

Sentence Length

Gábor Borbély, András Kornai

Budapest University of Technology and Economics Department of Algebra https://hlt.bme.hu/ https://github.com/hlt-bme-hu/ 2019.07.19.

Sentence length models

- Negative binomial (Yule, 1944)
 - Given number of failures in an sequence of independent and identically distributed Bernoulli trials

Sentence length models

- Negative binomial (Yule, 1944)
 - Given number of failures in an sequence of independent and identically distributed Bernoulli trials
- Log-normal (Williams, 1944) (Wake, 1957)
 - frequencies are normal on log-linear scale

2 | 20

Sentence length models

- Negative binomial (Yule, 1944)
 - Given number of failures in an sequence of independent and identically distributed Bernoulli trials
- Log-normal (Williams, 1944) (Wake, 1957)
 - frequencies are normal on log-linear scale
- Mixture of Poisson (Sichel, 1974)
 - mixture of continuous number of Poissons where the mixture distribution is parametrized

$$\phi(r) = \frac{\sqrt{1-\theta^{\gamma}}}{K_{\gamma}(\alpha\sqrt{1-\theta})} \frac{(\alpha\theta/2)^r}{r!} K_{r+\gamma}(\alpha)$$

2 | 20

Sentence length models

- Negative binomial (Yule, 1944)
 - Given number of failures in an sequence of independent and identically distributed Bernoulli trials
- Log-normal (Williams, 1944) (Wake, 1957)
 - frequencies are normal on log-linear scale
- Mixture of Poisson (Sichel, 1974)
 - mixture of continuous number of Poissons where the mixture distribution is parametrized

$$\phi(r) = \frac{\sqrt{1-\theta^{\gamma}}}{K_{\gamma}(\alpha\sqrt{1-\theta})} \frac{(\alpha\theta/2)^r}{r!} K_{r+\gamma}(\alpha)$$

These models either don't fit the data or lack a clear genesis

■ *y* axis: valency

- *y* axis: valency
 - starting point is a parameter

- *y* axis: valency
 - starting point is a parameter
- with probability p_2 : two steps up

■ *y* axis: valency

MOL2019

hlt

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb

■ *y* axis: valency

MOL2019

hlt

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial
- p_{-1} : one step down

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial
- p₋₁: one step down
 - e.g. a proper noun

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial
- p_{-1} : one step down
 - e.g. a proper noun
- The predicted sentence length is the first time when the process reaches zero valency

y axis: valency

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial
- p_{-1} : one step down
 - e.g. a proper noun
- The predicted sentence length is the first time when the process reaches zero valency

y axis: valency

MOL2019

- starting point is a parameter
- with probability p_2 : two steps up
 - e.g. a transitive verb
- p₁: one step up
 - e.g. an intransitive verb or an adjective
- p₀: same height
 - e.g. an adverbial
- p₋₁: one step down
 - e.g. a proper noun
- The predicted sentence length is the first time when the process reaches zero valency

Some generalizations may complicate the model:

- order (upward steps)
- k-mixture
- auxiliary model

4 | 20

Model analysis

$$\tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

$$\tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

• τ_k is the sum of k independent copies of τ_1

$$\tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

• τ_k is the sum of k independent copies of τ_1

since going from $k \to 0$ requires k times going from 1 to 0.

4 | 20

Model analysis

$$\bullet \ \tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

• τ_k is the sum of k independent copies of τ_1

- since going from $k \to 0$ requires k times going from 1 to 0.
- this in not the case if $p_{-2} > 0$!

$$\bullet \ \tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

• τ_k is the sum of k independent copies of τ_1

- since going from $k \to 0$ requires k times going from 1 to 0.
- this in not the case if $p_{-2} > 0$!

$$\ \ \, \, f(x)\coloneqq \mathbb{E}\left(x^{\tau_1}\right)$$

- $\bullet \ \tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$
- τ_k is the sum of k independent copies of τ_1
 - since going from $k \to 0$ requires k times going from 1 to 0.
 - this in not the case if $p_{-2} > 0$!

$$f(x) \coloneqq \mathbb{E}\left(x^{\tau_1}\right)$$

• the probability generating function of τ_k is $f(x)^k$

- $\bullet \ \tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$
- τ_k is the sum of k independent copies of τ_1
 - since going from $k \to 0$ requires k times going from 1 to 0.
 - this in not the case if $p_{-2} > 0$!

$$f(x) \coloneqq \mathbb{E}\left(x^{\tau_1}\right)$$

• the probability generating function of τ_k is $f(x)^k$

$$\tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

•
$$au_k$$
 is the sum of k independent copies of au_1

- since going from $k \to 0$ requires k times going from 1 to 0.
- this in not the case if $p_{-2} > 0$!

• the probability generating function of τ_k is $f(x)^k$

$$\begin{split} f(x) &= p_{-1} \cdot x + & \text{finishing in one step} \\ p_0 \cdot x \cdot f(x) + & \text{wait } \tau_1 \text{ again} \\ p_1 \cdot x \cdot f(x)^2 + & \text{wait } \tau_1 \text{ two times} \\ p_2 \cdot x \cdot f(x)^3 & \text{wait } \tau_1 \text{ three times} \end{split}$$

$$\tau_k = \min_{t \ge 0} \{ t : X_k(t) = 0 \}$$

•
$$au_k$$
 is the sum of k independent copies of au_1

- since going from $k \to 0$ requires k times going from 1 to 0.
- this in not the case if $p_{-2} > 0$!

$$f(x) \coloneqq \mathbb{E}\left(x^{\tau_1}\right)$$

• the probability generating function of τ_k is $f(x)^k$

$$\begin{split} f(x) &= p_{-1} \cdot x + & \text{finishing in one step} \\ p_0 \cdot x \cdot f(x) + & \text{wait } \tau_1 \text{ again} \\ p_1 \cdot x \cdot f(x)^2 + & \text{wait } \tau_1 \text{ two times} \\ p_2 \cdot x \cdot f(x)^3 & \text{wait } \tau_1 \text{ three times} \end{split}$$

f is the solution of the following equation:

$$p_{-1} \cdot x + (p_0 \cdot x - 1) \cdot f + p_1 \cdot x \cdot f^2 + p_2 \cdot x \cdot f^3 = 0$$

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

 \blacksquare so the solution is the inverse function of g

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

so the solution is the inverse function of g
we won't solve it explicitly

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

- so the solution is the inverse function of g
- we won't solve it explicitly
 - although it is theoretically possible up to 3 steps upwards (4th order root formula exists)

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

- \blacksquare so the solution is the inverse function of g
- we won't solve it explicitly
 - although it is theoretically possible up to 3 steps upwards (4th order root formula exists)
- rather find the Taylor expansion of f via Lagrange–Bürmann formula

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

- \blacksquare so the solution is the inverse function of g
- we won't solve it explicitly
 - although it is theoretically possible up to 3 steps upwards (4th order root formula exists)
- rather find the Taylor expansion of f via Lagrange–Bürmann formula
 - a version of Lagrange inversion theorem

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

- \blacksquare so the solution is the inverse function of g
- we won't solve it explicitly
 - although it is theoretically possible up to 3 steps upwards (4th order root formula exists)
- rather find the Taylor expansion of f via Lagrange–Bürmann formula
 - a version of Lagrange inversion theorem

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$g(f) \coloneqq \frac{f}{F(f)}$$
$$x = g(f(x))$$

- \blacksquare so the solution is the inverse function of g
- we won't solve it explicitly
 - although it is theoretically possible up to 3 steps upwards (4th order root formula exists)
- rather find the Taylor expansion of f via Lagrange–Bürmann formula
 - a version of Lagrange inversion theorem

$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

involves calculating symbolic product of polynomials

Optimizing the parameters

The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy

Optimizing the parameters

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

■ The latter is differentiable in the model parameters

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

The latter is differentiable in the model parameters
 one can perform gradient descent (or similar optimization techniques)

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

- The latter is differentiable in the model parameters
 - one can perform gradient descent (or similar optimization techniques)
 - as long as the discrete parameters are fixed

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

- The latter is differentiable in the model parameters
 - one can perform gradient descent (or similar optimization techniques)
 - as long as the discrete parameters are fixed
- There are other (discrete) parameters

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

- The latter is differentiable in the model parameters
 - one can perform gradient descent (or similar optimization techniques)
 - as long as the discrete parameters are fixed
- There are other (discrete) parameters
 - starting valency

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

- The latter is differentiable in the model parameters
 - one can perform gradient descent (or similar optimization techniques)
 - as long as the discrete parameters are fixed
- There are other (discrete) parameters
 - starting valency
 - maximum upward steps

- The task is to fit the parameters such that the resulted return time is close to the measured distribution in cross entropy
- Also the $p_{-1}, p_0 \dots$ parameters are constrained on a probabilistic simplex

$$F(u) \coloneqq p_{-1} + p_0 \cdot u + p_1 \cdot u^2 + p_2 u^3$$
$$\mathbb{P}(\tau_k = i) = \frac{k}{i} [u^{i-k}] (F(u))^i$$

- The latter is differentiable in the model parameters
 - one can perform gradient descent (or similar optimization techniques)
 - as long as the discrete parameters are fixed
- There are other (discrete) parameters
 - starting valency
 - maximum upward steps
 - mixture components

 \blacksquare Let $\{n_x\}_{x\in X}$ be the measured frequencies of a data

- Let $\{n_x\}_{x \in X}$ be the measured frequencies of a data
- Let \mathcal{H}_i be a model in a list of possible models

- \blacksquare Let $\{n_x\}_{x\in X}$ be the measured frequencies of a data
- Let \mathcal{H}_i be a model in a list of possible models
- Within a model there can be other trained parameters

 $\mathbf{w}_i \in \mathcal{H}_i, \ \mathbb{Q}_{\mathbf{w}_i}(x) \coloneqq \mathbb{P}(x \mid \mathbf{w}_i, \mathcal{H}_i)$

In our case \mathcal{H}_i is the choice of the discrete parameters and $\mathbf{w}_i \in \mathcal{H}_i$ is trained by optimizing the continuous parameters of that model.

- \blacksquare Let $\{n_x\}_{x\in X}$ be the measured frequencies of a data
- Let \mathcal{H}_i be a model in a list of possible models
- Within a model there can be other trained parameters

 $\mathbf{w}_i \in \mathcal{H}_i, \ \mathbb{Q}_{\mathbf{w}_i}(x) \coloneqq \mathbb{P}(x \mid \mathbf{w}_i, \mathcal{H}_i)$

In our case \mathcal{H}_i is the choice of the discrete parameters and $\mathbf{w}_i \in \mathcal{H}_i$ is trained by optimizing the continuous parameters of that model.

different models may have different dimensionality

7 | 20

Model comparison

- \blacksquare Let $\{n_x\}_{x\in X}$ be the measured frequencies of a data
- Let \mathcal{H}_i be a model in a list of possible models
- Within a model there can be other trained parameters

$$\mathbf{w}_i \in \mathcal{H}_i, \ \mathbb{Q}_{\mathbf{w}_i}(x) \coloneqq \mathbb{P}(x \mid \mathbf{w}_i, \mathcal{H}_i)$$

In our case \mathcal{H}_i is the choice of the discrete parameters and $\mathbf{w}_i \in \mathcal{H}_i$ is trained by optimizing the continuous parameters of that model.

- different models may have different dimensionality
- Bayesian (evidence based) decision (MacKay, 2003):

$$\mathbb{P}(\mathcal{H}_i \mid \mathsf{data}) \propto \mathbb{P}(\mathsf{data} \mid \mathcal{H}_i) = \int_{\mathcal{H}_i} \underbrace{\mathbb{P}(\mathbf{w}_i \mid \mathcal{H}_i)}_{\mathsf{uniform prior}} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i$$

$$\int_{\mathcal{H}_i} \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i =$$

$$\int_{\mathcal{H}_i} \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i = \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \int_{\mathcal{H}_i} \exp\left(\sum_{x \in X} n_x \cdot \ln \mathbb{Q}_{\mathbf{w}_i}(x) \right) \, \mathrm{d}\mathbf{w}_i$$

$$\int_{\mathcal{H}_i} \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \prod_{x \in X} (\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x}) \, \mathrm{d}\mathbf{w}_i = \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \int_{\mathcal{H}_i} \exp\left(\sum_{x \in X} n_x \cdot \ln \mathbb{Q}_{\mathbf{w}_i}(x)\right) \, \mathrm{d}\mathbf{w}_i$$
$$f(\mathbf{w}_i) \coloneqq -\sum_{x \in X} \frac{n_x}{n} \ln \mathbb{Q}_{\mathbf{w}_i}(x)$$

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) \, \mathrm{d}\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)\right) \, \mathrm{d}\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} \, \mathrm{d}\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) d\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x) \right) d\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} d\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$
$$\mathbf{w}_{i}^{*} \coloneqq \arg\min_{\mathbf{w}_{i} \in \mathcal{H}_{i}} f(\mathbf{w}_{i})$$

T

Estimating the evidence

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) d\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x) \right) d\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} d\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$

■ w_i^{*} := arg min_{w_i∈H_i} f(w_i)
 ■ d is the dimension of H_i (number of free parameters)

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) \, \mathrm{d}\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)\right) \, \mathrm{d}\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} \, \mathrm{d}\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$

w_i^{*} ≔ arg min_{wi∈Hi} f(w_i)
 d is the dimension of H_i (number of free parameters)
 f is cross entropy

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) \, \mathrm{d}\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x) \right) \, \mathrm{d}\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} \, \mathrm{d}\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$

w_i^{*} := arg min_{wi∈Hi} f(w_i)
d is the dimension of H_i (number of free parameters)
f is cross entropy
we take - ¹/_n ln(•) and also subtract the entropy of the data

$$\int_{\mathcal{H}_{i}} \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_{i}}(x)^{n_{x}} \right) \, \mathrm{d}\mathbf{w}_{i} = \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} \exp\left(\sum_{x \in X} n_{x} \cdot \ln \mathbb{Q}_{\mathbf{w}_{i}}(x) \right) \, \mathrm{d}\mathbf{w}_{i}$$
$$f(\mathbf{w}_{i}) \coloneqq -\sum_{x \in X} \frac{n_{x}}{n} \ln \mathbb{Q}_{\mathbf{w}_{i}}(x)$$
$$\frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \int_{\mathcal{H}_{i}} e^{-n \cdot f(\mathbf{w}_{i})} \, \mathrm{d}\mathbf{w}_{i} \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_{i})} \cdot e^{-n \cdot f(\mathbf{w}_{i}^{*})} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_{i}^{*})}}$$

- $\bullet \mathbf{w}_i^* \coloneqq \operatorname{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} f(\mathbf{w}_i)$
- *d* is the dimension of H_i (number of free parameters)
- *f* is cross entropy

■ we take $-\frac{1}{n}\ln(\bullet)$ and also subtract the entropy of the data ■ none of which changes the relative order of the models

$$\int_{\mathcal{H}_i} \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i = \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \int_{\mathcal{H}_i} \exp\left(\sum_{x \in X} n_x \cdot \ln \mathbb{Q}_{\mathbf{w}_i}(x) \right) \, \mathrm{d}\mathbf{w}_i$$
$$f(\mathbf{w}_i) \coloneqq -\sum_{x \in X} \frac{n_x}{n} \ln \mathbb{Q}_{\mathbf{w}_i}(x)$$
$$\frac{1}{(\mathcal{H}_i)} \int_{\mathcal{H}_i} e^{-n \cdot f(\mathbf{w}_i)} \, \mathrm{d}\mathbf{w}_i \approx \frac{1}{\operatorname{Vol}(\mathcal{H}_i)} \cdot e^{-n \cdot f(\mathbf{w}_i^*)} \cdot \frac{\left(\frac{2\pi}{n}\right)^{\frac{d}{2}}}{\sqrt{\det f''(\mathbf{w}_i^*)}}$$

• $\mathbf{w}_i^* \coloneqq \operatorname{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} f(\mathbf{w}_i)$

■ *d* is the dimension of \mathcal{H}_i (number of free parameters)

f is cross entropy

Vol

• we take $-\frac{1}{n}\ln(\bullet)$ and also subtract the entropy of the data

- none of which changes the relative order of the models
- this way the theoretical minimum is 0

Augmented model

$$\begin{split} \mathbb{P}(\mathsf{data} \mid \mathcal{H}_i) &= \int_{\mathcal{H}_i} \underbrace{\mathbb{P}(\mathbf{w}_i \mid \mathcal{H}_i)}_{\mathsf{uniform \ prior}} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i \\ & \blacksquare \ \text{One \ can \ see \ that} \ \mathbb{Q}_{\mathbf{w}_i}(x) = 0 \ \text{is \ unacceptable} \end{split}$$

9 | 20

Augmented model

$$\mathbb{P}(\mathsf{data} \mid \mathcal{H}_i) = \int_{\mathcal{H}_i} \underbrace{\mathbb{P}(\mathbf{w}_i \mid \mathcal{H}_i)}_{\mathsf{uniform prior}} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i$$

• One can see that $\mathbb{Q}_{\mathbf{w}_i}(x) = 0$ is unacceptable

 We introduced a dummy auxiliary model to capture the probabilities of the short sentences (shorter than the starting valency)

Augmented model

$$\mathbb{P}(\mathsf{data} \mid \mathcal{H}_i) = \int_{\mathcal{H}_i} \underbrace{\mathbb{P}(\mathbf{w}_i \mid \mathcal{H}_i)}_{\mathsf{uniform prior}} \prod_{x \in X} \left(\mathbb{Q}_{\mathbf{w}_i}(x)^{n_x} \right) \, \mathrm{d}\mathbf{w}_i$$

- One can see that $\mathbb{Q}_{\mathbf{w}_i}(x) = 0$ is unacceptable
- We introduced a dummy auxiliary model to capture the probabilities of the short sentences (shorter than the starting valency)

$$\overline{\mathbb{Q}}_{\mathbf{w}_i,\mathbf{q}}(x) \coloneqq \begin{cases} \lambda \cdot \mathbb{Q}_{\mathbf{w}_i}(x) & \text{if } \mathbb{Q}_{\mathbf{w}_i}(x) > 0\\ (1-\lambda) \cdot q_x & \text{if } n_x > 0, \mathbb{Q}_{\mathbf{w}_i}(x) = 0 \end{cases}$$

where q_x is also a trained parameter and

$$\begin{split} \lambda &= \mathbb{P}(\mathbb{Q}_{\mathbf{w}_i} > 0) & \text{covered probability} \\ 1 - \lambda &= \mathbb{P}(\mathbb{Q}_{\mathbf{w}_i} = 0) & \text{uncovered probability} \end{split}$$

$$\begin{split} & -\lambda \cdot \ln \lambda + \overbrace{\sum_{x \in X \cap \mathrm{supp}(\mathcal{H}_i)} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)}} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ & \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathrm{aux.\ model}) \right) + \\ & \frac{1}{2n} \cdot \ln \left(\det \left(\mathrm{model\ Hessian} \right) \cdot \det \left(\mathrm{aux.\ model\ Hessian} \right) \right) \end{split}$$

$$\begin{split} -\lambda \cdot \ln \lambda + \overbrace{\sum_{x \in X \cap \mathrm{supp}(\mathcal{H}_i)} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)}} + & \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ & \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ & \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{split}$$

• λ is the covered probability

$$\begin{split} -\lambda \cdot \ln \lambda + \overbrace{\sum_{x \in X \cap \mathrm{supp}(\mathcal{H}_i)} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)}} + & \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ & \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ & \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{split}$$

 $\begin{array}{l} \bullet \ \lambda \text{ is the covered probability} \\ \bullet \ \mathbf{w}_i^* \coloneqq \mathop{\arg\min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i}) \end{array}$

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \\ \end{array}$$

• λ is the covered probability • $\mathbf{w}_i^* \coloneqq \operatorname*{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})$ • n is the size of the dataset

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \\ \end{array}$$

• λ is the covered probability • $\mathbf{w}_i^* \coloneqq \underset{\mathbf{w}_i \in \mathcal{H}_i}{\arg \min KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})}$ • n is the size of the dataset • number of sentences

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{array}$$

- λ is the covered probability • $\mathbf{w}_i^* \coloneqq \operatorname*{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})$ • n is the size of the dataset • number of sentences
- d is the number of model parameters (including auxiliary model)

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{array}$$

- λ is the covered probability
- $\bullet \mathbf{w}_i^* \coloneqq \operatorname*{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})$
- n is the size of the dataset
 - number of sentences
- d is the number of model parameters (including auxiliary model)

 the model volume is the volume of the parameter space

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{array}$$

- λ is the covered probability
- $\bullet \mathbf{w}_i^* \coloneqq \operatorname*{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})$
- n is the size of the dataset
 - number of sentences
- d is the number of model parameters (including auxiliary model)

- the model volume is the volume of the parameter space
 - probabilistic simplexes

$$\begin{array}{c} -\lambda \cdot \ln \lambda + \overbrace{x \in X \cap \mathrm{supp}(\mathcal{H}_i)}^{} p_x \cdot \ln \frac{p_x}{\mathbb{Q}_{\mathbf{w}_i^*}(x)} + \frac{d}{2n} \cdot \ln \frac{n}{2\pi} + \\ \frac{1}{n} \cdot \ln \left(\mathrm{Vol}(\mathcal{H}_i) \cdot \mathrm{Vol}(\mathsf{aux. model}) \right) + \\ \frac{1}{2n} \cdot \ln \left(\det \left(\mathsf{model Hessian} \right) \cdot \det \left(\mathsf{aux. model Hessian} \right) \right) \end{array}$$

- $\blacksquare \ \lambda$ is the covered probability
- $\bullet \mathbf{w}_i^* \coloneqq \operatorname*{arg\,min}_{\mathbf{w}_i \in \mathcal{H}_i} KL(\mathbb{P} \parallel \mathbb{Q}_{\mathbf{w}_i})$
- n is the size of the dataset
 - number of sentences
- d is the number of model parameters (including auxiliary model)

- the model volume is the volume of the parameter space
 - probabilistic simplexes
- the determinant of the Hessian can be considered as volume

Model comparison – beyond

There are three type of terms in the final formula

There are three type of terms in the final formula

constant in n

constant in
$$n$$

proportional to $\frac{1}{n}$

There are three type of terms in the final formula

this causes overfitting

There are three type of terms in the final formula

- constant in n
- proportional to $\frac{1}{n}$
 - $\frac{\ln n}{n}$
- \blacksquare as $n \to \infty$ only the constant terms remain
 - and the model size is irrelevant
 - this causes overfitting

■ if *n* is small then the Laplace integration doesn't even work

- There are three type of terms in the final formula
 - constant in n
 - **proportional to** $\frac{1}{m}$
 - $\frac{\ln n}{n}$
- \blacksquare as $n \to \infty$ only the constant terms remain
 - and the model size is irrelevant
 - this causes overfitting
- \blacksquare if n is small then the Laplace integration doesn't even work
 - also the data might be unreliable

- There are three type of terms in the final formula
 - constant in n
 - **proportional to** $\frac{1}{m}$
 - $\frac{\ln n}{n}$
- \blacksquare as $n \to \infty$ only the constant terms remain
 - and the model size is irrelevant
 - this causes overfitting
- \blacksquare if n is small then the Laplace integration doesn't even work
 - also the data might be unreliable
- \blacksquare we want to avoid optimizing for n

- There are three type of terms in the final formula
 - constant in n
 - **proportional to** $\frac{1}{m}$
 - $\frac{\ln n}{n}$
- \blacksquare as $n \to \infty$ only the constant terms remain
 - and the model size is irrelevant
 - this causes overfitting
- \blacksquare if n is small then the Laplace integration doesn't even work
 - also the data might be unreliable
- \blacksquare we want to avoid optimizing for n
 - "optimal corpus size"

- There are three type of terms in the final formula
 - constant in n
 - proportional to $\frac{1}{m}$
 - $\frac{\ln n}{n}$
- \blacksquare as $n \to \infty$ only the constant terms remain
 - and the model size is irrelevant
 - this causes overfitting
- \blacksquare if n is small then the Laplace integration doesn't even work
 - also the data might be unreliable
- \blacksquare we want to avoid optimizing for n
 - "optimal corpus size"
- we want stable result as $n \to \infty$

 we defined the following quantity as a general measure of dissimilarity

- we defined the following quantity as a general measure of dissimilarity
 - generalized Kullback–Leibler divergence

$$[-\lambda \cdot \ln \lambda]_{\lambda = \mathbb{P}(\operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q}))} + \sum_{x \in \operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q})} \mathbb{P}(x) \ln \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

- we defined the following quantity as a general measure of dissimilarity
 - generalized Kullback–Leibler divergence

$$[-\lambda \cdot \ln \lambda]_{\lambda = \mathbb{P}(\operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q}))} + \sum_{x \in \operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q})} \mathbb{P}(x) \ln \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

- measured this quantity on two disjoint subset of the data (Kornai et al., 2013)
- modified the final evidence formula to tolerate for any error within inherent noise

if a model fits within inherent noise, then it is considered a perfect fit

- we defined the following quantity as a general measure of dissimilarity
 - generalized Kullback–Leibler divergence

$$[-\lambda \cdot \ln \lambda]_{\lambda = \mathbb{P}(\operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q}))} + \sum_{x \in \operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q})} \mathbb{P}(x) \ln \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

- measured this quantity on two disjoint subset of the data (Kornai et al., 2013)
- modified the final evidence formula to tolerate for any error within inherent noise

if a model fits within inherent noise, then it is considered a perfect fit

 in this case the *n*-dependent terms can contribute in a meaningful way

- we defined the following quantity as a general measure of dissimilarity
 - generalized Kullback–Leibler divergence

$$[-\lambda \cdot \ln \lambda]_{\lambda = \mathbb{P}(\operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q}))} + \sum_{x \in \operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q})} \mathbb{P}(x) \ln \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

- measured this quantity on two disjoint subset of the data (Kornai et al., 2013)
- modified the final evidence formula to tolerate for any error within inherent noise

if a model fits within inherent noise, then it is considered a perfect fit

- in this case the *n*-dependent terms can contribute in a meaningful way
- this solves the accuracy—complexity trade-off

- we defined the following quantity as a general measure of dissimilarity
 - generalized Kullback–Leibler divergence

$$[-\lambda \cdot \ln \lambda]_{\lambda = \mathbb{P}(\operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q}))} + \sum_{x \in \operatorname{supp}(\mathbb{P}) \cap \operatorname{supp}(\mathbb{Q})} \mathbb{P}(x) \ln \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

- measured this quantity on two disjoint subset of the data (Kornai et al., 2013)
- modified the final evidence formula to tolerate for any error within inherent noise

■ if a model fits within inherent noise, then it is considered a perfect fit

- in this case the *n*-dependent terms can contribute in a meaningful way
- this solves the accuracy—complexity trade-off
- our method works for distributions with unequal support
 - the augmented model is actively contributing to the final decision

• We have a fairly general formula for comparing various models

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency

Experiments

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency

Binned model

Experiments

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency

Binned model

■ take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin
 - the probability of a bin is trained

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin
 - the probability of a bin is trained
 - the bins themselves are the discrete parameters

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin
 - the probability of a bin is trained
 - the bins themselves are the discrete parameters
 - Sichel model

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin
 - the probability of a bin is trained
 - the bins themselves are the discrete parameters
 - Sichel model
 - \blacksquare we trained the parameters α and θ

- We have a fairly general formula for comparing various models
- Trained several models with several hyper-parameters
 - Random walk model
 - order: maximum allowed upward steps
 - k-mixture: convex linear combination of several random walks starting from several different valency
 - including augmented model for the sentences which are shorter than the starting valency
 - Binned model
 - take bins $[1, b_1), [b_1, b_2), [b_{m-1}, \infty)$
 - the modeled distribution is uniform within one bin
 - the probability of a bin is trained
 - the bins themselves are the discrete parameters
 - Sichel model
 - \blacksquare we trained the parameters α and θ
 - γ was a model parameter (we couldn't back-propagate to the subscript parameter of the Bessel functions K_γ(z))

Results

- The binned and Sichel models were rarely within inherent noise
 - the binned model fits well for many bins, but it has a lot more parameter than the parametric morels
 - the Sichel model fits only the binned data (when the datapoints are aggregated into 4-5 long bins)
 - this was actually mentioned by Sichel, although it was way better then its predecessors
- The random walk model always wins
- Never use more than one step upwards

Results

datacat	best parameters for various n values					
Ualasel	1k	10k	100k	1M	1G	
BNC-A	o3.k1-5	o3.k2-5	o1.k4.5	o1.k4.5	o1.k4.5	
BNC-B	o3.k1-5	o3.k1-5	o1.k1.5	o1.k1.5	o1.k1.5	
BNC-C	o3.k2-5	o3.k2-5	o3.k2-5	o1.k1.4	o1.k1.4	
BNC-D	o3.k2.3.5	o3.k2.3.5	o3.k2.3.5	o1.k2	o1.k2	
BNC-E	o3.k1.3-5	o3.k1.3-5	o1.k2.5	o1.k2.5	o1.k2.5	
BNC-F	o3.k3.4.5	o3.k3.4.5	o3.k3.4.5	o1.k3	o1.k3	
BNC-G	o3.k1-5	o3.k1-5	o1.k2.5	o1.k2.5	o1.k2.5	
BNC-H	o3.k2.4.5	o3.k3.4.5	o1.k4	o1.k4	o1.k4	
BNC-J	o3.k2.3.4	o3.k2.3.4	o3.k2.5	o1.k2	o1.k2	
BNC-K	o3.k1-5	o3.k1-5	o1.k2	o1.k2	o1.k2	
UMBC	03.k1.3-5	03.k1.3-5	o1.k2.5	01.k2.5	o1.k2.5	

Table: Best models I.

Results

datacat	best parameters for various n values					
ualasel	1k	10k	100k	1M	1G	
Catalan	o3.k2-5	o3.k2-5	o1.k2.5	o1.k2.5	o1.k2.5	
Croatian	o3.k3.4.5	o3.k3.4.5	o1.k2.5	o1.k2.5	o1.k2.5	
Czech	o3.k4.5	o3.k1.3.5	o1.k2.5	o1.k2.5	o1.k2.5	
Danish	o3.k1-5	o3.k1.3.5	o1.k2.5	o1.k2.5	o1.k2.5	
Dutch	o3.k1-5	o3.k3.4.5	o1.k2.5	o1.k2.5	o1.k2.5	
Finnish	o3.k1.3.5	o1.k2.4	o1.k2.4	o1.k2.4	o1.k2.4	
Indonesian	o3.k1-5	o3.k1-5	o1.k2.5	o1.k2.5	o1.k2.5	
Lithuanian	o3.k2.3.4	o3.k2.3.4	o1.k2.3	o1.k2.3	o1.k2.3	
Bokmål	o3.k2.4.5	o3.k2.4.5	o1.k2.5	o1.k2.5	o1.k2.5	
Nynorsk	o3.k1-5	o1.k2.5	o1.k2.5	o1.k2.5	o1.k2.5	

Table: Best models II.

Results

dataaat	best parameters for various n values					
ualasei	1k	10k	100k	1M	1G	
Polish	o3.k2-5	o3.k2-5	o3.k2-5	o3.k2-5	o1.k2.5	
Portuguese	o3.k2.3.5	o3.k2.3.5	o1.k2	o1.k2	o1.k2	
Romanian	o3.k1.3-5	o3.k1.3-5	o1.k5	o1.k5	o1.k5	
Serbian.sh	o3.k1.2.4.5	o3.k2.3.5	o1.k2.5	o1.k2.5	o1.k2.5	
Serbian.sr	o3.k2-5	o3.k2.3.4	o1.k2.5	o1.k2.5	o1.k2.5	
Slovak	o3.k2.4.5	o3.k2-5	o1.k2.5	o1.k2.5	o1.k2.5	
Spanish	o3.k2.4.5	o1.k2.3	o1.k2.3	o1.k2.3	o1.k2.3	
Swedish	o1.k2.4	o1.k2.4	o1.k2.4	o1.k2.4	o1.k2.4	

Table: Best models III.

Results

dataset	best parameters for various n values					
	1k	10k	100k	1M	1G	
BNC-A	o3.k1-5	o1.k4.5	o1.k4.5	o1.k1-5	o1.k1-5	
BNC-B	o3.k1-5	o1.k2.3.5	o2.k4.5	o2.k4.5	o2.k4.5	
BNC-C	o3.k2-5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	
BNC-D	o3.k3.4	o1.k2.5	o2.k2.5	o2.k2.5	o2.k2.5	
BNC-E	o3.k1.3-5	o1.k4.5	o1.k4.5	o1.k4.5	o1.k4.5	
BNC-F	o3.k3-5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	
BNC-G	o3.k1-5	o1.k4.5	o1.k2.4.5	o1.k2.4.5	o2.k2.4.5	
BNC-H	o3.k3-5	o1.k4.5	o2.k2.4.5	o2.k2.4.5	o2.k2.4.5	
BNC-J	o3.k1-5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	
BNC-K	o3.k2-5	o3.k2-5	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	
UMBC	o3.k1.3-5	o1.k2.4	o1.k2.4.5	o1.k2.4.5	o1.k2.4.5	

Table: Without tolerance for inherent noise I.

Results

dataaat	best parameters for various n values					
ualasel	1k	10k	100k	1M	1G	
Catalan	o3.k2-5	o3.k2-5	o1.k2.4	o1.k1.3-5	o1.k1.3-5	
Croatian	o3.k3-5	o1.k2.3	o1.k2.3	o1.k3-5	o1.k3-5	
Czech	o3.k2-5	o3.k3-5	o1.k2.3	o1.k1.3-5	o1.k1.3-5	
Danish	o3.k1-5	o1.k2.3	o1.k1.2.4.5	o1.k1.2.4.5	o3.k2-5	
Dutch	o3.k1-5	o1.k2.4	o1.k3.4	o1.k1-5	o1.k1-5	
Finnish	o3.k1.3.5	o1.k1.3.4	o1.k1.3.4	o1.k1.3-5	o1.k1.3-5	
Indonesian	o3.k1-5	o1.k3.5	o1.k3-5	o1.k3-5	o1.k3-5	
Lithuanian	o3.k2.3.4	o1.k2.3	o1.k2-5	o1.k2-5	o1.k2-5	
Bokmål	o3.k2.4.5	o3.k2.4.5	o1.k1.3-5	o1.k1.3-5	o1.k1.3-5	
Nynorsk	o3.k1-5	o1.k2.4.5	o1.k1-5	o1.k1-5	o1.k1-5	

Table: Without tolerance for inherent noise II.

Results

dataaat	best parameters for various n values					
ualasei	1k	10k	100k	1M	1G	
Polish	o3.k2-5	o3.k2-5	o1.k1.4.5	o1.k2-5	o1.k2-5	
Portuguese	o3.k2.4.5	o1.k2.3	o1.k3.4	o1.k3.4	o1.k3.4	
Romanian	o3.k2.4.5	o1.k2.4	o1.k2.3.4	o1.k2.3.4	o1.k2.3.4	
Serbian.sh	o3.k1.2.4.5	o1.k2.4	o1.k3.4	o1.k2-5	o1.k2-5	
Serbian.sr	o3.k2-5	o1.k4.5	o1.k4.5	o1.k4.5	o1.k4.5	
Slovak	o3.k2.4.5	o1.k2.3	o1.k1.3-5	o1.k1.3-5	o1.k1.3-5	
Spanish	o3.k2.4.5	o1.k2.3	o1.k1.3.5	o1.k1.3.5	o1.k1.3.5	
Swedish	o1.k2.3	o1.k2.3	o1.k1-5	o1.k1-5	o1.k1-5	

Table: Without tolerance for inherent noise III.

Visual fits

Figure: Random walk fits well, Sichel not

Visual fits

Figure: Random walk fits well, Sichel not

Visual fits

Figure: A rare case when Sichel fits within noise

Random walk fits best

dataset	Sichel	binned	random walk	inherent noise
BNC-A	3.130e-2	1.489e-2	4.409e-4	9.847e-4
BNC-B	5.555e-2	1.274e-2	7.215e-3	7.741e-3
BNC-C	4.335e-2	1.431e-2	6.989e-3	9.494e-3
BNC-D	9.917e-2	8.387e-2	5.945e-2	8.510e-2
BNC-E	6.303e-2	2.251e-2	4.353e-3	5.000e-3
BNC-F	2.706e-2	2.196e-2	2.270e-2	2.630e-2
BNC-G	2.205e-2	1.495e-2	5.762e-3	9.199e-3
BNC-H	4.095e-2	3.265e-2	3.106e-2	3.385e-2
BNC-J	2.665e-2	6.854e-2	2.946e-2	7.940e-2
BNC-K	6.525e-2	1.388e-1	3.899e-2	2.134e-1
UMBC	6.320e-2	2.615e-2	1.390e-3	2.442e-3

Table: Best of the models and their fit I.

Random walk fits best

dataset	Sichel	binned	random walk	inherent noise
Catalan	1.227e-1	6.102e-2	9.382e-4	1.751e-3
Croatian	1.027e-1	4.604e-2	2.063e-3	5.616e-3
Czech	5.783e-2	3.687e-2	2.563e-3	5.147e-3
Danish	1.511e-1	3.072e-2	2.772e-3	7.557e-3
Dutch	1.844e-1	3.447e-2	1.391e-3	2.408e-3
Finnish	9.712e-2	2.830e-2	1.659e-3	1.946e-3
Indonesian	9.896e-2	5.017e-2	1.390e-3	1.231e-2
Lithuanian	1.617e-1	3.113e-2	6.637e-4	1.184e-3
Bokmål	1.028e-1	3.332e-2	3.515e-3	3.564e-3
Nynorsk	7.418e-2	2.830e-2	3.757e-3	3.946e-3

Table: Best of the models and their fit II.

16 | 20

Random walk fits best

dataset	Sichel	binned	random walk	inherent noise
Polish	1.675e-1	4.078e-2	1.518e-3	8.508e-3
Portuguese	6.421e-1	5.133e-2	4.514e-2	4.973e-2
Romanian	3.070e-2	6.539e-2	1.579e-2	2.338e-2
Serbian.sh	9.944e-2	4.676e-2	1.346e-3	4.531e-3
Serbian.sr	1.413845	1.389e-1	6.971e-3	7.189e-3
Slovak	5.507e-2	4.344e-2	2.184e-3	2.572e-3
Spanish	9.021e-2	6.501e-2	7.718e-4	8.365e-4
Swedish	2.225e-1	2.652e-2	2.310e-3	2.526e-3

Table: Best of the models and their fit III.

Conclusions: the random walk model

- Fits notably better than earlier models
- Has clear genesis
- Opens a new way for checking statistical implications of grammatical observations

18 | 20

Acknowledgments

- NKFIH grant #120145: Deep Learning of Morphological Structure
- NKFIH grant #115288: Algebra and algorithms
- National Excellence Programme 2018-1.2.1-NKP-00008: Exploring the Mathematical Foundations of Artificial Intelligence
- A hardware grant from NVIDIA Corporation
- GNU parallel was used to run experiments (Tange, 2011)

References I

- Kornai, A., Zséder, A., and Recski, G. (2013). Structure learning in weighted languages. In *Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13)*, pages 72–82, Sofia, Bulgaria. Association for Computational Linguistics.
- MacKay, D. J. (2003). *Information Theory, Inference, and Learning Algorithms*. Cambridge University Press.
- Sichel, H. (1974). On a distribution representing sentence length in written prose. *Journal of the Royal Statistical Society Series A*, 137(1):25–34.
- Tange, O. (2011). Gnu parallel the command-line power tool. *;login: The USENIX Magazine*, 36(1):42–47.
- Wake, W. (1957). Sentence-length distributions of Greek authors. *Journal of the Royal Statistical Society Series A*, 120:331–346.

20 | 20

References II

- Williams, C. (1944). A note on the statistical analysis of sentence-length as a criterion of literary style. *Biometrika*, 31:356–361.
- Yule, G. U. (1944). *The Statistical Study of Literary Vocabulary*. Cambridge University Press.