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Abstract

This thesis addresses the question of reducing the training cost of machine
learning-based affective classifiers in terms of annotated labels required.
Extracting information from textual and/or audio contents of the users‘
utterances provides a set of features that would serve as a reliable and inexpensive
mean for emotion recognition in commercial software development. By extracting
such features from a dialogic context, the interpersonal aspect of verbal utterances
would also be analyzed. The latter appears to primarily influence the generation
and control of the interlocutors‘ interdependent affective states.
Supervised machine learning-based classification of the features requires the
classifiers to be pre- trained on labeled data before they are deployed for real-time
recognition. Owing to the diversity of the vocabulary and audio characteristics,
emotion/sentiment recognition in spontaneous dialogues is a very complicated
task, typically demanding a large amount of labeled training data to sustain
satisfactory recognition accuracy.
In this thesis, a feature set and its corresponding computational application
methods are proposed for the improvement of real-time affective state recognition.
The proposed methods allow for reasonably accurate classification results while
working with small and, for that reason, relatively easy to prepare, or large but
unlabeled sets of audio/textual data. As a novel approach, the author argues that
emotion-interdependent dialogue acts can improve emotion/sentiment/polarity
recognition even on small sets of labeled data, thus making them applicable for the
pre-training of commercial games, dialogue systems, and other applications
requiring real-time recognition of affective states. Building on appraisal theory
definitions of affective states, ‘interpersonal relations-controlling‘ communication
functions are defined as ‘emotion-sensitive‘ dialogue acts, and the corresponding
model is developed.
The model is tested with:

a) supervised deep learning methods trained on small collections of labeled data,
and

b) semi-supervised, deep learning-based multiple instance-learning methods
trained on unlabeled data.

Results of the experiments suggest that the proposed dialog act model allows for
reliably classifying the affective states of polarity and emotions with algorithms
developed for unlabeled data, while also significantly improving sentiment
recognition accuracy when applied on labeled data.
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Chapter 1

Introduction

Emotions are one of the building pillars of human behavior. Not only they
relate to the internal and external stimuli one experiences every minute of every
day they also influence how one behaves, or deal with their surroundings.
Ultimately, they are the motives behind one‘s goals and actions, even if they are
often restricted/ or redressed by rationality.

Naturally, as argued by Robert Plutchik [1], emotions also affect the whole
social regulation process of human beings. Conversations are inherently
influenced and regulated by direct or subtle emotions [2]. In the field of affective
computing, there have been many studies on the nature and characteristics of
affective states with the main focus on achieving reliable automatic recognition
and accurate imitation of affective states in the form of emotions, sentiments or
emotion polarities as both individual and social phenomena [3].

With the advancement of computational technology, automatic recognition
became insufficient, and a growing need for real-time recognition emerged. In
several commercial software, delayed inference - which would allow for feature
engineering and extraction - of the affective states is not available, real-time
reaction is needed. In particular, in the field of affective computing, real-time
recognition of affective states is expected to be achieved within 100 ms [4].
Dialogue systems and affect-aware games [5] are typical examples of such
applications since these systems try to continuously adapt their content
according to the perceived affective states of the human interlocutors.

Real-time recognition of affective states has been realized mostly in
non-commercial, academic projects, utilizing supervised machine learning
methods (as conventional in the case of classification problems). These
supervised algorithms are usually trained and tested on physiological features [6]
or facial expressions [7], and though showing promising results in a laboratory
environment, they rely on carefully positioned, costly sensors. Thus, they cannot
yet be applied efficiently in commercial applications. Dialogue systems, for
example, are often applied as telephone-customer-service agents and can rely
only on audio features. Even in the case of computer games, where facial
recognition is often feasible, a shadow on the user‘s face, unleveled position of the
camera, or the presence of facial hair could lead to incorrect classification [8].
The use of headphones (which is common in multiplayer gaming sessions) poses
even a bigger challenge due to the ‘noisy‘ representation of the player‘s face.
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Extracting information from the textual and/or audio content of the
users‘utterances would provide a less technology-sensitive, and thus less
easily-perturbed set of features that could serve as a reliable and inexpensive
mean for emotion/sentiment/polarity recognition, suitable to be applied in
commercial software development. Salvaging audio recordings of conversations
would provide audio data which is also transcribable into text. Furthermore, in a
dialogic environment, the interpersonal aspect of the verbal utterances can be
analyzed, which is the main factor in the generation and control of the
interlocutors‘interdependent affective states.

As an example of text processing in commercial software, the game, named
Facade [9] uses a rule-based approach for real-time emotion recognition. Systems
developed lately, however, such as the commercial tool of EmoVoice [10], or the
systems proposed by Fayek et al. [11], are achieving significantly better real-time
emotion recognition with audio data classifiers that use supervised machine
learning methods. Nevertheless, supervised learning necessitates classifiers to be
pre-trained on labeled data before they can be deployed for real-time recognition.
Owing to the diversity of vocabulary and audio features, recognition of affective
states in spontaneous dialogues is a complex task, demanding a large amount of
labeled data to ensure satisfactory recognition accuracy. The amount of data
needed is significantly larger than it would be for example in the case of
physiological (e.g. facial) features [12].

The advancement of machine learning-based emotion/sentiment/polarity
recognition is therefore necessary in a way to allow for reasonably accurate
classification results while working with small, and therefore relatively easily
prepared, or large but sparsely labeled datasets. It is especially important in the
case of verbal data, for which there is a lack of large datasets labeled with
emotion-related psychological constructs due to the complexity of the cues it
provides. Methods applicable on conversational data are preferable, to provide
the learning algorithms additional contextual cues. This dissertation
concentrates on the problem of achieving accurate recognition of affective states
on conversational datasets equipped with a small amount of labeled textual
and/or audio datapoints.

One promising approach to advance supervised machine learning-based
recognition of affective states in dialogues, is to consider the psychological
context (rather than the physiological context) in the form of intentions. The
‘intentional‘ context is conventionally represented as dialogue acts—
pragmatic-level linguistic units. The use of dialogue acts for affective recognition
was considered in several previous studies [13], [14], [15]; [16]. The acts discussed,
however, are mostly related to ‘communication maintenance‘ or ‘domain related‘
intentions, which do not correlate well with emotions. Consequently, the
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improvement achieved through the application of dialogue acts in these studies
was relatively low [13] even in binary classification scenarios.

In this thesis, the author examines the following questions:

• Can intentional context improve the recognition of affective states in an
annotation-efficient way?

• What type of intentional context should be used?

• Through what methods the intentional context can be used?

The author argues that affective state-interdependent intentions can improve
emotion/sentiment/polarity classification even on small sets of labeled data, thus
being applicable for the pre-training of commercial games, dialogue systems, and
other applications requiring real-time recognition of affective states. Building on
appraisal theory definitions of affective states, ‘interpersonal relations controlling‘
communicational functions are proposed as ‘emotion-sensitive‘ dialogue acts, and
the corresponding model is developed. The model is validated in

a) empirical experiments in comparison to well-known ”conventional” dialogue
act models

b) computational experiments as a complementary feature set for supervised
deep learning methods

c) computational experiments as an indirect target-label set for a multiple
instance-learning- based semi-supervised method.

All validation experiments are conducted on conversational data to ensure that
the proposed computational algorithms can learn from the sequentiality between
the interlocutors‘turns, presumably influenced by the interactive affective states.
The algorithms are trained with audio and textual features of Japanese and English
dialogues.

The rest of the thesis is organized as follows. Chapter II describes previous
studies where the classification of affective states was conducted through
approaches that could be applied to train classifiers on small amount of labeled
data. Chapter III introduces the proposed model of emotion-sensitive dialogue
acts and the conceptual basis behind its development. In Chapter IV empirical
and computational methods are proposed to validate the applicability of the
model. Chapter V elaborates on the experimental setups, implementational
details, and results of the empirical and computational validation approaches.
Chapter VI discusses the results and compares the validation methods from an
applicational perspective while elaborating on their strengths and shortcomings.
Chapter VII offers concluding remarks and outlines possible future work.
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Chapter 2

Literature survey

This chapter introduces previous work where recognition of the affective states
was achieved through methods that could decrease the need for hand-labeling of
training data.

2.1 Complementary feature set-based approach
A possible approach is to utilize complementary feature sets to improve the

recognition accuracy of affective states, allowing for satisfactory-level classification
results even on small sets of training data (not requiring the annotation of large
amount of datapoints). As complementary feature sets, the psychological context
can be utilized (instead of the physiological one such as audio, visual or textual
etc. features). Intention representing dialogue acts are conventionally used as such
feature sets.

2.1.1 Content and affective states
Affective states consist of emotions, moods, emotional traits, and sentiments

[17]. Affective states can be interpreted according to several different theories,
all of which build upon the assumption that any affective state is triggered by
a stimulus event. During an interaction, actions of the partner or self typically
serve as stimulus events. In the case of conversations, the only directly perceivable
stimulus is usually the communication of one‘s thoughts through verbalization and
body language. As Ekman [18] pointed out“Often in civilized life, our emotions
occur in response to words, not actions, to events which are complex and indirect,
and it is an extended appraisal process which operates with consciousness and
deliberation. Then the person is quite aware of what Lazarus calls the ‘meaning
analysis‘ which occurs.”

People, however, react emotionally not to the mere act of word utterance but
to the semantic and functional content expressed. Semantic content includes the
objects, propositions, and events defined in an utterance. Functional content
specifies the communicative function of the utterance,“the way an addressee
should use the utterance‘s semantic content to update his information state”[19].
In other words, it specifies the intentions of the speakers behind their utterances.
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Figure 2.1: Emotion and intention influence loop
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The process of emotion (or of any other affective state) elicitation by the
utterance content is explained by appraisal theories. The ‘meaning
analysis‘referred to above [20] concerns the examination of content through
cognitive processes, based on appraisal criteria. Different combinations of
appraisals trigger different cognitive processes, updating mental states and
through them eliciting a potentially unlimited range of emotions (or other
affective constructs) [21]. On the other hand, it has been found that not only the
content of the dialogic unit influence affective states but also that affective states
encourage specific action tendencies [22]. Accordingly, the stimulated
emotions/sentiments etc. can influence one‘s intentions, thus - in an indirect
manner - the choice of functional and semantic content of the response utterance.
The flow of influence between the content of the utterance and affective states is
illustrated in Figure 2.1.

2.1.2 Dialogue Acts
According to the findings discussed above, the expressed content of a given

utterance can serve both as a cue for the underlying affective state of the speaker
and as a cue for the elicited affective state of the addressee. Artificial inference
of the affective states from the semantic content, however, is impractical due to
the variability in the vocabulary and the multiple, context-dependent meanings
of the words. (Even human inference usually necessitates multiple channels of
communication for correct interpretation). On the other hand, automatic inference
of these states from functional content is more practical, because the possible
contents are fewer in number and easier to group into specific ‘dimensions‘.

Communicative functions (functional contents) are usually represented as
dialogue acts— intention-conveying, pragmatic-level dialogic units. Dialogue acts
are expressed through utterances and can change the mental states of the
interlocutors. Austin [23] defined three levels of dialogue acts (calling them
speech acts): locutionary, illocutionary, and perlocutionary. A locutionary act is
the speaker‘s performance of uttering the words and giving meaning to them. An
illocutionary act is the speaker‘s performance of expressing her/his own
intentions through the utterance (implicitly or explicitly). A perlocutionary act
is the effect of the speaker‘s utterance on the addressee, reflecting how the
listeners reacted to their interpretation (whether correct or incorrect) of the
speaker‘s illocutionary act. Conventionally, most dialogue act categorizations
incorporate illocutionary acts, grasping the intentions meant to be conveyed
through the utterances. For the above reason, this dissertation refers only to
illocutionary dialogue acts, when mentions them.
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Dialogue acts can be categorized in many ways, with a particular
categorization covering either one communicative function dimension (with
mutually-exclusive tags for each annotated segment) or several (with multiple
tags for each annotated segment) [24]. Not all categorizations of dialogue acts,
however, associates well with affective states. Consider for example, ”dialogue
management” communicative functions, which includes acts such as ”answering”,
”questioning” and so on. Each of these acts can affect, or be affected by, any
possible emotion.

2.1.3 Applications of dialog acts for supervised
emotion/sentiment recognition

The use of dialogue acts for affective state recognition purposes was
considered in several studies. Dialogue act labels were used in these studies as a
complementary feature set - inferred automatically or hand-labeled - input to
supervised machine learning algorithms. Although hand-labeling of dialogue acts
would further increase the need for annotation, the idea behind their usage is
that classifiers can learn from a feature set only to an extent. After a certain
amount of training data, the learning ratio on the same feature set will
eventually decrease. Utilizing (an easy-to-learn) low-dimensional complementary
feature set may provide information from a different perspective. Thus, among
two classifiers, one trained on a certain amount of data labeled only with the
target labels, and the other on half of that dataset labeled with the target labels
and an additional set of labels as a complementary feature set, the latter
classifier may perform better. [25]

Supervised machine learning
In the field of machine learning, supervised learning is the task of inferring

a function through learning examples. Each example is a pair of a vectorized
input object (image, sound, text or other signal) and an output label or value.
The supervised learning algorithm infers a function based on the analysis of the
training data. The inferred function is updated through each new example. If the
learning is successful, the algorithm can - to a certain extent - correctly determine
the class labels or corresponding real-valued intervals of unseen instances (also
called test instances). To be able to achieve this, the learning algorithm needs to
generalize from the training data to unseen test data. [26]

A wide range of supervised learning algorithms is available, with different
architectures for function learning and generalization. The most widely utilized
algorithms are (it is out of the scope of this thesis to specify them in detail):
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• Logistic regression

• Decision trees

• Support Vector Machines

• Multiple instance learning

• Naive Bayes

• Linear regression

• Linear discriminant analysis

• Artificial Neural Networks

• K-nearest neighbor algorithm

Dialogue acts utilizing supervised recognition of affective
states

Ang et al. [13] augmented lexical and prosodic features with dialogue acts
(repeat, repair, neither) of the current turn to improve emotion recognition. The
addition of the dialogue acts resulted in a 4% maximum improvement when
classifying the emotional states of annoyance-frustration vs. else (the latter
includes all the remaining emotion types), and frustration vs. else through
decision trees.

In the study of [14], the emotional salience word score (representing the
context-wise appearance likelihood) and dialogue acts (rejection, repeat,
rephrase, ask-start over, other) were input together with prosodic and lexical
features into a linear discriminant classifier, yielding a 3% improvement in the
“binary”classification of negative and non-negative sentiments.

Likewise, Batliner et al. [15] augmented lexical and prosodic data with
discourse information of dialogue acts (introduce, request, suggest), obtaining a
1.2% improvement when differentiating between the cognitive states of emotional
and neutral through a multilayer perceptron neural network.

Liscombe et al. [16] considered prosodic, lexical, and dialogue act features (65
categories discriminated by call-types of the HMIHY 0300 corpus, e.g. asking
for customer representative, requesting information about account balance, etc.),
as well as contextual features. Contextual features are the prosodic, lexical, and
dialogue act features of the n-1 and n-2 turns of the dialogue. The application of the
dialogue acts by themselves led to a 2.6% improvement, while enhanced with the
contextual features led to a 4% improvement in the classification of non-negative
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vs. negative sentiments. As a classifier, a boosting algorithm was used, where the
final classification result is computed from the combination of sub-classification
results through several iterations. Sub-classification results are provided by the
weak classifiers of one-level decision trees.

These and many other studies with similar goals and results utilized dialogic
data only with pre-annotated dialogue act labels to fully evaluate the applicability
of the additional feature set.

Recently, there has been a declining interest in the idea of enhancing emotion
recognition through the use of dialogue acts. This may be due to, at least in part,
the fact that accurate extraction of intentional features is also a task that requires
pre-training on labeled data. Annotation of dialogue acts then becomes excessively
labor-demanding, especially when contrasted to the rather modest improvements
it would yield in emotion recognition. The usage of a dialogue act categorization
which is more sensitive to affective states than the categorizations discussed above
assumed to yield better improvements which would balance out the annotation
cost.

2.2 Big data-based approach

2.2.1 Product review evaluation as sentiment/polarity
labels

As an approach different from the previous one, classifiers can be trained on
very large sets of which would (even with decreasing learning rate after a certain
amount of training) allow for satisfactory level recognition-rate. Several large
datasets exist [27], [28] in the form of product reviews labeled with scalable
units, indicating user-satisfaction. Satisfaction is conventionally indicated with
1-5 discrete values (usually of stars) or with continuous values of points between
[0.0: 5.0]. Since the evaluation of the user is assessing the users‘feeling about the
given product, it is often matched with sentiment or polarity. In particular, the
discrete or continuous evaluation scores are divided into two or three subsets
where each subset are accounting for one of the negative/neutral/positive
polarities or sentiment scores. [29]

Product review databases usually contain millions of evaluated reviews. For
sentiment/polarity analysis, conventionally neural networks are utilized for they
can generalize far better or large sets of data than other supervised methods [30],
[31]. For the recognition of affective states in dialogues, however, the monologic
product reviews cannot be utilized. Nevertheless, affective classifiers need to be
trained on dialogues in order to be applicable in commercial products such as
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affect aware games or dialogue systems. Currently, however, large datasets of
labeled dialogues are not available. As a possible remedy to this problem multiple
instance learning algorithms can be utilized, trainable on large sets of (partly)
unlabeled data.

2.2.2 Multiple instance learning
Multiple instance learning is a supervised machine learning method, that

requires only sets of datapoints to be labeled instead of all datapoints. Thus, it
could significantly reduce the time and effort needed to achieve data-labeling.
The next sections introduce the assumptions the conventional variations of
multiple instance learning are based on as well as their applications.

Standard assumption
The standard assumption behind multiple instance learning (MIL) is that

each instance x ∈ X from the instance spaceX, has a binary latent label y ∈ {0, 1}.
Thus, (x, y) is called an ”instance-level concept” where an instance is representing
an underlying concept c ∈ C from the concept space C. A ‘bag‘is a multiset of
instance-level concepts, with instances labeled identical to the target class, called
positive labels and instances labeled non-identical, called negative labels. A bag is
labeled positive if at least one of its instances has a positive label, and negative if all
of its instances have negative labels. This assumes, that a bag can be represented
by a sole concept. [32] Formally, if a bag is

B = {(x1, y1), . . . , (xn, yn)} (2.1)

then a label of B is

L = 1−
n∏

x=1
(1− yx). (2.2)

The standard assumption can be applied, for example, to predict molecule
activity. A molecule can appear in various shapes, called conformations, If
certain receptors bind well to any of the conformations of the molecule, it
becomes active. When activated through a certain kind of receptors, the
molecule produces a“musky”smell. Thus the MIL concept, in this case, would
be the tendency to conformation with certain receptors, which, if large enough,
results in the musky smell. Although this is a binary case, the standard
assumption can be applied for multi-class cases as well. The standard
assumption works well for the certain task described above, however, there are
more complex tasks, where the predicted entities cannot be differentiated by one
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concept, a bag label should be determined by the simultaneous presence of
several concepts. A bag label of a given sickness where the varying symptoms are
the concepts is an example of such case. Accordingly, researchers tried to relax
the standard assumption, developing other assumptions [32].

Extended assumptions
A presence-based assumption is the generalized extension of the standard

assumption, where a bag is labeled positive only if it contains at least one instance
of n several different concepts. Formally, a concept is a function vP B : 2x ⇒ ω,
where for a set of required concepts C ⊂ C,

vP B(X)⇔ ∀c ∈ C : 4(X, c) ≥ 1 (2.3)

In the threshold-based assumption, a bag is labeled positive only if a
certain number of instances of each concept are present simultaneously.Thus, to
each required instance-level concept a threshold is associated:

vT B(X)⇔ ∀ci ∈ C : 4(X, c) ≥ ti (2.4)

where ti ∈ N is the lower threshold for concept i.

The count-based assumption defines a minimum and maximum number
of required instances for each concept. Each concept thus has a lower threshold
ti ∈ N and an upper threshold zi ∈ N :

vCB(X)⇔ ∀ci ∈ C : ti ≤ 4(X, c) ≤ zi (2.5)

The generalized multiple instance learning assumption defines a set
of required instances Q ⊆ X. The number of instances sufficiently close to the
required instances Q needs to reach a certain limit n in order to label a bag
postiive. Scott et. al. [33] further generalized this assumption defining attraction
points Q ⊆ X and repulsion points Q ⊆ X. A bag, then, is labeled positive if and
only if it contains instances which are sufficiently close to at least n of the attraction
points and does not contain instances that are sufficiently close to repulsion point
more than m .

Conventional application
The standard assumption has been mainly applied through iterated

discrimination algorithms, which usually contains two phases. An axis parallel
rectangle (APR) is populated in the first phase. The population is achieved in an
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iterative manner until it contains at least one instance from each and every
positive bag and excludes all instances from any of the negative bags. Then, a
relevance metric is rendered to each instance xi indicating the number of the
excluded negative instances if removed from the APR. Then candidate
representative instances are selected in decreasing order of their relevance. The
process is repeated until no instance of the negative bag remains in the APR.

As the result of the first phase, the APR supposed to contain only instances
from the positive bags. A looser APR is drawn in the second phase. The looser
APR is based on Gaussian distributions centered at each attribute. From the
second APR positive instances with fixed probability will fall outside. [34]

As mentioned above, this method assumes that a bag‘s label is determined
based on the presence of a single concept. There are some complex problems,
however, where a bag label is determined by the simultaneous presence of several
concepts.

The Two-Level Classification (TLC) algorithm, proposed by Weidmann [35],
learns multiple concepts under the count-based assumption. It tries to learn
instance-level concepts in the first step. In particular, a decision tree is built
from each instance of every bag of the training set. The bags then are mapped to
a feature vector based on the output of the decision tree. In the second step, the
underlying concept of the instances is learnt through running a single-instance
algorithm on the feature vectors.

Scott et. al [33] proposed an algorithm, called GMIL-1, to learn concepts under
the GMIL assumption. GMIL-1 enumerates all axis-parallel rectangles {Ri}i∈I in
the original space of instances, and defines a new feature space of boolean vectors.
A bag B is mapped to a vector b = (bi)i∈I in this boolean vector-based feature
space, where bi = 1 if APR Ri covers B, and bi = 0 otherwise. A single-instance
algorithm is applied to learn the concept in this new feature space.

Most MIL methods, however, are applied for image/molecule activity/
document recognition, where the recognized entities are the bags. Thus those
methods - including the ones described above - are concentrating on the
prediction of unseen bags, instead of the prediction of unlabelled instances they
contain. In the case of emotion/sentiment recognition, however, the MIL would
be used to train instance-level predictors based on the bag labels.

Application for sentiment analysis
In the approach proposed by Kotzias et al. [36] instance labels were inferred

through propagating information from the bag labels to the instances. In
particular, the unknown label aggregation function on the training data was
inverted. The approach used K similarity measure to compute a
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group-structure-compatible label assignment algorithm, which can be used to
assign the same label to similar train instances. The developed algorithm was
also used to classify instances not found in the training set. The predicted labels
then were aggregated and were used to classify unseen bags.

The approach is based on an objective function that allows for smooth inference
of the instance-level labels. The function considers instance-level similarity, with
respect to group-level label constraints at the same time:

J(θ) = 1
N2

N∑
i=1

N∑
j=1

K(xi, xj)41 (ŷi, ŷj) + λ

K

K∑
k=1
42(l̂k, lk) (2.6)

where:

• K(xi, xj) ∈ [0, 1] is the similarity measure between instances xi, xj

• 41(ŷθ(xi), ŷθ(xj)) is a non-negative penalty on the prediction differences for
instances i and j;

• 41(i, j) is a non-negative penalty on the prediction errors for group k.

• lk = A(Gk, θ) ∈ [0, 1] is a real-valued scalar representing the output of the
aggregation function for all instance-level label predictions in a group Gk.

• λ > 0 can be selected via cross-validation on a validation set. It balances
the contributions between the two sums.

Trained and tested on the Amazon, IMDB and Yelp datasets the proposed
method classified three sentiments with an accuracy of 86%-88%.

As another method that learns to predict the polarity of text segments from
bag-level labels, Angelidis and Lapata [37] reduce each segment‘s class
probability distribution pi to a single real-valued polarity score. To achieve this,
they first define a real-valued classweight vector w =

〈
w1, ..., wC |wc ∈ [− 1, 1]

〉
that assigns uniformly-spaced weights to the ordered labelset, such that
w(c+1) − w(c) = 2

C − 1 . For example, in a 5-class scenario, the class weight vector

would be w =
〈
− 1,− 0.5, 0, 0.5, 1

〉
Then, the polarity score of a segment is

computed as the dot-product of the bag probability distribution pi with vector w:

polarity(si) =
∑

c

p
(c)
i w(c) ∈ [−1, 1] (2.7)

with a gated extension:

gatedpolarity(si) = ai · polarity(si) (2.8)
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where ai is an attention weight assigned to the i-th segment.

Trained and tested on the IMDB and Yelp datasets it yielded classification
results between 91% and 94% for three polarities. A significant deficiency of this
method, however, is that class probability distributions pi are gained through a
supervised feature map classifier pre-trained on sentence-level labels.

Although learning methods described above are trained only on a set (bag)
of instances (instead of each and every instance), selection and hand labeling of
the bags is usually still necessary (in [37], sentence-level labels were also needed
for pre-training). In the case of the above review-based datasets, the bags were
already given in the form of reviews, where for each review there was a scale-based
evaluation of the reviewer attached that could serve as a bag label. Reviews with
similar level evaluation could then be aggregated into bigger bags.

In the case of conversations, however, selection of bags becomes problematic,
necessitating the partition of dialogues by time, topic, or interlocutor. In the
specific case of emotion recognition, where a bag supposed to represent one
particular emotion, partitioning/labeling becomes even more complex. For this
reason, to the author‘s best knowledge, there exist no dialogic datasets with
labeled subsets of affective constructs.

For affective state recognition through MIL, sub-sets of dialogues expressing a
particular emotion are assumed to be efficient bags. Section-labeling, with the
additional task of reason-based sub-sectioning, is difficult to automate. Section
labeling and sub-sectioning by hand, on the other hand, is a labor and time
demanding task, which can easily nullify the benefits MIL would provide in
contrast to segment-level labeling. Accordingly, a method capable of finding
sub-sections applicable as emotion-related bags needs to be developed. This
thesis describes an approach of mining dialogic videos through emotion sensitive
intentions-based search, that not only makes the videos directly applicable for
MIL-based emotion recognition but also completely eliminates the need for their
hand labeling.

2.3 Related work summary
There are two main approaches towards the improvement in recognition of

affective states for audio and/or textual features:

a) Utilizing the intentional context in the form of dialogue act labels and use
them as complementary features to predict the output labels: suffers from
the deficiency, that the dialogue acts used are not yielding significant
improvement in recognition accuracy
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b) Using large sets of data labeled with sentiments/polarity tags to train

• supervised neural-networks: suffers from the problem that in the case
of dialogues all utterances of the dialogues would need to be labeled

• multiple instance learning algorithms: the target labels are used as
bag labels, which significantly (in the case of reviews, completely)
reduces the need for instance labeling. For dialogic data, however,
definition and labeling of bags would be necessary which is a difficult
task, demanding manual labor.

The author argues that the usage of emotion sensitive intentions representing
dialogue acts, associable with certain affective states would

• boost the recognition accuracy of emotion/sentiment recognition if used as
a complementary feature set: it would help the supervised machine
learning methods to learn from the low dimensional, easy-to-learn features
of additional labels, firmly associated with the output labels

• serve as a basis to define emotion indicating search phrases for the selection
of videos concentrating on emotional dialogues. Such videos could serve
as bags containing instances of emotion representing utterances, while the
emotions the search phrases correspond to could serve as the bag labels.
The labels thus can be utilized for the training of multiple instance learning
algorithms in a semi-supervised way.
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Chapter 3

An emotion sensitive dialog act
model

This chapter describes an emotion sensitive dialogue act model and the
conceptual basis behind its development.

3.1 An emotion sensitive dimension of dialogue
acts

Certain dimensions of communicative functions - represented through dialogue
acts - assumed to show a stronger correlation with affective states than others.
The author assumes that the main reason behind the moderate improvements the
usage of dialogue acts yielded in previous work (see 2.1.3) is that the taxonomies in
question did not utilize dialogue acts that show a strong correlation with affective
states. Thriving to discover such a dimension, the author turned to the emotion
stimuli explaining appraisal theories.

Several categorizations of appraisal criteria have been proposed. One of the
most well- known is due to Ellsworth and Scherrer [21], who classified appraisals
along:

A. novelty and pleasantness – how novel and safe/pleasant is the situation for
the addressee based on the content;

B. conduciveness to needs, goals, and values – how desirable is the outcome for
the addressee as indicated by the content;

C. power and coping – how feasible it is for the addressee to control the situation
based on the content; and

D. social identity, norms, values, and justice – how much the content is in
accordance with the addressee‘s image of social etiquette, expectations, and
so on.

Among the appraisal criteria listed above, it appears reasonable to assume that
those of (B) and (D) are stimulated mainly by the functional content. For example,
the communicative function behind the utterance“You are a gentleman!”could be
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‘praising‘. Once the meaning of the utterance is understood, the function ‘praising‘
itself would potentially satisfy the speaker‘s needs (item B), updating his social
identity while satisfying the likely expectations of social norms, values, and justice
(item D). In the same situation, any other ‘praising; function would have the same
effect on the two dimensions, with only the magnitude varying in accordance with
the semantic content. In the case of (A), however, understanding the underlying
function ‘praising‘ behind the speaker‘s utterance would, most probably, be not
sufficient to affect an appraisal about the novelty of the situation.

Unlike the cases of (B) and (D), appraisals using (A) and (C) can only be
correctly comprehended when one takes into account the semantic content
(magnitude and modality) of the utterance. To appraise the situation‘s novelty
to a satisfactory level, for instance, in addition to the four criteria ‘(have I ever
been/am I usually) praised by (this person/people)‘, the addressee must also
assess the semantic content with four more criteria ‘(have I ever been/am I
usually) called a gentleman by (this person/people)‘. A key assumption is,
therefore, formulated as follows:

Assumption 1. The appraisal of conduciveness to needs, goals, and values,
and the appraisal of social identity, norms, values, and justice are affected by the
functional rather than the semantic content.

At the same time, it is understood that the dimension of functional content
needs to be defined, which can serve as a triggering stimulus to the appraisal
criteria of (B) and (D). For example, the functional content of the utterance“You
are a gentleman!” could be understood from the viewpoint of communication
management as ‘making a statement‘. In that case, the likelihood of the functional
content helping to assess the desirability of the outcome (B) or the accordance
with social expectations (D) is low. Thus, the author adopts the idea that criteria
(B) and (D) are mainly influenced by the ‘social status‘ and ‘identity-controlling‘
dimensions of the content‘s communicative function that is formulated as follows:

Assumption 2. Communicative functions that control interpersonal relations
can stimulate affective states via the appraisal criteria of (B) (conduciveness to
needs, goals, and values) and (D) (expectations of social identity, norms, values,
and justice) without relying on semantic content.

Following from Assumption 2, that interpersonal relations controlling
communicative functions can directly stimulate affective states through the
appraisal criteria of Assumption 1, presumes a direct link between the two
concepts, leading to the third and final assumption of this study:

Assumption 3. Communicative functions that directly stimulate the
appraisals influencing emotions/sentiments can also serve as indicators of the
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affective states that originally influenced these communicative functions.
Communicative functions that control interpersonal relations are presumed to be
such indicators.

Thus, it is assumed by the author that ‘interpersonal relations-directing
intentions‘ such as ‘criticizing‘ or ‘empathizing‘ would provide an ‘emotion
sensitive‘ communicative function dimension, which is likely to affect or be
affected by only a limited range of emotions/sentiments.

An act of ‘criticizing‘, for example, often affects the addressee‘s self-esteem
negatively and would probably elicit an emotional reaction of negative valence,
such as ‘fear‘ or ‘anger‘. Furthermore, ‘criticizing‘ is likely to be expressed under
the influence of a negative valence emotion, such as ‘anger‘ or ‘disgust‘. It then
appears natural to expect that the emotion ‘anger‘ should be associated with a
dialogue act representing ‘interpersonal relation control‘, such as ‘criticizing‘ more
consistently than with a dialogue act representing ‘dialogue/turn management‘
such as ‘repeat‘ [13] or ‘task-oriented actions‘ such as ‘requesting information about
account balance‘ [16].

3.2 The proposed model

3.2.1 Interpersonal relations-managing acts
Accordingly, a dialogue act model representing ‘interpersonal relations

managing‘ communicative functions has been developed, called the IA
(interpersonal acts) model (see Table 3.1).

Several social factors can be considered when defining communicative
functions that control interpersonal relations. The presented study employs
Brown and Levinson‘s (B&L) politeness framework [38], which accounts for the
interlocutors‘ interdependent social status, and which can be summarized as
follows. Face, the“public self-image that every member wants for himself”[39],
is divided into ‘positive‘ and ‘negative‘ faces. The positive face can be thought of
as the ‘social‘ face, desiring approval by others; the negative face is“the basic
claim to territories, personal preserves, and rights to non- distraction” [38].
According to B&L, every person has a negative face, which desires that her or his
actions are unimpeded by others, as well as a positive face, which desires that
their wants and thoughts are desirable to others. To build and maintain smooth
interpersonal relationships, each interlocutor must constantly preserve each
other‘s face wants. Nevertheless, there are situations where harming each other‘s
face wants, through a face-threatening act (FTA), is inevitable. The model
accounts for such acts through the main and sub-categories of positive and
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negative face-threatening acts potentially damaging the positive/negative face
wants of the addressee.

When FTAs are performed, strategies may be applied to ‘save‘ the face of the
speaker or/and the addressee. Such redressive strategies include positive
politeness (easing the FTA by satisfying the addressee‘s positive face wants with
jokes and other verbal and non-verbal signals, indicating companionship and
common ground), and negative politeness (easing the FTA by satisfying the
addressee‘s negative face wants by paying deference, or through other verbal or
non-verbal signals that indicate respect). The more the speaker tries to save the
addressee‘s face, the more she or he damages her/his own face. To ensure an
optimal number of categories for annotation (i.e. not too many to deal with for
the annotators but still sufficient for the study‘s purposes), face-saving strategies
were not included in the presented IA categorization. Nevertheless, the
aforementioned strategies can be incorporated into the model by extending each
type of FTA with subcategories corresponding to the possible redressive
strategies (Section 2.4.) the given FTA allow for.

Matsumoto [40] argued that B&L‘s model ignores communicative functions
that are not associated with FTAs or subsequent redressal. This inadequacy was
later addressed through the introduction of ”face enchantment” by Hernandez [41].
Hernandez showed that there are cases where certain politeness strategies work not
as a redressive force but as a communicative function that maintains the social
relationship when the speaker enchants the addressee with ‘gifts‘ to the addressee‘s
positive face. Hernandez also introduced the notion of self-face work, that is
“focusing on one‘s own face without directly affecting the addressee‘s face”to ease
the harm it suffered (inflicted by either interlocutor) during the interaction or to
make a favorable impression. Finding excuses or changing the topic are examples
of such strategies. Self-face work is incorporated in the IA model as a subcategory
of Non-Face Threatening acts.

The IA categorization is intended to be used as a one-dimensional,
independent model when needed, as well as an extension of other
multi-dimensional models. When used as a one-dimensional tagset, it can be
used as a target label for the recognition of ‘interpersonal relations managing‘
intentions or as an additional feature set for the recognition of affective states.
When incorporated into a multi-dimensional tagset, the IA model serves as a
dimension incorporating ‘interpersonal relations managing‘ communicative
functions.
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Table 3.1: Taxonomy of interpersonal acts

Categories, subcategories
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The IA model conforms to the ISO Standard for Dialogue Act Annotation
24617-2 [42] in the following:

• The categorization differentiates between semantic and functional content.

• The dialogue acts defined in the model represent communicative functions.

• The represented communicative functions can be associated with a specific
dimension. Therefore, the proposed tagset can be used as a
function-specific dimension and can be combined with all general and
function-specific acts defined by the standard or by its representative
tagset, the DIT++. For example, the utterance“うん”(“Mhmm/Yep”)
can be regarded as a ‘paying attention‘ interpersonal act, and as either the
DIT++ <‘general-purpose, answer‘> act or the function-specific <‘auto
feedback, auto-positive feedback‘> act (for further details on the DIT ++
dialogue acts, see 3.2.2).
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• The defined acts are intended to correspond to functional-segments (minimal
stretches of behavior having one or more communicative functions).

The IA model does not conform to the following aspects of the ISO 24617-2
standard:

• Functional dependency relations, feedback dependency relations, and
rhetorical relations are not accounted for by the proposed model. The
responsive interpersonal acts of ‘paying attention‘ and ‘empathizing‘ are
typically used to represent functional- and feedback-dependency relations.
However, their purpose in the developed taxonomy is solely to account for
the dimension of interpersonal relations-managing actions, which includes
these actions of responsive nature. All other acts can have functional- and
feedback-dependency relations with each other, and all 12 acts can perform
rhetorical functions, based on the dialogic situation.

• Although qualifiers (e.g., certainty, conditionality, partiality, or sentiment)
can be attached to the proposed tags, the IA tagset used in the study does
not assume the use of qualifiers, owing to the following:

– Allowing for qualifiers would lead to a large number of possible tags
that would make the annotation process unnecessarily confusing and
prohibitively time-consuming.

– Due to the large number of possible tags, each particular tag would get
associated rarely, if at all, with a given emotion, even when a larger
corpus was used.

– Interpersonal acts have already been defined, with the intention to serve
as indirect sentiment qualifiers themselves. Interpersonal acts could be
used to represent the previous turns‘ stimuli for emotions/sentiments, as
well as results of the cognitive process influenced by the affective states
of the current turn. Accordingly, the model is assumed to be applicable
to improve the recognition of affective states of emotions/sentiments.

3.2.2 Extending the model for validation purposes
The IA model is developed to advance real-time emotion/sentiment

recognition in commercial products such as dialogue systems or affect aware
games. Accordingly, in two of the proposed validation methods, its
emotion-sensitivity and applicability as a complementary feature set are to be
tested out in a dialogic, cooperative gaming environment. The model can be
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Table 3.2: Extended taxonomy of interpersonal acts

Categories, subcategories Examples
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commenting “よーし見つけた”(“Finally! I found it!”)

P-u. negative
commenting “やばい”(“That looks bad!”)

P-u. neutral
commenting “どこだ？”(“Where is it?”)
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Paying attention “うん”(“Mhmm/Yep”)

Empathizing “マジで？”(“Seriously?”, in reaction to
statement)

Accepting as superior
(showing deference) “わかりました”(“Understood!”)

Agreeing “そうそうそうそう｛笑｝”(“Yes, yes, yes,
yes! [laughter]”)

Self-image improving
“何もしなくても倒せるから大丈夫”

(“Even if you don‘t do anything I can
defeat it, it‘s all right!”)
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Criticizing “え、あれでいいの?｛笑｝”（“Are you sure
you will be alright like that? [laughter]”）

Indiscrete
commenting “また死んだ？”(“You died again?”)

N
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e
FT

A

Indebting partner “取っていってやる”(“I will take it for
you.”)

Commanding/requesting
“じゃたまり場来て”(“Come to the

gathering spot!”)

extended with ‘Partner-unrelated commenting‘ dialogue acts which allow for
the partner-unrelated in-game utterances (reacting to the game contents) to be
distinguished from partner-related (reacting to the partner‘s deeds) ones.
‘Interpersonal relations managing‘ intentions are complex constructs, accounting
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for the hierarchy and intimacy between the interlocutors. There are cultures
where the social practice is more rigorous than in others, and the aforementioned
two aspects manifest in the form of additional functional content. Japanese, for
example, is a language, where additional acts may needed to properly cover the
interpersonal relations managing intentions. In particular, in the case of Japanese
the model can be further contemplated with the culture-specific part of“accepting
as superior”, accounting for a culture where deference is often displayed not only
through conjugational forms but through the use of specific phrases as well. Two of
the proposed validation methods utilizes the extended model on Japanese in-game
data.

Table 3.2 summarizes an extended model, tailored to fit Japanese conversations
in a cooperative gaming environment and illustrated through Japanese sample
utterances (gathered from Japanese in-game dialogues).
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Chapter 4

Proposed validation methods

This chapter describes empirical and application-oriented methods for the
validation of the proposed IA model.

4.1 Empirical validation
Empirical validation methods are proposed to measure the association strength

between the affective states and the tags of the proposed dialogue act tagset. These
methods are to prove the general applicability of emotion sensitive intentional
context for the recognition of affective states. In particular, emotions are chosen
to be the target of analysis, for they serve as a fine-grained-enough metric to
meaningfully assess the proposed tagset.

Following Assumption 3 (see 3.1), interpersonal relations affecting
communicative functions should indicate, by their very nature, the affective states
that influence them. For instance, ‘criticizing‘ should, perhaps, co-occur mostly
with the emotion ‘anger‘ or the with ‘negative‘sentiment.

The more consistently the affective context is indicated by the interpersonal
acts (and vice-versa), the better the proposed tagset can be considered to
represent affective states and affective states-related interpersonal interactions.
The proposed IA model‘s performance was evaluated according to the consistency,
with which interpersonal acts were paired with, and distinguished by, certain
subsets of emotions manifested in the same utterance. The model‘s adequacy
was determined in relation to the tagsets of two widely-used dialogue act models,
SWBD-DAMSL [43] and DIT ++ [44]. For a detailed description of the models
see 5.1.1.

4.1.1 Analytic framework
The greater the dependency between the acts and emotions the more suitable

should be the given model (out of the three in comparison) for representing affective
states and the interdependent social relations. However, the presence of mere
dependency (i.e. correlation or correspondence) between these variables would, in
itself, not necessarily indicate that the given model accounts for a wide range of
emotions (and social situations).

Consider the extreme case where, for example, an emotion category with large
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frequency counts corresponds to more than one-third of the total number of acts
from a given dialogue act categorization. The correlation would be strong between
the two variables, even though the dialogue act model in question would generally
serve as a poor indicator for specific emotions.

The assumption that interpersonal relations influence affective states, while
also being influenced by them, suggests that different aspects of interpersonal
relation oriented communicative functions are likely manifested in different
affective contexts. A model that does not account for communicative functions
which are also (to a certain extent) distinguishable by their affective context does
not allow for uncovering interpersonal relations to a satisfactory degree. Hence,
the variance in emotion-dialogue act correspondence should also be examined, with
special attention paid to the strength and exclusivity of the associations between
each emotion and the dialogue acts of the models compared. The main steps of
the analysis are, therefore, as follows:

A. Compute and summarize the occurrence counts of emotions and dialogue acts
in a two-way contingency table for each model. As only the co-occurrences
are used throughout the analysis, the sequential nature of the data is
unimportant, and the frequency counts obtained for the five conversations
are aggregated.

B. Determine whether there is a significant overall dependency between the
variables of dialogue acts (of a given model) and emotions, using Fischer‘s
exact test [45].

C. Compute normalized pointwise mutual information (npmi) for the co-
occurring dialogue acts (of each model) and emotion categories to assess
the element-wise magnitude of the association between the two dimensions.
For every speech act and its paired emotion, this measure is defined as
follows [46]:

npmi =
ln p(x,y)

p(x)p(y)

−ln(p(x, y)) (4.1)

where p(x) is the marginal probability to observe dialogue act x, p(y) is the
marginal probability to observe emotion y, p(x,y) is the joint probability to
observe x and y at the same time, -ln p(x,y) is the normalizing coefficient,
so that [-1.00, 1.00]. The npmi measure does not, therefore, depend on the
total number of occurrences of a given emotion or dialogue act but reflects
the consistency of co-occurrence, meaning that an act with few occurrences
can still have a strong association with an emotion when the two co-occur
relatively frequently.
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In the context of this thesis, npmi is used to estimate the extent, to which
the occurrence of a given dialogue act would indicate the simultaneous
observation of a given emotion, and vice-versa. An npmi value of -1.00
indicates that the two events have not been observed together, a value close
to 0.00 – that the events are decoupled (their simultaneous occurrence is a
random coincidence), and a value close to 1.00 – that the events have always
been observed together. For each model, positive npmi values are summed up
and, then, normalized by the number of the model‘s degrees of freedom. The
resulting statistics serve as comparable metrics between models for assessing
the overall strength of association between dialogue acts and emotions.
Positive npmi values are grouped, based on ‘association strength‘ intervals
subjectively defined as follows: [0.0, 0.20) for ‘weak‘ associations, [0.20, 0.40)
for ‘medium,‘ [0.40, 0.60) for ‘strong,‘ [0.60, 0.80) for ‘very strong,‘ and [0.80,
1.00] for ‘extremely strong‘ associations. The models are compared for how
consistently and comprehensively their dialogue acts are related to particular
emotions.

4.2 Computational validation - supervised
learning

The applicability of the developed tagset is proposed to be tested in supervised
sentiment classification experiments. The experiments are to prove that the
utilization of the complementary feature set of emotion sensitive dialogue act labels
can significantly improve the recognition accuracy even on moderate size training
sets. For applications that utilize real-time recognition of affective states like affect-
aware games or customer-service dialogue systems, the recognition of sentiments,
covering several discrete emotions is preferred to the more fine-grained, but less
reliable emotion recognition. In the works of [13], [14], [15], and [16], the proposed
dialogue acts were also tested in binary-classification scenarios.

In the validation experiments to be conducted, the interpersonal act tags will
be used to enhance a text and audio based sentiment classifier (detailed in 3.2.2)
in comparison with

• two identical classifiers which utilize acts of other well-known dialogue act
models,

• and with a baseline classifier which does not utilize dialogue acts as an
additional feature set for sentiment classification

The four classifiers (one baseline classifier and three augmented classifiers,
processing dialogue acts) is to be trained and tested on the same dataset of
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audio streams of dialogues and their transcriptions. The dataset is to be compiled
from cooperative in-game conversations, in order to test the proposed taxonomy‘s
applicability on recordings similar to the real-life application it is developed to
improve.

Each utterance in the transcriptions is to be annotated with four labels in total:
one sentiment label, and three dialogue act labels (one of the proposed tagset and
two of the other dialogue act models used for comparison). Interpersonal acts are
proposed as acts to be automatically inferred or to be hand-labeled beforehand
their application for emotion/sentiment recognition. Following the line of previous
studies [13], [14], [15], and [16], in the experiments hand-labeled dialogue act tags
are to be used, concentrating only on measuring the proposed model‘s adequacy
for augmenting sentiment recognition. Thus, the augmenting-performance of the
dialogue act models in comparison could be fully assessed, unhindered by their
varying recognizability by automatic means.

Figure 4.1 shows the overall design of the four classification scenarios.

Figure 4.1: Sentiment classification scenarios

4.2.1 Classification procedure
Four classification scenarios are to be conducted to verify the applicability

of the interpersonal acts for the improvement of sentiment analysis. In one
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scenario, the sentiments are classified by a baseline classifier, while in the other
three scenarios, the classification will be achieved by augmented classifiers, each
processing a different set of dialogue act labels as an additional feature set (see
Figure 4.1).

In the scenario, when the baseline classifier is utilized, it processes only the
audio streamings of the dialogues and their textual transcriptions. Figure 4.2
depicts the architecture of the classifier consisting of two sub-classifiers.

Figure 4.2: Baseline sentiment classifier

Sub-classifier #1 is a Gated Recurrent Unit (GRU) Neural Network which
processes the textual transcriptions of the audio streams. A GRU can recall
its previous internal states to process sequences of inputs and find possible
dependencies within long sequences of embedded utterances (functional-segments)
[47].
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Sub-classifier #2 processes the audio data. The audio feature vectors are
processed by a one-dimensional Convolutional Neural Network (CNN) which
can effectively extract the important vectors among a large number of others
through its several convolutional and pooling layers [48]. Both sub-classifiers are
trained and tested on the same sentiment labels. The audio and textual features
extracted from the functional-segments are processed in the order they occurred
in the conversation, to help the GRU find meaningful dependencies between them.
Using the ensemble learning method of soft-voting [49], the results of the two
independently-trained sub-classifiers are to be merged at the decision-level.

In the other three scenarios, the baseline classifier is augmented with a third
sub-classifier, another GRU, processing dialogue act labels as textual data (to find
the possible dependencies in their sequence). In each scenario, the sub-classifier is
processing dialogue act labels from one of the dialogue act models of IA, DIT++
or SWBD DAMSL.

Figure 4.3: Augmented sentiment classifier
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Similarly to the baseline method, the classification results of each sub-classifiers
are weighted and merged through soft-voting. Through weighting the results, the
system could learn which sub-classifier is contributing the most to the correct
classification result. The dialogue act classifying sub-classifier #3 for example,
assumed to contribute less than sub-classifier #1 or #2. Majority voting would
not allow for such learning, it would simply output the result, chosen by at
least two sub-classifiers, or choose among the results arbitrarily if all outputs
of the sub-classifiers are different. Decision-level merging was chosen instead
of feature-level merging (where the audio feature vectors, word embedding‘s of
the transcriptions and digitalized dialogue act labels would be merged into one
tensor before fed into the network) because in accordance with the study of Planet
and Iriondo [50], preliminary experiments showed that decision-level merging yield
better classification results.

The target labels for the training and testing of sub-classifier #3 are also
sentiment labels. Figure 4.3 depicts the architecture of the augmented baseline
method used in the other three scenarios.

4.3 Computational validation - semi-supervised
learning

The applicability of the developed tagset is also proposed to be tested in semi-
supervised polarity classification experiments. The experiments are to prove that
the utilization of the developed IA model as a basis for search phrases in a semi-
supervised multiple instance learning based method can yield satisfactory level
polarity recognition accuracy, while not requiring any hand-made labeling.

4.3.1 Movie scene features as labeled bags
In this era of big data, there is an abundance of unsalvaged data on the world-

wide-web. With the proper techniques, however, structured data can be mined,
gathered in a way that renders hand-made annotation unnecessary. When one
performs a search on the web, the search engine in use selects and returns data
(let it be websites, videos or other content) according to a given search phrase.
Thus the outputted data is structured in the sense that each datatpoint has a
certain level of relevance to the search phrase.

In the case of affective state recognition, one would need data relevant to
sentiments or emotions. Thus thinking in the level of websites would be too broad,
a conversation-level search is needed. As a vast resource of dialogues, movie scenes
can be harvested. YouTube, for example, contains millions of videos with movie
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scene contents. Not only YouTube contains large amount of dialogic scenes, but
these scenes are also categorized by the titles they are uploaded with. Several
of the videos also contain tags, describing their content. Thus a search query on
videos, related to a certain emotion (e.g. ‘angry scenes‘) would supposedly return
videos containing dialogic scenes where at some point the emotion of e.g. ‘anger‘
is expressed by at least one of the interlocutors. Not only direct search on emotion
categories but categories of emotion-indicating communicative functions (e.g. for
the emotion of ‘anger‘the intention of ‘criticize‘, ‘argue‘or ‘despise‘; see 4.1) could
yield similar results.

Relevant videos to ‘anger‘ will not only contain verbal and/or non-verbal
expressions of anger but will have them as their base concept.

The YouTube 8M dataset (Y8M) [51] contains frame- and video-level audio
and image features of 6.1 millions of YouTube videos in total, with thousands of
movie scene contents (at the present). The dataset is free to download under the
Creative Commons Attribution 4.0 International license [52]. Since the original
audio-visual versions of the feature-sets in the Y8M are also available and trackable
online on YouTube, an indirect YouTube search can be conducted in the Y8M for
audio features of emotion - or emotion-related intention-expressing videos. As
the number of relevant videos for each search phrase is restricted in the Y8M
dataset, experiments are to be conducted utilizing multiple dimensions of search-
phrases (emotions and communicative functions as well) alternatively as well as
simultaneously to reach better recognition accuracy.

Each feature set of every video selected from the Y8M would contain features
of a dialogic scene, focusing on the direct and/or indirect (through emotion
sensitive communicative functions) expression of a certain emotion (but probably
containing several other emotions as well). Thus each feature set would serve as
“weakly”labeled bags for emotions. As the author thrives to find a method easily
applicable for commercial use, the technology-sensitive visual features (requiring
the application of visual sensors) contained in the Y8M are not processed. From
the frame-level and video-level audio features, only frame-level features are to
be applied since video-level features would not be applicable for instance-level
training.

The MIL task is to group the frame-level audio features of each bag into
processable instances and automatically label them with emotion labels based on
the emotion / emotion-indicating intention containing search phrases the videos
correspond to. An instance is to be labeled with the emotion label of the bag
(labeled positive in standard MIL) if it represents the concept (an emotion)
identical to the bag; otherwise, it is not labeled (labeled negative in standard MIL).
Labeling would be achieved through latent variable-based unsupervised clustering,
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discussed in the next section. Feature instances of several videos can be grouped
together along the emotions they are labeled to represent.

4.3.2 Instance-level polarity detection
To advance real-time emotion recognition through the proposed weakly

supervised method, polarity classification assumed to be more applicable than
emotion recognition. The bags of emotions, mined from ”weakly labeled” YouTube
video features would be merged into positive and negative polarity-representing
bags. Choosing polarity detection over emotion recognition is in accordance with
the fact that commercial applications requiring real-time affective recognition
would benefit more from less-fine-grained but more reliable classification results.
The reason for choosing polarity detection instead of the neutral aspect-including
sentiment classification is that the authors could not find a reliable method to find
videos where ‘neutral‘emotions are expressed in a dialogic environment.

Accordingly, an aggregated set of audio feature instances, affiliated with the
same basic emotion would constitute a bag of a certain emotion, and an aggregated
set of emotion bags with the same polarity would constitute a final bag of positive
or negative polarity.

Formally, a polarity bag is defined as follows:

B = {(x1, y1), . . . , (xn, yn)} (4.2)

where yi is a polarity label and instance xi 6⊂ X 6⊂ A of X bag of emotion in A bag
of aggregated positive or negative polarity emotions.

4.3.3 Unsupervised-clustering based classification
This study proposes a novel approach towards multiple instance learning in the

form of unsupervised clustering of bag instances, mapped into the feature space of
their latent variables. The approach is depicted in Figure 4.4

Training procedure:

1) Frame-level audio feature sets of YouTube videos, edited (by the uploaders
of the video) to focus on the expression of a certain basic emotion and/or
emotion-sensitive communicative function is to be selected from the Y8M
(several videos for each emotion). In particular, the titles attached to each
frame-level audio feature set are to be extracted and matched to the titles
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Figure 4.4: Latent variable-based unsupervised clustering

of online YouTube search. The search is thus conducted on all of the
YouTube videos including those contained in the Y8M dataset in their
feature-extracted form. Although only videos of the YouTube 8M dataset are
to be utilized, through this method, the synonym- and relevance- measures of
the YouTube search would be salvaged. The feature sets in the Y8M dataset
were also categorized by the entities/topics of the videos they are extracted
from, but since these entities were not afflicted with affective constructs, this
categorization was not utilized.

2) The frame-level audio feature sets from Y8M of each selected video will
be grouped into utterance-level features. The grouping is conducted based
on timestamps provided by an online text converter applied on the online
version of the videos (textual transcriptions are not to be used in accordance
with YouTube‘s terms of service [53]).

38



3) Latent variables of all utterance-level features are to be extracted through
a Variational Autoencoder (VAE) [54] and population of the MIL bags will
be performed based on the instances‘positions in the latent feature space.
Building the proposed MIL on latent variables is to counteract the large
amount of noise expected in the bags of dialogic utterances.
VAEs extract latent variables through encoder layers, transforming the input
data into abstract variables. Then, through decoder layers, the variables
are transformed back into a predicted input form. During training, the
abstract variables are constantly updated according to the loss between the
original and predicted input. In VAEs, constraints are added to force the
generation of latent vectors to roughly follow a unit Gaussian distribution,
usually set to be a centered isotropic multivariate Gaussian. The isotropic
Gaussian priors allow each latent dimension in the representation to push
itself as far as possible from the other factors [54]. Thus, VAEs are known to
give representations with disentangled factors which attribute is crucial in a
noisy dataset gathered form features of“weakly”labeled YouTube videos.
Through training the VAE on all of the features (not separately for each
video), the extracted latent feature space would include all concepts possible
for the selected videos.

4) The utterance-level features can then be mapped to the latent feature
space via transforming each audio feature vector into a vector indicating
its affiliation towards each extracted latent variable (i.e. the datapoint‘s
position in the latent feature space).

5) All transformed vectors are grouped by the emotions the video (they
originate from) was selected by. In the case of vectors of communicative
functions representing videos, the vectors are to be grouped along the
emotions they correspond to. Thus emotion-bags are created, consisting
of utterance-level instances of several videos, supposedly focusing on the
expression of the same emotion and/or emotion-related communicative
function.

6) The instances are clustered within each bag with an unsupervised clustering
method. Once stable clusters are found, instances in the largest cluster are
selected as representatives for the given emotion bag.

7) After removing non-representative instances from each emotion bag, the
polarity bags can be populated with representative instances of the
corresponding emotions. These bags are to serve as the base of a similarity-
measure based classification. Emotion bags can also be used before
aggregation to train basic emotion classifiers.
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Classification

1) To compile a test set, similarly to the training procedure, first basic emotion-
oriented movie scenes need to be selected and matched with their frame-level
audio feature sets in the Y8M.

2) After grouping the frame-level features into utterance-level instances, each
instance needs to be hand-labeled with basic emotion labels and polarity
labels (in accordance with the corresponding emotion label).

3) The VAE pre-trained on the audio features of the training set extracts the
latent variables from the audio features of the labeled test instances.

4) The instances can be transformed into vectors representing their position in
the latent feature space.

5) The similarity between the transformed test instances and the instances
populating both polarity bags is to be measured to predict the label of each
test instance. Comparing the predicted labels with the original hand-made
labels yields the classification result.
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Chapter 5

Experiments

This chapter describes the empirical and computational experiments conducted
to verify the adequacy of the proposed IA model. It details the experiments in
terms of the labeled datasets, the dialogue act models used for comparison, the
specific setups for the computational experiments, the computational methods and
environment the experiments were conducted in, and the experimental results.

5.1 Empirical validation

5.1.1 Dialogue act taxonomies used for comparison
Empirical validation experiments to measure the emotion-sensitivity of the

proposed IA model was conducted on cooperative gaming data, to measure the
proposed model‘s adequacy in an environment it meant to be applied. The
gathered dataset consists of Japanese conversations, thus the extended IA model
was used (see 3.2.2).

Two other dialogue act taxonomies were used for the purpose of mutual
comparison regarding emotion-sensitivity. The SWBD-DAMSL and DIT++
dialogue act models were selected because they are widely known and used, and
represent communicative functions using one-dimensional and multi-dimensional
approaches, respectively.

The SWBD-DAMSL tagset defines dialogue acts for 42 one-dimensional
(mutually-exclusive) intentions. Although it contains a few dialogue acts for social
obligations, it does not include acts accounting for social status or intentions that
would influence self-esteem, and a wide range of subsequent emotions.

The multi-dimensional DIT++ consists of one set of ‘general-purpose
communicative functions‘(intentions) and nine tagsets constituting ‘dimension-
specific communicative functions‘such as ‘auto-feedback‘, ‘allo-feedback‘, and so
on (for the dimension of ‘task/activity‘no tagset of communicative functions
are defined). Well-formed tags on functional-segments are pairings of <D,F>
where D is one of the ten dimensions and F is a communicative function of
the corresponding dimension (e.g. <‘autoFeedback, request‘>). DIT++ assumes
that every functional-segment of the dialogue is initially annotated with one tag
from the dimension of ‘general purpose communicative functions‘. In addition,
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every functional-segment can be optionally tagged with up to nine tags, one for
each ‘dimension specific communicative function‘ dimension. As each dimension
contains mutually-exclusive tags, one segment can be annotated with between
one and ten tags in total. DIT++ has a function-specific dimension of ‘social
obligations‘, containing communicative functions such as ‘greeting‘, but its acts
do not account for non-obligatory interpersonal relation management. This study
considered 22 ‘general purpose‘ acts, including all specifications described by Bunt
[2009], and ten acts from the dimension of ‘social obligations‘. However, since
the acts from the dimension of ‘social obligations‘ (e.g. <‘social obligations,
greeting‘>) defined in DIT++ can only co-occur with one ‘general purpose‘ act, a
linearized tagset would contain 32 different acts in total, considering all possible
combinations among the two dimensions.

5.1.2 Annotated corpus
Five natural language dialogues from the Online Gaming Voice Chat Corpus

with Emotional Labels (OGVC) [55] were selected to validate the IA model. The
conversations were performed in Japanese during massively multiplayer online role-
playing game (MMORPG) sessions; the specific games involved were Ragnarok
Online, Monster Hunter Frontier, and Red Stone. The in-game context of these
dialogues demands co-operation, is rich in stimuli, and potentially provides for a
wide range of emotions. The dialogs were performed in Japanese, for which no large
datasets labeled with interpersonal relation-indicating (or other emotion-related)
tags exist.

The five conversations consist of a total of 6,902 spontaneous utterances. Three
dialogues were performed by three pairs of male players (4,397 utterances), and two
dialogues by two pairs of female players (2,505 utterances). The corpus contains
both transcriptions and audio recordings of each conversation. The conversations
are initially segmented into individual utterances, with each interlocutor identified.

To provide a proper context for the annotators, the textual and audio data was
reassembled into a dialogic form based on the timestamps in the monaural sound
files. (These files do not include network delay data, and for that reason, the exact
timing of the conversations could not be fully reproduced). The conversations
were re-segmented into functional-segments (not necessarily corresponding to one
utterance) by the author and a native Japanese speaker, yielding 6,934 functional-
segments in total.

For the purpose of evaluation, each segment had to be annotated with tags
from DIT++, SWBD-DAMSL and IA. It has also been tagged with the emotions
experienced by the interlocutors. Annotators were employed to assign tags from
the three models, and to complete the emotion tagging. (The corpus creators
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annotated only 80% of the original utterances with basic emotion tags.)
The size of the functional-segments differs in each model. For example,

the functional-segment for the act <‘general-purpose, answer‘> from DIT++
was often expressed in a single utterance segment, while ‘empathizing‘ from
the IA model tended to be expressed through two or three utterances. The
smallest possible segments were therefore chosen during functional-segmentation,
considering all the three models. In the case when a functional-segment of a given
model (typically IA) covered several smaller segments, all those segments were
annotated with the same tag. On average, a dialogue contained 1,386 segments
corresponding to approximately 62 minutes of audio.

5.1.3 Emotion annotation
Eight of the ten emotion tags employed by the compilers of the corpus are

identical to the basic emotions defined by Plutchik [2]: joy, sadness, anger, fear,
acceptance, disgust, surprise, and anticipation. The remaining two tags, ‘neutral‘
and ‘other‘, are complementary; their purpose is to account for emotions that
cannot be classified into any of the original eight categories. In the case of segments
that had already been tagged with emotions by the corpus compilers, only tags
assigned by at least two of the compilers were retained. When all three compilers
assigned different tags, one tag was selected (based on the judgment of a fourth
native speaker hired for this task) and retained.

No original tags were provided for 1,355 of the functional-segments. Tags were
added to them by three native Japanese speakers, employed for the experiments
using the ten emotion labels. The annotators were three male university students
between the age of 20-23 with over 100 hours of online-gaming experience each.
Transcripts and audio recordings of the dialogues were provided to the annotators,
who were asked, to determine the underlying emotion type of the interlocutors for
each segment. All segments, therefore, received one emotion tag. Before the actual
tagging procedure, each annotator participated in a brief training session, where
150 consecutive example segments (from the same corpus, not used in the study)
were shown with suggested emotion labels. The segments were for the experiments
to show how the labels should be attached in common and uncommon cases (e.g.
a certain emotion type was expressed through not one but several segments). The
inter-annotator agreement for emotion tags assessed with Fleiss‘ Kappa [56] was
68.3%.

5.1.4 Dialogue Act Annotation
The corpus was then annotated with the dialogue act tags of SWBD-DAMSL

and DIT++, and with the interpersonal act tags of the IA model. Three
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native Japanese speakers (different from those who annotated the emotions) were
employed. Each added tags from one of the three tag sets to the transcriptions
of the five dialogues while listening to the corresponding audio recordings. Since
three models were used, the annotation was conducted in three iterations, each
iteration for a different dialogue act model.

The annotators were two male and one female university students between
age 21-25, with more than 80 hours of online gaming experience each. They
were instructed to determine the interlocutor‘s intention for each segment and to
label it with the most appropriate dialogue act tag from each dialogue act model.
The annotators participated in a training session similar to the one conducted for
the emotion labeling. This training session involved the same 150 consecutive
functional-segments, repeated three times. Each time the 150 segments were
labeled with the tags of one of the dialogue act models, showing how the dialogue
acts of the given model could be expressed through one or several segments. The
annotators were cautioned that certain acts of certain models (typically the acts
of the IA model) tend to be expressed through several functional-segments. The
inter-annotator agreement (estimated again with Fleiss‘ Kappa) was 69.1% for
the DAMSL SWBD tagset, 71.7% for DIT++, and 66.2% for the IA model. The
IA model had the lowest ratio because the functional content dimension it covers
permits more subjectivity than do the other models.

Similarly to the case of emotion tags, a single dialogue act tag from each
taxonomy was assigned to each segment (hence three tags per segment). Any tag
selected by at least two annotators was retained for the analysis; otherwise, one
of the three different tags assigned by the annotators was retained (based on the
judgment of a fourth native speaker).

A preliminary analysis revealed that the DIT++ tagset is over-specified for
the given experimental data. To compensate for the data set‘s limited size,
several optional class specifications were omitted. This was considered reasonable
as it improved the performance of DIT++ in the experiments. The number
of acts in each taxonomy considered during analysis was further decreased by
disregarding those not assigned to any functional-segment. For the analysis, 28
acts of SWBD-DAMSL:
3rd party, Acknowledge, Affirmative non-yes, Agree, Apology, Appreciation,
Backchannel question, Conventional close, Declarative question, Directive,
Hedging, Maybe, Negative answer, No-answer, Non-verbal, Non-understandable
signal, Offer, Open-question, Or-clause, Other answers, Response
acknowledgement, Statement, Statement-opinion, Summarize, reformulate,
Tag-question, Thanking, Wh-question, Yes-no-question
and 17 acts of DIT++:
Address request, Address suggestion, Agreement, Answer, Apology, Check-question,
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Confirm, Disagreement, Disconfirm, Inform, Instruct, Offer, Propositional
question, Request, Set question, Suggestion, Thanking were retained.
All 12 acts of the extended IA model occurred in at least one of the five dialogues:
Partner-unrelated positive commenting, Partner-unrelated neutral commenting,
Partner-unrelated negative commenting, Paying attention, Empathizing, Accepting
as superior, Agreeing, Self-image improving, Criticizing, Indiscrete commenting,
Indebting partner, Commanding/requesting

5.1.5 Experimental results

Occurrence of emotions and dialogue acts
The aggregated occurrence and co-occurrence ratio of emotions and dialogue

acts in the five dialogues are summarized in Figure 5.1 for the SWBD DAMSL
tagset, in Figure 5.2 for the DIT ++ tagset, and in Figure 5.3 for the IA model.
The figures show the empirical distributions of the ten emotions differentiated by
random color assignment (the horizontal axes) across the model‘s dialogue acts
(the vertical axes). The area of each unit is proportional to the corresponding
emotion-speech act co-occurrence frequency (the width is directly proportional to
the emotion frequency, and the height – to the dialogue act frequency).

The most-frequently observed emotions are ‘acceptance‘ (18.2% of the total
number of segments) and ‘neutral‘ (24.8%). On the other hand, emotions with
negative valence, such as ‘sadness‘ (5.3%) and ‘anger‘ (2.4%) were observed
relatively rarely.

In the case of dialogue acts, the data reveals larger diversity in their distribution
than in the case of emotions. From the SWBD-DAMSL tagset, 13 acts (of the 28
retained for analysis) occurred in fewer than 1% of the total number of functional-
segments. Observing that other 14 acts from the original tagset (see 5.1.4) never
occurred in the conversations, the tags of the SWBD-DAMSL may be considered
over-specified for the given data.

In the case of the DIT ++ tagset, the occurrence ratio of speech acts is better
balanced. Of the 17 acts, eight occurred in less than 1% of the whole data
(other 16 were earlier excluded from the analysis due to their complete absence
in the annotated data – see 5.1.4). This suggests that the DIT ++ tagset is
also over-specified for the data. The most frequently observed acts are ‘Inform‘
(28.5%), ‘Answer‘ (25.2%), and ‘Confirm‘ (17.5%) that mainly cover gameplay-
related utterances.
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Figure 5.1: Co-occurrence ratio of basic emotions and the SWBD-DAMSL acts
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Figure 5.2: Co-occurrence ratio of basic emotions and the DIT++ acts
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Figure 5.3: Co-occurrence ratio of basic emotions and the IA model acts
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In the case of the IA model, all the originally defined 12 acts were retained
after labeling, implying that the number of defined categories fits the data well
(the number of social acts was intentionally kept low, but their specification was
completed without pre-analysis of the data.) Of the 12 acts, two occurred in
less than 1% of the utterances: ‘Indiscrete commenting‘ (0.2%) and ‘Criticizing‘
(0.1%). It is understood that further experiments would be required to validate
the universal applicability of the IA definitions to dialogues from other domains,
especially in the cases of ‘Criticizing‘ and ‘Indiscrete commenting‘. The most
frequently occurring dialogue acts are ‘Partner-unrelated negative commenting‘
(19.1%), ‘Partner-unrelated positive commenting‘ (13.7%), and ‘Partner-unrelated
neutral commenting‘ (25.4%).

Overall dependency between emotions and dialogue acts
A Fischer‘s exact test [45] showed that the dialogue acts of all the three models

have significant (p < 0.001) dependence with emotions. Analysis of the sums
of positive npmi values normalized by the degrees of freedom (see Table 5.1)
revealed that the IA taxonomy has the strongest overall correlation with emotions,
compared to the other two models.

Table 5.1: Dependency between emotions and the dialogue acts

Degrees of freedom (df) Sum of positive
npmi values

Sum of positive
npmi values / df

SWBD-DAMSL 28 9.08 0.324

DIT++ 17 5.87 0.345

IA 12 4.74 0.395

Association pairs
Based on the npmi values each dialogue act has with each emotion, association

values were obtained, indicating their co-occurrence frequency, with regards to
their marginal probability. Considering the ranges of the obtained values, there
are no very strong [0.60, 0.80) or extremely strong [0.80, 1.00] associations between
any of the three models‘ dialogue acts and emotions. Although most dialogue acts
are weakly associated with more than one emotion, several of them have a single
medium-strength association with an emotion in [0.20, 0.40). There also was one
act of the IA model that was positively (strongly, calculated npmi[0.40, 0.60) )
associated with each and every occurrence of a given emotion and that, therefore,
would serve as an exclusive indicator for that emotion.
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Figures 5.4, 5.5, and 5.6 depict the associations detected with positive npmi
values. In the figures, dialogue acts having medium-strength association with a
given emotion are indicated with blue borders along with the corresponding npmi
values. Strongly associated dialogue acts and their npmi values are indicated with
red borders, and the exclusive indicator act of the IA model is with green borders.
Non-positive npmi values are not displayed.

SWBD-DAMSL has pairs the following medium-strength associations:

• ‘Anticipation‘-‘Acceptance‘(npmi: 0.21)

• ‘Non-verbal‘- ‘Acceptance‘(npmi: 0.24)

• ‘Or-clause‘- ‘Acceptance‘(npmi: 0.25)

• ‘Apology‘- ‘Fear‘(npmi: 0.21)

• ‘Neutral‘- ‘Joy‘(npmi: 0.22)

• ‘Signal-non understanding‘- ‘Surprise‘(npmi: 0.32)

• ‘Declarative yes-no question‘- ‘Surprise‘(npmi: 0.20)

DIT++ has pairs the following medium-strength associations:

• ‘Disconfirm‘-‘Neutral‘(npmi: 0.31)

• ‘Inform‘- ‘Joy‘(npmi: 0.20)

and a pair of strong association between ‘Agreement‘and ‘Acceptance‘(npmi: 0.41).
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Figure 5.4: Associations between basic emotion tags and the SWBD-DAMSL acts
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Figure 5.5: Associations between basic emotion tags and the DIT++ acts
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Figure 5.6: Associations between basic emotion tags and the IA model acts

The IA tagset has the following medium-strength associations:

• ‘Disgust‘- ‘Criticizing‘(npmi: 0.20)

• ‘Self-image improving‘- ‘Fear (npmi: 0.37)

• ‘Paying attention‘- ‘Surprise‘(npmi: 0.20)

It also has one pair of strongly associated pairing of ‘Empathizing‘-
‘Acceptance‘(npmi: 0.59), and a pairing of strong association where the emotion
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is associated with the interpersonal act exclusively: ‘Partner-unrelated positive
commenting‘- ‘Joy‘.

Indicative power
The overall emotion-indicative power of the models was assessed by the model‘s

element-wise ratio of the good, strong, and exclusive indicators, and the results
are summarized in Table 5.2 The ratio is computed by dividing the frequency of
each indicator type by the number of tags (retained for annotation) in the given
taxonomy. (An indicator that is exclusive can also be strong, and an indicator
that is both exclusive and strong can also be a good indicator. These intersections
are accounted for in each group.)

Table 5.2: Element-wise ratio of the emotion-indicative power of dialogue acts
Ratio of

medium-strength
associations

Ratio of strong
associations

Ratio of exclusive
indicators

SWBD-DAMSL 7/28=0.25 0 0

DIT++ 3/17=0.15 1/17=0.05 0

IA 5/12=0.42 2/12=0.16 1/12=0.08

5.2 Computational validation - supervised
learning

5.2.1 Data
The corpus used for the empirical experiments was already partly labeled

with emotion labels, transferable to sentiment labels, and contains utterance-level
textual and dialogue-level (chunkable to utterance-level) audio features. For the
above reasons, it fits well the purpose of training and testing of supervised machine
learning algorithms. Accordingly, computational validation of the proposed
IA model through supervised sentiment recognition was tested on the same
conversational in-game corpus.

Dialogue act tags of the extended IA (see 3.2.2), SWB-DMSL and DIT++
tagsets were kept for the same functional-segments. The same basic emotion labels
used in the empirical experiments were collapsed into negative (consisting of anger,
fear, sadness, and disgust), positive (consisting of surprise, joy, acceptance, and
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anticipation), and neutral (consisting of neutral and other) sentiment labels. These
labels correspond to the valance-categories of negative (consisting of angry, afraid,
sad and annoyed), positive (consisting of astonished, happy, pleased/satisfied and
excited) and neutral (consisting of neutral) from Russel‘s circumplex of emotions
[57], with the addition of the emotion other to the neutral category.

For the training of the proposed method 80% of the all functional-segments
(5547 segments) were used while the remaining 20% (1386 segments) constituted
the test set.

5.2.2 Implementation
5.2.2.1 Pre-processing

Sub-classifier #1 process the word embeddings of textual transcriptions of the
audio streams. The functional-segment-level text chunks were further chunked to
words by MeCab [58] a morphological analysis engine designated for the Japanese
language. After stripping the nouns, verbs, and adjectives from their conjugations
and particles, word embeddings were created with the GloVe embedding algorithm
[59] (for further explanation about GloVe see 5.2.2.3) which was trained on the
Wikipedia dump data [60]. Through the algorithm, each word was transformed
into a vector of 200 dimensions based on the co-occurrence probability with other
adjacent words. The word embeddings then were re-ordered into their original
position they had in the functional-segments constituting embedded sequences.

Algorithm 1 Preparing textual input
1: listofembeddedsequences(textualinputdata)← empty
2: for all dialogue ∈dialogues do
3: for all segment ∈dialogue do
4: embedded sequence ←empty
5: words ←chunking with Mecab(segment)
6: for all word ∈words do
7: word embedding ←Glove(word)
8: append to embedded sequence(word embedding)
9: padding with zeros(embedded sequence)

10: end for
11: end for
12: append to embedded sequences (embedded sequence)
13: end for

return list of embedded sequences
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Each embedded segment was padded with zeros into a uniform length of 150
words, forming a three-dimensional input-array of the shape [number of datapoints,
uniform sequence length, number of embedding dimensions].

Sub-classifier #2, processes the audio data. The audio files, containing
each of the five dialogues, were partitioned into functional-segments. Then,
every functional-segment was saved as a three-second length monaural wav file,
lengthening the original segments with silence or shortening them in the case
they were longer than 3 seconds. The segments were transformed by the
OpenEar software [61] into 20 dimensions of low-level audio features incorporating:
signal energy, FFT-spectrum coefficients, mel-spectrum coefficients, mel-frequency
cepstral coefficients, pitch, voice quality, LPC coefficients, PLP coefficients,
formants, time-signals, and spectral bands. The vectorized audio-input arrays
have the shape of [number of datapoints, uniform sequence length(in milliseconds),
number of embedding dimensions]

Algorithm 2 Preparing audio input
1: list of audio features (audio input data) ←empty
2: for all dialogue ∈dialogues do
3: for all segment ∈dialogue do
4: uniformized segment ←trimming/padding to 3 seconds(segment)
5: set of low level audio features ←OpenEar(uniformized segment)
6: append to list of audio features (set of low level audio features)
7: end for
8: end for

return list of audio features

5.2.2.2 Architecture

The word embeddings were processed by two consecutive layers or Gated
Recurrent Unit (GRU) Neural Network, ending in a fully-connected, feedforward
neural network layer with ‘softmax‘activation function (for classification of
multiple classes), constituting sub-classifier #1. GRUs were used for they can
recall their previous internal states to process sequences of inputs, and find possible
dependencies within long sequences of embedded utterances [47]. (For further
explanation about GRUs see 5.2.2.3).

The audio feature vectors were processed by sub-classifier #2, a
One-dimensional Convolutional Neural Network (CNN), consisting of three
convolutional and two pooling layers, and a final, fully-connected softmax layer
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Algorithm 3 Sub-classifier #1
1: output of first layer ←GRU(list of embedded sequences)
2: output of second layer ←GRU(output of first layer)
3: classification result ←fully-connected softmax layer(output of second layer)

return classification result of sub-classifier #1

[62]. CNNs can effectively extract the important ones among the large number
of vectors through its several convolutional and pooling layers [48]. (For further
explanation about CNNs see the 5.2.2.3).

Algorithm 4 Sub-classifier #2
1: output of first layer ←1D CNN(list of audio features)
2: output of second layer ←pooling layer(output of first layer)
3: output of third layer ←1D CNN(output of second layer)
4: output of fourth layer ←pooling layer(output of third layer)
5: output of fifth layer ←1D CNN(output of fourth layer)
6: classification result ←fully-connected softmax layer(output of fifth layer)

return classification result of sub-classifier #2

The supplementary feature set of dialogue acts (of the given dialogue act model)
was processed as textual data by a GRU and a feedforward softmax layer (to find
the possible dependencies in their sequence) constituting sub-classifier #3.

Algorithm 5 Sub-classifier #3
1: output of first layer ←GRU(list of dialogue act labels)
2: classification result ←fully-connected softmax layer(output of first layer)

return classification result of sub-classifier #3

Using the ensemble learning method of soft-voting [49], the results of the two
independently-trained classifiers were merged at the decision-level. Specifically,
three fully-connected feed-forward network layers were trained on the classification
results to acquire weights for them. The average of the sums of the weighted results
was then computed.

All three sub-classifiers were trained and tested on the same sentiment output
labels. The audio and textual features extracted from the functional-segments were
processed in the order they occurred in the conversation, to help sub-classifier
#1 and sub-classifier #3‘s GRUs to find meaningful dependencies within their
sequences.
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Algorithm 6 Soft-voting
1: output of first layer←fully-connected softmax layer(list of classification result

of sub-classifier #1, #2, and #3)
2: output of second layer ←fully-connected softmax layer(output of first layer)
3: classification result←fully-connected softmax layer(output of second layer)

return final classification result

5.2.2.3 Technical details

Word embedding

Language modeling and feature learning techniques vectorizing words or
phrases from the vocabulary of a given natural language are collectively called
word embedding techniques. The base concept is to computationally embed a high-
dimensional space -with a dimension for each word - to a continuous vector space
of a much lower dimension. Dimensionality reduction on the word co-occurrence
matrix, neural networks, or probabilistic models are considered conventional word
embedding methods. [63]

GloVe [59] is an unsupervised word embedding algorithm. It encodes an
abstarctized form of semantic meaning based on word-to-word co-occurrence
probabilities. Table 5.3 is an example considering the co-occurrence probabilities
for the target words ‘steam‘and ‘ice‘with various words from the vocabulary of a
6 billion word English corpus (based on the table displayed in [59]).

It can be seen that ‘ice‘co-occurs more frequently with ‘solid‘than it does
with ‘gas‘, whereas ‘steam‘co-occurs more frequently with ‘gas‘than it does with
‘solid‘. Both words co-occur with their shared property ‘water‘frequently, and
both co-occur with the unrelated word ‘fashion‘infrequently. The noise from non-
discriminative words like ‘water‘and ‘fashion‘cancel out in the ratio of probabilities.
Accordingly, large values (much greater than one) correlate well with properties
specific to ‘ice‘, and small values (much less than one) correlate well with properties
specific to ‘steam‘.

Table 5.3: Probability and ratio of word co-occurrences

Probaility and ratio k = solid k = gas k = water k = fashion

P(k|ice) 1.9 x 10-4 6.6 x 10-5 3.0 x 10-3 1.7 x 10-5

P(k|steam) 2.2 x 10-5 7.8 x 10-4 2.2 x 10-3 1.8 x 10-5

P(k|ice) / P(k|steam) 8.9 8.5 x 10-2 1.36 0.96
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GloVe utilizes a log-bilinear model with a weighted least-squares objective. Its
objective is to learn word vectors such that their dot product equals the logarithm
of the words‘co-occurrence probability. Since the logarithm of a ratio equals the
difference of logarithms, this objective connects (the logarithm of) ratios of co-
occurrence probabilities to the vector differences in the word vector space. Because
these ratios can encode some form of meaning, this information gets encoded as
vector differences as well.

Recurrent neural networks

Recurrent neural networks (RNNs) are deep artificial neural networks designed
to recognize patterns in sequences of textual, speech, handwriting, time series etc.
data. RNNs utilize a temporal dimension to learn through chronologic sequences
[64].

In particular, the prediction a recurrent net makes at time step t− 1 affects its
prediction about time step t. RNNs learn from two input sources: the present and
the recent past, both of which are taken into account in the prediction of unseen
data. RNNs, thus, are distinguished from feedforward networks by the continuous
utilization of their own outputs as secondary input.

Sequential information is preserved in a hidden state, which can stretch over
several time steps, affecting the prediction of each new datapoint. Accordingly,
RNNs can find correlations between events separated by many moments as well.
These correlations are called“long-term dependencies”, described mathematically
as the following:

ht = θ(Wxt + Uht−1) (5.1)

The hidden state at time step t is ht. It is a function accounting for the
input at time step xt, modified by a weight matrix W of the hidden state of the
previous time step ht−1, and multiplied by its own hidden-state-to-hidden-state
matrix U . The importance of the present input in relation to the past hidden
state and vice-versa is represented through the weight matrices. Weight matrices
are adjusted throughout the training of the network via backpropagation. The
sum of the weight input and hidden state is squashed by the function θ– either a
logistic sigmoid function or a tanh.

In every time step a feedback loop occurs, thus each hidden state contains traces
of all preceding hidden states ht−1, for as long as memory can persist. For the above
reason, RNNs utilize an extension of backpropagation called ‘backpropagation
through time‘(BPTT). In RNNs, time is expressed through an ordered series of
calculations linking one time step to the next, to enable backpropagation. However,
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since RNNs are seeking to establish connections between a final output and events
several time steps before, during the backpropagation process -where the layers
and time steps of deep neural networks relate to each other through multiplication-
derivatives tend to vanish or explode.

Long-Short Term Memory RNNs (LSTMs) are designed to preserve the error
so it can be efficiently backpropagated through time. [65] By maintaining a more
constant error, LSTMs can link causes and effects remotely allowing them to
effectively learn over several time steps.

LSTMs contain information outside the normal flow of the recurrent network in
a gated cell. Information can be ‘stored in‘, ‘written to‘, or ‘read from‘a cell. The
cell makes decisions about what to store, and when to allow ‘reads‘, ‘writes‘and
‘erasures‘via input and output gates. Similarly to the neural network‘s nodes, the
gates act on the signals they receive and block or pass the information based on
their strength and importance, according to the gates own sets of weights.

The weights are adjusted via the LSTMs learning process: the cells learn
when to allow data to enter, leave or be deleted through the iterative process of
randomizing weights, backpropagating error, and adjusting weights via gradient
descent.

A Gated Recurrent Unit Network (GRU) is a simplified LSTM without an
output gate. At each time step, the contents from the GRU‘s memory cell is fully
written into the larger net. GRUs are more suitable to be used on smaller datasets
on which LSTMs may over-filter information [47].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep artificial neural networks that
are used primarily to classify images [48]. In mathematical terms, a convolution
is the integral measuring how much two functions overlap as one passes over the
other.

Each convolutional layer of a CNN consist of a set of adjustable filters. Every
filter is small spatially but extends through the full depth of the input volume.
For example, a filter applied on an image, with size 5x5x3 is five pixels long in
width and height, and its depth is three, for e.g the three color channels. During
the convolution, the images are sliced along their depth, and each filter is slid
across the width and height of the given slice‘s input until it covers the whole
slice spatially. The dot products between the entries of the filter (which are the
weights) and the input at any position are computed, producing a two-dimensional
activation map that reflects the responses of that filter on every spatial position.
The spatial position checked by the filter at a given time is called local region.
Thus, convolutional layers are called locally connected layers, since they process
only a portion of the whole input data at a given time. Finally, the activation
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maps are stacked along the depth dimension and producing the output.
When another convolutional layer is added to the network, the output of the

previous layer becomes the input of the next one. The next layer then processes
an input of activations, describing lower level features. Through the filters applied
in the next layer, activations representing higher-level features will be outputted.
The addition of several layers may result in getting activation maps that represent
very complex features, and filters that activate when there is e.g. handwriting in
the image. In the case when CNNs are used for classification tasks, once high-level
features are obtained they are input into a fully connected layer at the end of the
CNN, which performs the classification task.

With the usage of pooling layers, every depth slice‘s input volume can be
downsampled along both width and height, discarding a significant proportion of
the activations, to avoid overfitting.

A One-dimensional Convolutional Neural Network (1D CNN) works similarly
to conventional CNNs, with the modification that the filter is sliding along a one-
dimensional row of numbers [66]. In this case, the filter has only two dimensions.
E.g. in the case of a 3x3 filter, the input data would be sliced into three channels
where on each channel the filter would slide along the row of numbers checking
three numbers at a time and mapping their dot product with the filter weights onto
an activation map. Then, the three activation maps would be stacked to produce
the output volume. This kind of layers is used in the case when two-dimensional
input data is not available, typically in the case vectorized audio streams.

Soft-voting

Soft-voting is a type of ensemble method [49]. Ensemble methods combine
the classification predictions of similar or conceptually different machine learning
classifiers via majority or soft-voting. In the case of majority voting, the predicted
final class label ŷ is the label that has been predicted most frequently by each
classification model Cj:

ŷ = mode{C1(x), C2(x), ..., Cm(x)} (5.2)

Thus, in the example case of three classifiers with the binary outputs of

• C1(x) : ŷ = 0

• C2(x) : ŷ = 0

• C3(x) : ŷ = 1
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ŷ would be 0. Naturally, this method cannot be applied in the case of less than
three classifiers.

Weighted majority vote associates a weight wj with classifier Cj:

ŷ = arg max
i

m∑
j=1

wjχA
(Cj(x) = i) (5.3)

where χA is the characteristic function [Cj(x) ∈ A], and A is a set of unique class
labels. Thus, with weighted majority voting the same outputs as above

• C1(x) : ŷ = 0

• C2(x) : ŷ = 0

• C3(x) : ŷ = 1

would yield ŷ = 1.

In soft-voting, final prediction is the average the of the predicted class-
probabilities from each classifier.

ŷ = arg max
i

m∑
j=1

wj(pij) (5.4)

where wj is the weight that can be assigned to the jth classifier. In the example
case of non-weighted outputs of

• C1(x): [0.9,0.1] (the predicted probabilities for class 0 | 1)

• C2(x): [0.8,0.2]

• C3(x): [0.4,0.6]

the averaged outcome would be [0.7,0.3], resulting in ŷ = 0. However, assigning
the weights of

• C1(x) -> 0.1

• C2(x) -> 0.1

• C3(x) -> 0.8

the averaged outcome would be [0.25,0.35], resulting in ŷ = 1.
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5.2.2.4 Computing environment

The proposed approach of latent variable extraction and clustering were coded
in Python, and the code is compatible with Python version 3.6. The code was run
on Spyder IDE 3.2.6 on Ubuntu 16.04.2 LTS. The workstation used is equipped
with an Intel Xeon E5-1650 v4 3.60GHz CPU and 128GB DDR4 RAM. In the
current environment, the trained computational method performs the prediction
of one datapoint between 0.18ms to 0.23ms (depending on the experimental setup).

The most important Python modules utilized in the implementation are listed
below:

• theano: a library and optimizing compiler for manipulating and evaluating
mathematical expressions, especially matrix-valued ones. Used for the
implementation of CNN and RNN networks.

• keras: high-level neural networks API, written running on top of
TensorFlow, CNTK, or Theano. In the experiments conducted, it was used
with Theano backend.

• pandas: Pandas is a library for data manipulation and analysis. Used to
load the textual transcriptions.

• numpy: NumPy is a library for scientific computing, especially for matrix
transformations. Used to create, reshape save and load matrices of textual
and audio inputs.

• sklearn: Scikit-learn is a machine learning library, used for the
implementation of soft-voting.

• matplotlib: Matplotlib is a plotting library, used to plot co-occurrence
analytics.

5.2.3 Experimental setups
Three experimental setups for sentiment recognition were developed based on

the architecture proposed in 4.2.1 and used separately for all three augmented
classifiers, processing a given dialogue act model. In each setup the input labels
of sub-classifier #3 were different, to account for the variability in the number of
functional-segments the dialogue acts of each given model tend to be expressed.
The author tried to find the most optimal setups in the case of each dialogue
act model, which resulted in the best sentiment classification accuracy of each
sentiment classifiers‘ sub-classifier #3. Similarly to previous work, the dialogue
acts were not parsed by a sub-system but used ‘as-is‘, to reveal the maximal
extent of their applicability for sentiment recognition (see 2.1.3).
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Setup 1: The dialogue act of the preceding functional-segment (si-1),
performed by Speaker-A can represent the intention-level stimuli for the sentiment
of the ith segment (si) performed by Speaker-B (especially an interpersonal act).
Subsequently, the dialogue act in Speaker-B‘s si assumed to represent the outcome
of a cognitive process influenced by their affective states (see 2.1.1). To account
for the causational connection between the consecutive utterances, in Setup 1,
each batch processed by sub-classifier #3 consists of the dialogue acts of si-1and si
labeled with the sentiment of si.

Since functional-segment lengths are not consistent among the three different
dialogue act taxonomies, intentions are sometimes expressed through several
consecutive functional-segments. In such cases si-1 and si are performed by the
same speaker. The interpersonal act of si-1 and si then represents an ongoing mental
state (intentional context). This can still serve as a cue for the affective state of
the same speaker, expressed in the current segment. To help sub-classifier #3
differentiate between these scenarios, each dialogue act label in Setup 1 indicates
the performer as Speaker-A or Speaker-B. The number of possible dialogue acts is
therefore doubled for each taxonomy. (In the case of the IA tagset, for example,
‘Criticizing‘ is subdivided into ‘Criticizing_A‘ and ‘Criticizing_B‘.) Figure 5.7
shows the input labels for sub-classifier #3 used in Setup1. A shift between topics
may negate causative or continuation relationships between consecutive utterances.
However, because accounting for topic-shifts would further increase the number of
training labels, the author elected not to consider them in the context of such a
small dataset.

Figure 5.7: Setup 1: Feeding speaker-specified dialogue act labels of the current
and previous functional-segment into sub-classifier #3

Setup 2: Dialogue acts of the SWDB-DAMSL and DIT++ models are
presumed to have weaker sensitivity to affective states, and may not serve as a
stimulus for them. An experiment was therefore conducted with batches containing
only the dialogue act labels and sentiment labels of si, where the models above
may perform better. Speaker-A and Speaker-B were, however, still differentiated.
Figure 5.8 depicts the input labels for Classifier #3 used in Setup 2.
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Figure 5.8: Setup 2: Feeding speaker-specified dialogue act labels of the current
functional-segments into sub-classifier #3

Setup 3: It is possible, that by increasing the number of dialogue acts through
differentiating between a dialogue acts performed by Speaker-A and Speaker-B,
too much noise would be added to the data. Setup 3 is indented as a setup with
minimized noise, where the dialogue act tags were not differentiated by the speaker,
and each batch contained only the dialogue act and sentiment label of si Figure
5.9 displays the input labels for sub-classifier #3 used in Setup 3.

Figure 5.9: Setup 3: Feeding speaker-unspecified dialogue act labels of the current
functional-segment into sub-classifier #3

When comparing the final classification results of the four sentiment classifiers,
(the baseline classifier and the three augmented classifiers utilizing a given dialogue
act model) each augmented classifier uses their own sub-classifier#3 with the setup
most optimal to exploit the attributes of the dialogue act categorization it utilizes.
Each sentiment classifier used in the experiment was trained and tested on the same
sets of functional-segments, through 10-fold cross-validation. Specifically, the data
were randomly partitioned into 10 equal sized subsamples, from which a single
subsample is retained for testing the model, while the remaining 9 subsamples are
used as training data (6240 segments) [67]. (The order of the functional-segments
within each subsample and the order of the subsamples themselves were retained
to ensure the neural networks can learn from the structure of the conversations.)
To reduce variability, the testing was achieved in 10 iterations, each time using
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a subsample as testset that have not been used previously, and producing 10
recognition accuracy results. The average of the 10 recognition results indicates a
less biased overall recognition accuracy.

5.2.4 Experimental results
Table 5.4 lists the experimental results obtained for machine learning - based

sentiment recognition through the three sub-classifiers, separately. In the case
of sub-classifier #3, all cases of processing the three dialogue act models are
scrutinized separately along the proposed three experimental setups.

Table 5.4: Recognition accuracy of the separate sub-classifiers obtained in the
experiments

Method Precision Recall F1-score Overall
acc.NEG NEU POS NEG NEU POS NEG NEU POS

Sub-classifier #1 0.38 0.45 0.69 0.27 0.63 0.60 0.32 0.42 0.64 56.18%
Sub-classifier #2 0.41 0.34 0.64 0.29 0.52 0.56 0.34 0.41 0.60 51.91%
Sub-classifier #3

processing labels of
DIT ++, Setup1

0.14 0.17 0.23 0.07 0.20 0.24 0.09 0.18 0.23 19.60%

Sub-classifier #3
processing labels of

DIT ++, Setup2
0.18 0.21 0.25 0.11 0.25 0.29 0.14 0.23 0.27 23.72%

Sub-classifier #3
processing labels of
DIT ++, Setup3

0.13 0.16 0.21 0.06 0.20 0.23 0.08 0.18 0.22 18.84%

Sub-classifier #3
processing labels of

SWBD-DAMSL,
Setup1

0.15 0.21 0.23 0.07 0.24 0.25 0.10 0.22 0.24 20.42%

Sub-classifier #3
processing labels of

SWBD-DAMSL,
Setup2

0.15 0.18 0.24 0.09 0.24 0.26 0.11 0.21 0.25 21.06%

Sub-classifier #3
processing labels of

SWBD-DAMSL,
Setup3

0.14 0.18 0.23 0.07 0.25 0.27 0.09 0.21 0.25 20.84%

Sub-classifier #3
processing labels of
IA model, Setup1

0.26 0.25 0.37 0.14 0.31 0.34 0.18 0.28 0.36 32.16%

Sub-classifier #3
processing labels of
IA model, Setup2

0.24 0.24 0.32 0.12 0.29 0.33 0.16 0.26 0.32 28.89%

Sub-classifier #3
processing labels of
IA model, Setup3

0.20 0.21 0.29 0.11 0.26 0.32 0.14 0.25 0.30 26.06%
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Table 5.5 shows the overall experimental results obtained for sentiment recognition
of the baseline classifier, and the three augmented classifiers utilizing different
dialogue act models (in their best-performing setups). It

Table 5.5: Recognition accuracy of the separate baseline and
augmented-classifiers obtained in the experiments

Method Precision Recall F1-score Overall
acc.NEG NEU POS NEG NEU POS NEG NEU POS

Baseline method
(Sub-classifier
#1 and #2)

0.42 0.50 0.77 0.30 0.70 0.67 0.35 0.58 0.72 62.33%

Baseline method +
Sub-classifier #3
processing labels

from DIT ++
(with best performing setup)

0.45 0.58 0.76 0.23 0.70 0.81 0.30 0.63 0.78 66.10%

Baseline method +
Sub-classifier #3
processing labels

from SWBD-DAMSL
(with best performing setup)

0.46 0.57 0.75 0.22 0.69 0.81 0.30 0.62 0.78 65.20%

Baseline method +
Sub-classifier #3
processing labels
from IA model

(with best performing setup)

0.60 0.62 0.82 0.31 0.77 0.90 0.41 0.69 0.83 74.42%

5.3 Computational validation - Semi-supervised
learning

5.3.1 Data

Data mining
As detailed above, frame-level audio feature sets from the YouTube 8M

dataset were selected through indirect YouTube search for semi-supervised polarity
recognition. The search was conducted through the YouTube API [68]. Search-
phrase inputs to the API were

a) subjectively selected English synonyms (based on the Collins Thesaurus [69])
of the eight basic emotions defined by Plutchik [2]

• ‘happy‘for ‘joy'
• ‘sad‘for ‘sadness'
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• ‘angry‘for ‘anger'
• ‘scared‘for ‘fear'
• ‘surprised‘for ‘surprise'
• ‘expectant‘for ‘anticipation‘
• ‘disgusted‘for ‘disgust'
• ‘impressed‘for ‘acceptance'

b) seven English synonyms (based on the Collins Thesaurus) of communicative
functions (intentions) corresponding to six basic emotions mentioned above.
The communicative functions used were the ones defined in the core IA model
(see 3.2.1) tailored for dialogic data in general. Correspondence was decided
based on the results of the empirical experiments detailed in 5.1.5.

• ‘criticizing‘for ‘criticizing‘corresponding to ‘disgust'
• ‘being indiscrete‘for ‘indiscrete commenting‘corresponding to ‘anger'
• ‘being there‘for ‘empathizing‘corresponding to ‘acceptance'
• ‘commanding‘for ‘commanding/requesting‘corresponding to

‘anticipation'
• ‘requesting‘for ‘commanding/requesting‘corresponding ‘anticipation'
• ‘talking himself out‘/ ‘talking herself out‘for ‘self-image

improving‘corresponding to ‘fear'
• ‘noticing‘for ‘paying attention‘corresponding to ‘surprise'

The communicative functions of ‘indebting partner‘and ‘agreeing‘did not have
enough emotion-indicative power to be utilized in this method.

Since the word phrases were in English, the targeted videos were also of English
language. Non-English videos with English titles were filtered out from the search
results. The reason for choosing the English language is twofold:

• The number of English videos on YouTube are much larger than videos of
any other language, providing large sets of data to select from

• Since the larger part of the movies created in general have English speaking
versions (original or dubbed version) it is more likely to find the necessary
amount of scenes to populate each aggregated emotion bag.
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The selected videos (having an extracted audio feature set in the Y8M) were
filtered through the API to be between one and five minutes in length, in order
to get videos of dialogues focused on the expression of one particular emotion/
communicative function. Based on the basic emotion search phrases 225 minutes of
related dialogic videos were found, providing an average of 45 videos per emotions,
and an average of 956 utterance-level feature sets retrieved from the Y8M. For each
emotion-indicating communicative function, another 206 minutes of dialogic videos
were found, resulting in 37 videos per communicative functions and an average of
872 utterance-level audio feature sets. The utterance-level features were compiled
from frame-level audio features. Each frame contains a 128-dimensional feature
vector, extracted from a deep convolutional neural network, trained on log-mel
spectrogram patches as described in [70]. For basic emotions 361 feature sets,
for emotion-indicating communicative functions, 337 feature sets were selected in
total, leading to the extraction of a total of 7650 and 7429 utterances separately
from the Y8M.

Aggregating frame-level instances into utterance-level instances was conducted
along time-stamps. Time stamps were provided by the online text converter
of Cloud Converter [71], applied on online YouTube video streams of the
corresponding videos of the audio feature sets of Y8M .

Data structuring and annotation
Although the training of the proposed method does not require annotation,

testing the method for the purpose of the study necessitated the compilation of a
test set. 80% of the utterance – level features were used for training the proposed
system, while 20% for testing it. In particular, for training 6120 and 5943 instances,
for testing 1530 and 1485 instances were extracted from the feature sets selected
by basic emotion search-phrases and by communicative function search-phrases,
separately. All test instances have been annotated with basic emotion tags by
three native English male speakers of age between 27 and 32.

The annotators were asked to determine the underlying emotion of the
interlocutors for each utterance while watching the selected YouTube videos online.
All utterance-level test instances received one tag. The inter-annotator agreement
for emotion tags assessed with Fleiss‘ Kappa [56] was 68.2%. The emotion labels
were then transformed into polarity labels based on their valences defined in
Russels‘s circumplex of emotions [57]. The reason for not having the utterances
annotated with polarity tags from the beginning is that recognition of specific
emotions is also analyzed in the study.
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5.3.2 Implementation
5.3.2.1 Architecture

Latent variable extraction

The audio data arrays were fed into the encoder layers of the VAE. Since
the encoder consists of three consecutive GRU neural network layers ending in a
fully-connected layer, the decoder also consisted of three GRU layers, where the
first layer is input with the output of the decoder. The latent variables are the
output of the encoder‘s fully connected layer. Their number was decided as follows:
for each emotion representing bag, eight latent variables were extracted under the
assumption that in an ideal case each latent variable represents a different emotion
(or emotion-related concept that can occur in any bag). In the case when the latent
concepts are not covering the emotions but other abstract constructs, the number
of eight latent variables may prove to be too large. However, the latter would mean
that only a few of the variables would account for concepts significant enough to
differentiate between emotions in the form of audio features. Having fewer latent
variables than hidden concepts, on the other hand, can drastically affect the results
of the clustering-based classification. Eight variables were hence assumed to be
enough to account for all the possible significant variations.

Algorithm 7 Latent variable extraction
1: while learning do
2: textbfEncoding
3: output of first layer ←GRU(list of utterance-level audio features)
4: output of second layer ←GRU(output of first layer)
5: output of third layer ←GRU(output of second layer)
6: compressed form of input = latent variables #1 ←fully-connected relu

layer(output of third layer)
7: textbfDecoding
8: output of first layer ←fully-connected relu layer(output of encoding)
9: output of second layer ←GRU(output of first layer)

10: output of third layer ←GRU(output of second layer)
11: list of regenerated utterance-level audio features ←GRU(output of third

layer)
12: updating the encoding/decoding algorithm(loss function(list of regenerated

utterance-level audio features ))
13: end while

return Latent variables
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Unsupervised Clustering

Once the eight latent variables got extracted, each emotion bag instance
receives the corresponding vector representing its position in the latent feature
space. The vectors of each instance were clustered by Expectation Maximization
(EM) [72] through Gaussian Mixture Models (GMMs) [73]. GMMs assume that
the data points are Gaussian distributed; this is a less restrictive assumption than
assuming that they are circular by using the mean (like other clustering methods,
such as k-means). As eight-dimensional datapoints were clustered, flexibility in
the terms of cluster shape was of utmost importance. Each instance was regarded
as being generated by a mixture of Gaussians. To find the parameters of the
Gaussians that best explain the data, a conventional EM was used, computing a
matrix where the rows are the data point and the columns are the Gaussians [72]:

W
(i)
j = φjN (x(i);µj,Σj)∑k

q=1 φqN (x(i);µq,Σq)
(5.5)

where φj is the weight for each Guassian, µj is the mean of the Guassians, and
Σj is the co-variance of each Guassian. In matrix W an element at row i, column
j is the probability that x(i) was generated by Gaussian j. The probability of a
given Gaussian is computed in the numerator and is normalized along k Guassians
in the denominator.

The number of stable clusters was decided based on the Dunn Index cluster
validation metric [74] applied through several iterations with varying cluster sizes.
The Dunn Index is the ratio of the smallest inter-cluster distance and the largest
intra-cluster distance. It is computed as

D(ζ) = Ck, C1 ∈ ζ, Ck 6= C1(mini∈Ck,j∈C1 dist(i, j))
maxCm∈ζ diam(Cm) (5.6)

where diam(Cm) is the maximum distance between observations in cluster
(Cm). The Dunn Index has a value between zero and∞, and should be maximized.

Once stable clusters are found, the cluster containing the largest number
of vectors is selected as a representative cluster for the given emotion. Then,
polarity bags are populated with the vectors of the representative clusters of each
corresponding (negative or positive valence) emotion.

Vector comparison with unseen data

In the case of unseen data, latent variables were extracted by the VAE pre-
trained on the training set. Similarly to the training data set, the unseen data must
consist of utterance-level audio features. After the test instances were mapped to
the latent feature space, they were compared with the emotion representative
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Algorithm 8 Unsupervised clustering
1: for all bag ∈emotion bags do
2: for all instance ∈bag do
3: mapping to latent feature space(utterance-level audio features)
4: end for
5: for i 6=number of latent variables do
6: Number of stable clusters ←0
7: Current strongest indicator ←0
8: i++
9: Cluster stability indicator ←Dunn Index(EM(GMM(instance, i)))

10: if Cluster stability indicator > Current strongest indicator then
11: Number of stable clusters ←i
12: Current strongest indicator ←Cluster stability indicator
13: end if
14: end for
15: for all instance ∈bag do
16: largest cluster ←EM(GMM(instance), Number of stable clusters)
17: end for
18: final emotion bags ←leave only instances of largest cluster(bag, largest

cluster)
19: end for
20: polarity bags ←aggregated along valence(final emotion bags)

return polarity bags
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instances populating the negative and positive polarity bags. As a similarity
measure, cosine-similarity [75] was used, for it is judging the orientation of the
vectors. Cosine similarity is computed as

similarity = cos(θ) = A ·B
‖A‖‖B‖

=
∑n

i=1 AiBi√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

(5.7)

where Ai and Bi are components of vector A and B respectively. The resulting
similarity ranges from [-1:1], where -1 indicates exact opposition, 1 indicates
exact matching, and 0 indicates orthogonality or decorrelation; in-between values
indicate intermediate similarity or dissimilarity. The test instances are labeled,
based on the similarity their vectorized latent variable representations have with
the vectors populating the positive and negative polarity bags.

Algorithm 9 Classification
1: list of mapped test instances ←empty
2: for all utterance-level instance ∈list of test instances do
3: mapped test instance ←mapping to latent feature space(utterance-level

instance(of audio features))
4: list of mapped test instances ←append(mapped test instance)
5: end for
6: for all test instance ∈list of mapped test instances do
7: decision on polarity ←0
8: best cosine similarity ←0
9: for all polarity bag ∈polarity bags do

10: for all instance ∈polarity bag do
11: current cosine similarity ←cosine similarity(instances, test

instances)
12: if current cosine similarity > best cosine similarity then
13: decision on polarity ←polarity bag
14: best cosine similarity ←current cosine similarity
15: end if
16: end for
17: end for

return decision on polarity
18: end for
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5.3.2.2 Technical details

Auto-encoders

Every auto encoder consists of an encoder φ : X → F and a decoder ψ : F → X
part. The encoder encodes the high dimensional feature set it is input with into
lower dimensionality, compressed features called latent variables: z = σ(Wx + b).
z is a latent variable, σ is an element-wise activation function such as a sigmoid
function or a rectified linear unit, W, is a weight matrix and b is a bias vector.
Then, from the hidden layer, the decoder reconstructs the input into the same
high level dimensionality: x‘ = σ‘(W‘z + b‘). Decoding and encoding are done by
neural networks, learning from the loss of the reconstructed vs. original datapoints
through back-propagation and trying to minimize reconstruction errors. [76]

L(x,x‘) = ‖x− x‘‖2 = ‖x− σ‘(W‘(σ(Wx + b)) + b‘)‖2 (5.8)

The possible neural networks of encoders and decoders vary in type
(feedforward, RNN, CNN etc.) and depth according to the nature and complexity
of the input data. Latent variables z are the outputs of the hidden layer in
the middle, initialized and updated through the encoding-decoding process of the
autoencoder. Latent variables represent a few basic concepts the features of the
input data can be grouped by. The hidden layer is always the last fully connected
layer of the encoder φ. Accordingly, the (first) layer of the decoder ψ processes
a two-dimensional input generated by the fully connected layer. The number of
latent variables is often equivalent to the number of nodes in the fully hidden
layer. [76]

Variational autoencoders

Variational autoencoders (VAE) make strong assumptions concerning the
distribution of latent variables z ∈ Z . In VAEs, constraints are added that forces
the generation of latent vectors to roughly follow a unit Gaussian distribution.
As the Gaussian distribution, conventionally a centered isotropic multivariate
Gaussian pθ(z) = N (0, I) is selected. The isotropic Gaussian priors allow
each latent dimension in the representation to push themselves as farther as
possible from the other factors. Thus, VAEs are known to give representations
with disentangled factors. [54] The above constrain requires an additional loss
component which measures how closely the latent variables match a unit gaussian
and a specific training algorithm called Stochastic Gradient Variational Bayes
(SGVB) [77].

VAEs build on the assumption that the data is generated by a directed
graphical model p(x|z) and that the encoder is learning an approximation qφ(z|x)
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to the posterior distribution pθ(z|x) Thus, the loss function of a VAE has the
following form:

L(φ, θ,x) = DKL(qφ(z|x)‖pθ(z))− Eqφ(z|x)
(

log pθ(x|z)
)

(5.9)

Here, DKL stands for the Kullback –Leibler divergence [78].

5.3.2.3 Computing environment

The proposed approach of latent variable extraction and clustering were coded
in Python, and the code is compatible with Python version 3.6. The code was run
on Spyder IDE 3.2.6 on Ubuntu 16.04.2 LTS. The workstation used is equipped
with an Intel Xeon E5-1650 v4 3.60GHz CPU and 128GB DDR4 RAM. In the
current environment, the trained computational method performs the prediction
of one datapoint between 0.18ms to 0.23ms (depending on the experimental setup).

The most important Python modules utilized in the implementation are listed
below:

• theano: a library and optimizing compiler for manipulating and evaluating
mathematical expressions, especially matrix-valued ones. Used for the
implementation of variational autoencoder layers.

• keras: high-level neural networks API, written running on top of
TensorFlow, CNTK, or Theano. In the experiments conducted, it was used
with Thenao backend.

• pandas: Pandas is a library for data manipulation and analysis. Used to
load the textual transcriptions.

• numpy: NumPy is a library for scientific computing, especially for matrix
transformations. Used to create, reshape save and load matrices of audio
inputs.

• sklearn: Scikit-learn is a machine learning library, used for the
implementation of Gaussian Mixture Models with expectation maximization.

5.3.3 Experimental setups
To test the efficiency of the latent variable extraction-based polarity

classification, three experimental setups were designed with identical architectures
but different test and training sets. The 8:2 train:test ratio was set in all cases. In
Setup 1, the train and test sets used were the audio feature sets selected by basic
emotion search-phrases (6120:1530 train:test instances).
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In Setup 2, the sets used were the audio feature sets selected by emotion-
indicating communicative function search-phrases (5943:1485 train:test instances)
Setup 2 accounted for only six basic emotions and accordingly only six emotion
bags were populated with representative instances. Thus, each polarity bag was
populated bags with the instances of only three emotion bags.

In setup 3, the test and train sets contained audio feature sets gathered from
both search phrase dimensions (12063: 3015 train:test instances) to acquire a
larger set of training data: each emotion bag was populated with the instances
corresponding to the same emotion of basic emotion - and communicative function-
based search phrases. (In the case of sadness and joy the bags were populated only
with the instances gathered through basic emotion search phrases.) In all setups,
the test labels were polarity labels transformed from basic emotion labels.

5.3.4 Experimental results
Table 5.6 summarizes the polarity classification results for each experimental

setups separately.

Table 5.6: Polarity classification results

Setup Precision Recall F1-score Overall
acc.NEG POS NEG POS NEG POS

Setup 1:
Basic emotion
search phrases

0.52 0.85 0.63 0.76 0.58 0.81 71.22%

Setup 2:
Comm. function
search phrases

0.42 0.67 0.50 0.55 0.48 0.60 58.17%

Setup 3:
Mixed search phrases 0.68 0.88 0.74 0.82 0.73 0.87 79.08%

Table 5.7 further elaborates on the performance of the proposed method through
emotion-level classification.
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Table 5.7: Basic emotion classification results

Emotions F1-score
Setup 1 Setup 2 Setup 3

Anger 0.38 0.24 0.40
Fear 0.30 0.17 0.25
Joy 0.44 – 0.42

Sadness 0.28 – 0.34
Anticipation 0.12 0.11 0.28

Surprise 0.08 0.28 0.12
Acceptance 0.22 0.22 0.20

Disgust 0.36 0.42 0.37
Overall acc. 29.40% 19.81% 31.63%
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Chapter 6

Discussion

6.1 Discussion on the results of the empirical
analysis

6.1.1 Occurrence of emotions and dialogue acts
The most frequently observed emotions are ‘acceptance‘and ‘anticipation.‘On

the other hand, ‘sadness‘and ‘anger,‘, and other emotions of negative valence were
observed relatively rarely. This implies a generally excited and friendly dialogic
atmosphere, anticipated and required in a co-operative gaming context.

Considering that ‘partner-unrelated‘acts are the most frequent within the
three categorizations compared, it became clear that, by the very nature of in-
game conversations, most of the utterances were related to in-game events rather
than to the conversational partners. The co-operative nature of the dialogue
further manifests in the fact that the IA model‘s acts of ‘indiscrete commenting‘,
‘criticizing‘, and ‘self-image improving‘were observed very rarely. This result also
assumes that the interlocutors‘ focus on the game rather than on each other. It
also relates to the cooperation demanding ”friendly atmosphere” that would easily
be ruined with the excessive use of those three acts. The cooperation demand can
also be the reason for frequent occurrence of the IA acts of ‘empathizing‘, ‘paying
attention‘, and ‘commanding/requesting‘throughout the conversations.

6.1.2 Association pairs based indicative power
As it can be seen from the table 5.1 and figures 5.4 to 5.6, the IA model not

only has stronger overall correlation with basic emotions, it also has a better ratio
of good, strong, and exclusive indicators than do the other models.

In the case of SWBD-DAMSL, three of the medium strength association pairs
are connected to the same emotion of ‘acceptance‘(see Figure 5.4). Obviously,
however, a given dialogue act having medium-strength, or better associations
with multiple emotions cannot be considered as a good indicator for an emotion
and vice-versa. Thus, the three dialogue acts mentioned above are not as good
indicators for ‘acceptance‘as for example the dialogue act of ‘apology‘for the
emotion ‘fear‘, where ‘apology‘has medium-strength association only with ‘fear‘and
‘fear‘has with ‘apology‘(and no stronger association is present). In the case of the
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DIT++ and IA models multiple associations with the same emotion or dialogue
act were not detected (Figure 5.5 and Figure 5.6).

The above results imply that the IA model would provide for a more consistent
classification in an affective context, compared to the other models. By invoking
Assumption 3 (see 3.1), these results would also mean that the IA model tags
better correspond to the social status and self-esteem - managing interpersonal
actions than the other models. In other words, the proposed classification appears
to be appropriate to reflect the interpersonal relations managing communicative
functions. The dialogue act-indicative power of emotions was not assessed but is
left for future study.

6.2 Discussion on the results of supervised
computational approach

6.2.1 Recognition accuracy of the separate sub-classifiers
The overall low recall in the negative sentiment indicates bias in the distribution

of emotion types within the dataset. As mentioned in 6.1.1, this may be due to
the fact that online gameplay requires cooperation that would easily be ruined
if negative emotions were to be expressed excessively. Audio vectors seem to
be slightly better indicators of negative sentiment while word embeddings are of
neutral and positive sentiments.

As shown in Table 5.4, sub-classifier #1 processing the textual data produced
56.18% recognition accuracy, while sub-classifier #2, processing the audio data
achieved 51.91%, separately. This implicates that the word vectors trained on
GloVe (see 5.2.2.3), served as a more consistent cue for sentiment recognition than
the low-level audio feature vectors. Presumably, the convolutional neural network
of sub-classifier #2 was not able to generalize well enough on such a small dataset.
As expected, sub-classifier #3, processing only the one-dimensional textual data
of dialogue acts, performed significantly weaker.

The setups containing the best overall recognition accuracy for each dialogue
act model (processed by sub-classifier #3) are highlighted in bold type. With the
best performing setups for processing the given dialogue act model sub-classifier
#3 achieved 21.06%, 23.72%, and 32.16% recognition accuracy if trained on the
SWBD-DAMSL, DIT++ and IA tags separately. The use of the IA tagset (in
the best-performing setup) yielded 11.10% and 8.44% better recognition accuracy
compared to the best performances of the SWBD-DAMSL and DIT++ tagsets,
respectively.

Furthermore, in the case of the IA model, the best performance was
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achieved through Setup 1 (considering dialogue acts of preceding utterances and
differentiating between speakers). In the case of the SWBD and DIT++, however,
best performances were achieved with Setup 2 (differentiating between speakers
but not considering preceding dialogue acts), which implies that dialogue acts
that are unrelated to affective states (and cannot serve as a stimuli for them)
are less adequate for harvesting contextual information during sentiment/emotion
classification tasks.

In general, sub-classifier #3 shows similar performance when trained on the
SWBD-DAMSL and DIT++ tags in terms of precision, recall and accuracy of the
given sentiments. However, training the sub-classifier on the IA tagset resulted in
a noticeably higher precision in negative sentiment. This fact indicates that the
IA tagset, accounting for ‘Face-threatening‘interpersonal verbal-actions, has more
acts consistently co-occurring with negative sentiments, thus, is more adequate to
serve as a cue for them than the other two dialogue act models. The above results
are strong evidence in favor of the definition and use of emotion-sensitive dialogue
acts specifically for augmenting emotion/sentiment recognition systems.

6.2.2 Recognition accuracy of the baseline and augmented-
classifiers

As shown it has been shown in Table 5.5, the merged output through the soft-
voting (see 5.2.2.3) process could predict the correct sentiments with a 62.33%
accuracy. This moderate accuracy reflects well the complexity of the task to
recognize affective states when working with a small dataset.

Although, as sole features, dialogue act tags appear to be poor indicators for
sentiment classification, as a complementary feature set (through decision-level
merging) they improved the baseline model‘s recognition accuracy. The usage of
SWBD-DAMSL improved overall recognition accuracy by a maximum of 2.87%,
of DIT++ by 3.77%, and of IA by 12.09%. Only the setup in which sub-classifier
#3 performs the best (related to the given dialogue act model) was selected for
augmenting the baseline method.

In previous studies, the addition of dialogue act labels resulted in an
improvement of 4% at most [13] using only two affective-types and larger data
sets. Thus, in the context of such a small dataset, these result is considered to be
meaningful, indicating the usefulness of cognitive context (in the form of dialogue
acts) for sentiment/emotion recognition.

A single factor Anova test, computed from the validation scores of each
classifier‘s 10-fold cross-validation process, shows that the improvement yielded
by the usage of the IA model is indeed significant. Table 6.1 shows the results of
the Anova tests computed through the results of each classifier‘s best-performing
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recognition setup, in comparison to the results of the best performing setup of the
classifier that applies the IA tagset.

Table 6.1: Significance of improvement yielded by the application of IA acts

Classifier p-value F-score F-critical

Baseline-method vs.
Augmented method

processing IA -
best-performing setup (bfs)

<0.005 151.80 4.41

Augmented method
processing IA -bfs.

vs.
Augmented method

processing DIT++ - bfs

<0.005 21.77 4.41

Augmented method
processing IA - bfs.

vs.
Augmented method

processing SWBD-DAMSL - bfs.

<0.005 43.21 4.41

To further scrutinize the applicability of the proposed tagset, an IA act
processing sub-classifier #3 (with the best performing setup1) was used to
augment the text processing sub-classifier #1 and audio-processing sub-classifier
#2 separately, improving their recognition accuracy by 5.14% and 7.01 % (see
Table 6.2). Since the merging of the sub-classifiers was done by soft-voting,
weighting and averaging mid-classification results these results are not surprising.
Both sub-classifier #1 and #2 performs better than #3, getting stronger weights
in the soft-voting process. sub-classifier #1 however, processing the (at least in
this dataset) more reliable word-embedding vectors, performs better than #2,
thus getting even stronger weights during the soft-voting process, not letting the
interpersonal acts to heavily influence the final classification result. Sub-classifier
#2, on the other hand, is a slightly weaker classifier, letting sub-classifier #3‘s
results dominate more. Thus the usage of interpersonal acts improvers sub-
classifier #2 even more than it does sub-classifier #1, but results in a weaker
overall classification accuracy. In the case of merging the outputs of all three sub-
classifiers, the weighting is more balanced, advancing the final classification result
further.
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Table 6.2: Improving the separate sub-classifiers by the application of IA acts

Method Improvement Overall acc.

Sub-classifier #1 augmented with Sub-classifier #3
processing IA - best performing setup (bfs) 5.14% 61.32%

Sub-classifier #2 augmented with Sub-classifier #3
processing IA - best performing setup (bfs) 8.01% 59.92%

In the case of larger datasets with more labeled utterances, it can be
expected that the difference in performance of the various dialogue act models
(for augmenting sentiment/emotion classification) would diminish. However,
annotating large datasets with labels of emotion-related constructs is a highly
labor-intensive task. Also, in the gaming domain, no such large datasets for the
Japanese language currently exist. Automatic classification of the proposed IA acts
and the amount of training data required for their satisfactory-level recognition is
to be tested and analyzed in future studies.

6.3 Discussion on the results of semi-supervised
computational approach

6.3.1 Recognition accuracy of polarity classification
In the light of the results of related studies [36] and [37], the classification results

(at best, 79.08% for two categories) indicated in Table 5.6 may appear moderate.
Nevertheless, the proposed classifier was trained on only 12063 datapoints at
maximum, in contrast to the above studies, which were trained on hundreds of
thousands of instances. The Y8M dataset provided only a maximum of 15078
relevant utterances produced according to the developed method) from which 3015
(20% of the total utterances) was used as labeled test instances. According to the
proposed method, however, the training set could be enlarged manifold, limited
only by the number of the datasource in use (and the number of instances that
can be labeled for testing).

The fact that classification results of Setup 1 (overall accuracy: 71.22%)
is noticeably higher than of Setup 2 (overall accuracy: 58.17%) indicates that
basic emotion search phrases allow for the selection of more relevant videos (and
their audio feature sets) for the proposed multiple instance learning method
than search phrases of emotion-indicating communicative functions. The results
of Setup 3 (overall accuracy:79.08%), however, show that simultaneous use of
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both search phrase-based audio sets results in improved recognition accuracy.
Having the classification result improved by the additional usage of audio
feature sets that matches communicative function-based search results, presumes
that the proposed communicative functions introduce more information about
basic emotions than noise. In particular, these search phrases cover additional
videos focused around the expression of a certain basic emotion (through the
corresponding communicative function) which could not be found through basic
emotion search phrases owing to the limited size of the Y8M dataset. In
other words, communicative functions serve as a quasi-alternative/complementary
feature set for the proposed semi-supervised method.

6.3.2 Recognition accuracy of basic emotion classification
Table 5.7 further scrutinizes the classification results in the more fine-grained

case of basic emotion recognition. From the F1 score values, it can be seen that
negative polarity has been more accurately predicted in all three setups. The lower
recognition accuracy on the positive polarity stipulates that the audio features of
the Y8M contain cues that show stronger association with negative emotions.

Setup 1, utilizing basic emotions as search phrases, allows for stable recognition
of ‘joy‘(0.44) and ‘anger‘(0.38), while Setup 2, utilizing communicative functions
as search phrases, results in the relatively reliable recognition of ‘disgust‘(0.42) and
‘anger‘(0.24). While the overall recognition accuracy of Setup 2 (19.81%) is lower
than in Setup 1 (29.40%), the mixed usage of communicative functions - and basic
emotions - based feature sets improve recognition results as indicated by the results
of Setup 3 (31.63%). Enlarging the training set through the usage of both search
phrase dimensions - expanding the variance of the latent space, and the hidden
parameters of the unsupervised clustering - allows for better generalization, and
yields better recognition results.

As videos - directly/indirectly selected to concentrate on the expression of
basic emotion - tend to contain several utterances representing various emotions,
the classifier has to deal with a large amount of noise. In the proposed method, the
audio feature inputs were mapped to the latent feature space then clustered with
an unsupervised Gaussian Mixture Model through Expectation Maximalization to
select the corresponding instances for each emotion bag. Experiments involving
other unsupervised clustering methods and/or different hyperparameters for the
latent variable extracting Variational Autoencoder may deal better with noise and
yield better classification results, especially in the case of the more fine-grained
emotion recognition task.
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6.4 Comparison of the proposed computational
methods

The proposed IA tagset has been applied through two computational methods,
a supervised learning based sentiment classifier and a semi-supervised polarity
classifier. Both classifiers are utilizing the proposed dialogue act model as
intentional context representing pragmatic-level linguistic units. In the supervised
approach, the proposed interpersonal acts are used as a complementary feature
set beside the audio and textual features. In the semi-supervised approach, the
acts serve as alternative or complementary search phases beside basic emotion
tags, used in the selection of audio features for training. Thus, even in the latter
approach, the interpersonal acts and the basic emotion tags can also be thought
of as indirect complementary feature sets.

The supervised method uses the emotion sensitive dialogue acts to improve
sentiment recognition in a way to allow satisfactory-level recognition accuracy
even on smaller sets of labeled data. As the experimental results suggest, this can
be successfully achieved through the proposed tagset of interpersonal acts. The
approach, however, is supervised, thus a certain amount of labeled data will always
be required. Furthermore, to ensure satisfactory level improvement, the training
data need to be hand-labeled or automatically classified (and thus pre-trained on
an additional dataset) with dialogue acts. In the experiments conducted, only
hand-labeled acts were used (following the line of similar dialogue act utilizing
work [13], [14], [15]; [16]), to discover the maximum potential of the proposed
tagset. This is a deficiency of the proposed method, allowing it to be used only
on small-sized data, where the labour required for the hand labeling/classification
of the training data with dialogue acts may prove to be a good tradeoff for the
improvement it yields in recognition accuracy.

The semi-supervised approach uses basic emotion and/or interpersonal act
tags as YouTube search phrases to populate emotion bags of a multiple instance
learning approach. Thus the results of the search are used as indirect, ”weak
labels” making hand-made notation completely unnecessary. This method yielded
promising results on larger data, especially when trained based on both basic
emotion and dialogue act search phrases. It also has the ability to enlarge the
training set manyfold, restricted only by the size of the dataset in use (and not
the by the cost the labeling would require). The approach, however, does not
generalize well on a smaller dataset and assumed to be outperformed by the former
supervised approach trained on similar size of data. Table 6.3 summarizes the
recognition accuracy results of the separate approaches detailed along the size of
training data used.
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Table 6.3: Recognition accuracy of the developed supervised and semi-supervised
approaches in relation to training data size

Approach Training segments Overall acc.

Supervised sentiment classification 6240 74.42%
Semi-supervised polarity classification

emotion search phrases 6120 71.22%

Semi-supervised polarity classification
comm. func. search phrases 5943 58.17%

Semi-supervised polarity classification
mixed search phrases 12063 79.08%

Thus for smaller datasets, the supervised approach is more fitting, while in
the case of larger datasets the semi-supervised approach seems to be a highly
applicable solution.
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Chapter 7

Conclusions

In this concluding chapter contributions of the thesis are summarized with
their possible impact and important directions of future work are described.

7.1 Contributions
The central problem addressed in this thesis is the training cost of affective

classifiers in terms of the requirement of hand-made annotation for the preparation
of training sets. Recently there is a growing demand for real-time affect awareness
- the ability to infer and react to the affective states of the user - in commercial
softwares, such as in dialogue systems or games. As real-time recognition is often
achieved through the pre-training of supervised classifiers, the annotation of large
sets of training data with the target labels is necessary. In the case of the easily
extracted and often used audio and textual training sets, even thousands of labeled
datapoints would not yield satisfactory-level recognition results. For improved
recognition results the following two approaches are used in general for audio
and/or textual feature-based methods:

• Utilizing the intentional context in the form of dialogue act labels and use
them as complementary features to predict the output labels

• Using large sets of review data, labeled with sentiments/polarity tags and
use them as output labels of supervised neural-networks or multiple instance
learning algorithms

These methods, however, suffer from the deficiency, that the improvement
they would yield does not worth the labeling-cost their training requires. As a
possible remedy to this problem, the author proposes the usage of emotion sensitive
intentions representing dialogue acts, associable with certain emotions/sentiments
as

• as a complementary feature set to help the supervised machine learning
methods to learn from label features firmly associated with the output labels

• as a basis to define search phrases for the selection of videos concentrating
on emotional dialogues. Such videos could serve as bags containing instances
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of utterances, while the search phrases they correspond to as the bag labels.
The labels then can be utilized for the training of multiple instance learning
algorithms in a semi-supervised way.

As emotion-sensitive dialogue acts, interpersonal relations directing
communicative functions were proposed, constituting the one-dimensional
dialogue model of interpersonal acts. The acts were defined based on appraisal
theories [21] and the Politeness theory of Brown and Levinson [38]. The
applicability of the model was verified in

• empirical experiments where the model proved to have significantly higher
sensitivity to emotions in comparison to two well-known dialogue act models
of SWBD-DMSL and DIT++

• computational experiments through supervised sentiment classification
where the utilization of the IA tagset as a complementary feature set
improved the classification results significantly higher than the utilization
of the SWBD-DMSL or DIT++ tagsets

• computational experiments through multiple instance-based semi-supervised
polarity classification where the utilization of the IA tagset as a
complementary set for the labeling of emotion bags improved classification
results

Among the computational methods developed, the supervised approach fits smaller
datasets (easy to annotate with emotion and IA tags) while the semi-supervised
approach shows promising results to be applicable on large and unlabeled datasets.

The developed IA model thus has the potential to significantly improve
the recognition of affective states. The developed empirical and computational
methods verify its applicability on small and large datasets as well.

7.2 Future work

7.2.1 Extending the dialogue act model
The core model (see 3.2.1) developed can be extended/modified in accordance

with the language and/or context it is intended to be used on. In this thesis, it has
been extended to fit the conversational data used in the supervised experiments
(see 3.2.2).

Further extensions are also possible, for more detailed modeling of the dialogic
environment: differentiating between illocutionary and perlocutionary - acts as
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response illocutionary acts - (see 2.1.2), for example, would further represent
the causational relation between interpersonal relations directing intentions and
affective states. Over-specification of the model, however, would result in dialogue
acts having low association rates with each basic emotion. Reformulation of the
proposed acts, while keeping their number may also bring better results, which
need to be tested through further empirical experiments.

As the association between emotions and interpersonal relations directing
communicative functions are two-sided, the interpersonal act indicating power of
emotions can also be analyzed. interpersonal acts could be utilized by dialogue
systems or commercial games for the natural language understanding of user input
and/or for natural language response generation.

7.2.2 Extending the supervised method
As mentioned in 5.2.3, differentiating between topic-shifts could further

improve the efficiency of the proposed supervised classifier, which is able to learn
from the sequentiality of the data through its GRU layers. Different topics/sub-
topics within the dialogues could be fed into variational-size batches to help the
system learn.

Experimenting with different architectures in terms of the numbers and
hyperparameters of GRU and CNN layers of the sub-classifiers may further improve
recognition accuracy. Applicability of the model may also be tested on other
languages and gaming/conversational corpora, with a complementary feature set
of a modified IA model, tailored to fit the target context.

The experiments conducted, utilized dialogic data with pre-annotated dialogue
act labels to fully evaluate the applicability of the additional feature sets for
sentiment recognition. To measure the applicability of the IA model more
thoroughly, however, the amount of training data needed for its satisfactory-
level automatic classification needs to be assessed. In particular, satisfactory-
level recognition in this scenario would point to a minimum level of classification
accuracy that ensures that the automatically annotated interpersonal act labels
would be able to improve sentiment recognition as a complementary feature set.
Assessing the tradeoff between annotation-cost and the yielded improvement is a
complex task. Computational experiments are required to measure the learning
rate while utilizing a complementary feature set of interpersonal act labels, opposed
to using only output (sentiment) labels on larger datasets.

7.2.3 Extending the semi-supervised method
Further experiments are needed to validate the proposed approach on larger

datasets, containing more relevant videos applicable for the definition and
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population of emotion/polarity bags. The proposed method believed to yield
better results if trained on larger sets of data (big data).

As videos - directly/indirectly selected to concentrate on the expression of
basic emotion - tend to contain several utterances representing various emotions,
the classifier has to deal with a large amount of noise. Experiments involving other
unsupervised clustering methods and/or hyperparameters for the latent variable
extracting Variational Autoencoder may yield better classification results.

The proposed method can be further extended with the utilization of other
emotion-indicating dimensions instead/beside interpersonal act- and basic emotion
tag-based search phrases.
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