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Vector space language models (VSM)

I words are represented by vectors

I dense real-valued vector of some hundred dimensions

I vectors capture different features (syntactic, semantic. . . )

I extend to phrases and short sentences

I compositional morphology
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. . . for natural language processing

I speech recognition (Schwenk, 2007; Dahl et al., 2011)
I many task with the same model (Collobert et al., 2011)

I language modeling
I part-of-speech tagging,
I chunking,
I named entity recognition,
I semantic role labeling and
I syntactic parsing

I searching for images using text (Weston et al., 2010)

I statistical machine translation (Schwenk et al., 2012; Le
et al., 2013)

I paraphrase detection (Socher et al., 2011)

I word sense disambiguation (Bordes et al., 2012)

I sentiment analysis (Glorot et al., 2011; Socher et al., 2011b)



Vector space semantics
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Compositionality in VSM

I compositional representation of words
I stem + affix

v (years) ≈ v (year) + v (-s)

I lexical decomposition, vector offset method (Mikolov et al.,
2013b)

v (queen)− v (woman) ≈ v (king)− v (man)

woman

aunt

man

uncle
queen

king

I at least for frequent words

I compounds (Wang et al., 2012)

v (butterfly)
?
= v (butter) + v (fly)

v (buttermilk)
?
= v (butter) + v (milk)

I phrases and short sentences



Psychological reality of VSMs I

VSM

text brain

meaning

I Behavioral tests of word
similarity

I human judgments
(synonymy, category
membership)

I feature-norming:
participants list the
features to words

I word priming data

I modeling neural activations
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VSM from co-occurrence matrix

I co-occurrence matrices
I rows are words
I columns are contexts

I document (Latent semantic analysis, Huang et al. (2012))
I words

I elements: co-occurrence in a small window of words

I dimensionality reduction

I semantic similarity of words ≈ cosine similarity of vectors



Neural language model
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I machine learning, backpropagation

I Bengio et al. (2003, 2013)

I input layer: 1-of-V

I w
(1)
jk : word embedding (shared by tasks (Collobert et al.,

2011))
I output layer

I nodes represent the probability of each tag



Brain imaging

what is measures time res spatial res

MEG magnetic field caused by many
thousands of neurons firing to-
gether

1000 Hz poor

fMRI change in blood oxygenation
caused by neural activity

0.5–1 Hz good
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LSA in neurosemantics

I task of neurosemantic decoding (Mitchell et al., 2008): find
neural basis images to semantic dimensions

I Pereira et al. (2011)’s system matches the brain images with
corresponding articles from Wikipedia

I Palatucci et al. (2009): zero-shot learning of

fMRI→ word



VSM using brain activations Fyshe et al. (2014)

I incorporate brain activation data recorded while people read
words

I complementary strengths of corpus and brain activation data

I predictive power generalizes across brain imaging technologies
I experiments

I correlation to behavioral data
I brain →lin word
I 2 vs 2
I brain → corpus vector (for rare words)
I data is made available
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Ideas from cross-modal mapping

I mapping between vector representations of words and images

I Linguistic motivation: grounding and reference

I searching for images using text (Weston et al., 2010; Socher
et al., 2013)

I future: question answering from pictures



Research proposal: mapping between neural language
models and brain activation vectors

I choice of the mapping
I Lazaridou et al. (2014) try 4 learning algorithms

I Linear Regression
I Canonical Correlation Analysis (CCA)
I singular value decomposition
I neural network

I neural network: the hidden layer as a cross-modal
categorization

I linear regression
I non-linearity is already present in embeddings
I successfully used for translation by Mikolov et al. (2013a)
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An eternal topic in distributed language modeling

The past tense debate
I characterization of implicit linguistic knowledge

I rules
I Pinker (1984)
I language acquisition is rule induction
I innate linguistic universals
I duality of regular and irregular forms

I parallel distributed processing (Rumelhart and McClelland,
1986)



The past tense debate

Acquisition of the past tenses of English verbs
I stages

1. only a small number of verbs in the past tense (high-frequency,
mostly irregular)

2. much more verbs in the past, the majority is regular
I wug test
I over-regularization (comed/camed)

3. regular and irregular forms coexist
I over-regularizations remain

I model

phon pres→ feat pres
neural network−−−−−−−−→ feat past→ phon past

I feat: feature trigrams
I simulates

I productivity
I stages (with transition)
I etc. (e.g. change of the ratio of past + ed : pres + ed

over-regularizations)



Phonological complexity (PC)

I regular past tense verbs involve greater phonological
processing

I evidenced by early neuroimaging studies

I regular verbs are phonologically more complex than irregulars

I Oh et al. (2011) experiment manipulating regularity and PC

I main effect of both
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Derivational morphology in a VSM

v (years) ≈ v (year) ◦ v (-s)

I first real-scale system: Lazaridou et al. (2013)

I compositional methods

I building bound morpheme vectors

I morphological analysis given
I experiments:

I approximating high-quality corpus-extracted vectors
I comparing the quality of corpus-extracted and compositionally

generated words

I future work: composition and morphological induction jointly



Proposal: vector offset analysis of rich inflections

I vector offset method (Mikolov et al., 2013b)

v (years) ≈ v (year) + v (-s)

emberrel

nagybácsival

ember

nagybácsi

királlyal

király

I problems:
I embedding for a language with a rich morphology

I Mikolov et al. (2009): speech recognition of Czech lectures

I inflected words are rare
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Ambiguity

I psycholinguistics
I ambiguous words in different contexts
I the time course of ambiguity resolution

I VSM: Multiple Word Prototypes (Huang et al., 2012)

Center Word Nearest Neighbors

bank1 corporation, insurance, company
bank2 shore, coast, direction

star1 movie, film, radio
star2 galaxy, planet, moon

cell1 telephone, smart, phone
cell2 pathology, molecular, physiology

left1 close, leave, live
left2 top, round, right
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Connection to GOF-KR

In Makrai et al. (2013) we experiment with a VSM computed from
formal definitions of words in a defining vocabulary

I definition matrix:
I rows and columns correspond to words

Dij =

{
1 if wj appears in wj

0 otherwise

I dimensionality reduction from |V | to 50 or 100
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