, the
definition graph is an interesting intermediary between the conceptual
and the linear algebraic domain, as this kind of representation is com-
puted from word definitions, but lends itself for distributional methods.
Second, the difference between polysemy and homonymy is another field
where this thesis directly translated a principle of lexicology to distri-
butional terms. Intuitively it is clear that the distinction is related to
translation: While it is possible that different uses of a polysemous word
can be translated with the same word, this can happen to homonyms
only by coincidence. In this thesis, we formulated the conceptual rela-
tion between translation and the types of ambiguity by applying the
linear word translation to measuring the recall of multi-sense word em-
beddings as the detectors of word ambiguity.
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9.6 final remarks

The confluence of methods is evident in data science (e.g. computer
vision models are applied to sound spectrograms). The preceding chap-
ters suggest that lexical/cognitive linguistics fits in this picture of the
future nicely.
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