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Sentence length models

� Negative binomial (Yule, 1944)
� Given number of failures in an sequence of independent and

identically distributed Bernoulli trials

� Log-normal (Williams, 1944) (Wake, 1957)
� frequencies are normal on log-linear scale

� Mixture of Poisson (Sichel, 1974)
� mixture of continuous number of Poissons where the mixture

distribution is parametrized

φ(r) =

√
1− θγ

Kγ(α
√
1− θ)

(αθ/2)r

r!
Kr+γ(α)

� These models either don’t fit the data or lack a clear genesis
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Random walk model

� y axis: valency

� starting point is a parameter

� with probability p2: two steps up

� e.g. a transitive verb

� p1: one step up

� e.g. an intransitive verb or an
adjective

� p0: same height

� e.g. an adverbial

� p−1: one step down

� e.g. a proper noun

� The predicted sentence length is
the first time when the process
reaches zero valency

5 10 15 20
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k

Some generalizations may
complicate the model:

� order (upward steps)
� k-mixture
� auxiliary model
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Model analysis

� τk = mint≥0{t : Xk(t) = 0}

� τk is the sum of k independent copies of τ1

� since going from k → 0 requires k times going from 1 to 0.
� this in not the case if p−2 > 0 !

� f(x) := E (xτ1)

� the probability generating function of τk is f(x)k

f(x) = p−1 · x+ finishing in one step
p0 · x · f(x)+ wait τ1 again

p1 · x · f(x)2+ wait τ1 two times

p2 · x · f(x)3 wait τ1 three times

f is the solution of the following equation:

p−1 · x+ (p0 · x− 1) · f + p1 · x · f2 + p2 · x · f3 = 0
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Model analysis II.

F (u) := p−1 + p0 · u+ p1 · u2 + p2u
3

g(f) :=
f

F (f)

x = g(f(x))

� so the solution is the inverse function of g

� we won’t solve it explicitly

� although it is theoretically possible up to 3 steps upwards (4th order
root formula exists)

� rather find the Taylor expansion of f via Lagrange–Bürmann
formula

� a version of Lagrange inversion theorem

P(τk = i) =
k

i
[ui−k] (F (u))

i

involves calculating symbolic product of polynomials
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Optimizing the parameters

� The task is to fit the parameters such that the resulted return
time is close to the measured distribution in cross entropy

� Also the p−1, p0 . . . parameters are constrained on a probabilistic
simplex

F (u) := p−1 + p0 · u+ p1 · u2 + p2u
3

P(τk = i) =
k

i
[ui−k] (F (u))

i

� The latter is differentiable in the model parameters

� one can perform gradient descent (or similar optimization
techniques)

� as long as the discrete parameters are fixed

� There are other (discrete) parameters

� starting valency
� maximum upward steps
� mixture components
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� The latter is differentiable in the model parameters
� one can perform gradient descent (or similar optimization

techniques)
� as long as the discrete parameters are fixed

� There are other (discrete) parameters
� starting valency

� maximum upward steps
� mixture components
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Model comparison

� Let {nx}x∈X be the measured frequencies of a data

� Let Hi be a model in a list of possible models
� Within a model there can be other trained parameters

wi ∈ Hi, Qwi
(x) := P(x | wi,Hi)

In our case Hi is the choice of the discrete parameters and
wi ∈ Hi is trained by optimizing the continuous parameters of
that model.

� different models may have different dimensionality
� Bayesian (evidence based) decision (MacKay, 2003):

P(Hi | data) ∝ P(data | Hi) =
∫
Hi

P(wi | Hi)︸ ︷︷ ︸
uniform prior

∏
x∈X

(Qwi(x)
nx) dwi
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Estimating the evidence∫
Hi

1

Vol(Hi)
∏
x∈X

(Qwi(x)
nx) dwi =

1

Vol(Hi)

∫
Hi

exp

(∑
x∈X

nx · lnQwi(x)

)
dwi

f(wi) := −
∑
x∈X

nx
n

lnQwi
(x)

1

Vol(Hi)

∫
Hi

e−n·f(wi) dwi ≈
1

Vol(Hi)
· e−n·f(w

∗
i ) ·

(
2π
n

) d
2√

det f ′′(w∗i )

� w∗i := argminwi∈Hi
f(wi)

� d is the dimension of Hi (number of free parameters)
� f is cross entropy
� we take − 1

n ln(•) and also subtract the entropy of the data

� none of which changes the relative order of the models
� this way the theoretical minimum is 0
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Augmented model

P(data | Hi) =
∫
Hi

P(wi | Hi)︸ ︷︷ ︸
uniform prior

∏
x∈X (Qwi

(x)nx) dwi

� One can see that Qwi
(x) = 0 is unacceptable

� We introduced a dummy auxiliary model to capture the
probabilities of the short sentences (shorter than the starting
valency)

�

Qwi,q(x) :=

{
λ ·Qwi(x) if Qwi(x) > 0

(1− λ) · qx if nx > 0,Qwi(x) = 0

where qx is also a trained parameter and

λ = P(Qwi > 0) covered probability
1− λ = P(Qwi = 0) uncovered probability
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Model comparison – final

−λ · lnλ+

︷ ︸︸ ︷∑
x∈X∩supp(Hi)

px · ln
px

Qw∗
i
(x)

+
d

2n
· ln n

2π
+

1

n
· ln (Vol(Hi) ·Vol(aux. model))+

1

2n
· ln (det (model Hessian) · det (aux. model Hessian))

� λ is the covered probability
� w∗i := argmin

wi∈Hi

KL(P ‖ Qwi)

� n is the size of the dataset

� number of sentences

� d is the number of model
parameters (including
auxiliary model)

� the model volume is the
volume of the parameter
space

� probabilistic simplexes

� the determinant of the
Hessian can be considered
as volume
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Model comparison – beyond

� There are three type of terms in the final formula

� constant in n
� proportional to

1

n

�
lnn

n
� as n→∞ only the constant terms remain

� and the model size is irrelevant
� this causes overfitting

� if n is small then the Laplace integration doesn’t even work

� also the data might be unreliable

� we want to avoid optimizing for n

� “optimal corpus size”

� we want stable result as n→∞
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Inherent noise

� we defined the following quantity as a general measure of
dissimilarity

� generalized Kullback–Leibler divergence

[−λ · lnλ]λ=P(supp(P)∩supp(Q)) +
∑

x∈supp(P)∩supp(Q)

P(x) ln
P(x)
Q(x)

� measured this quantity on two disjoint subset of the data (Kornai
et al., 2013)

� modified the final evidence formula to tolerate for any error within
inherent noise

� if a model fits within inherent noise, then it is considered a perfect fit
� in this case the n-dependent terms can contribute in a

meaningful way
� this solves the accuracy—complexity trade-off
� our method works for distributions with unequal support

� the augmented model is actively contributing to the final decision
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Experiments

� We have a fairly general formula for comparing various models

� Trained several models with several hyper-parameters

� Random walk model

� order: maximum allowed upward steps
� k-mixture: convex linear combination of several random walks starting

from several different valency
� including augmented model for the sentences which are shorter than

the starting valency

� Binned model

� take bins [1, b1), [b1, b2), [bm−1,∞)
� the modeled distribution is uniform within one bin
� the probability of a bin is trained
� the bins themselves are the discrete parameters

� Sichel model

� we trained the parameters α and θ
� γ was a model parameter (we couldn’t back-propagate to the

subscript parameter of the Bessel functions Kγ(z))
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Results

� The binned and Sichel models were rarely within inherent noise
� the binned model fits well for many bins, but it has a lot more

parameter than the parametric morels
� the Sichel model fits only the binned data (when the datapoints are

aggregated into 4-5 long bins)
� this was actually mentioned by Sichel, although it was way better

then its predecessors

� The random walk model always wins
� Never use more than one step upwards
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

BNC-A o3.k1-5 o3.k2-5 o1.k4.5 o1.k4.5 o1.k4.5
BNC-B o3.k1-5 o3.k1-5 o1.k1.5 o1.k1.5 o1.k1.5
BNC-C o3.k2-5 o3.k2-5 o3.k2-5 o1.k1.4 o1.k1.4
BNC-D o3.k2.3.5 o3.k2.3.5 o3.k2.3.5 o1.k2 o1.k2
BNC-E o3.k1.3-5 o3.k1.3-5 o1.k2.5 o1.k2.5 o1.k2.5
BNC-F o3.k3.4.5 o3.k3.4.5 o3.k3.4.5 o1.k3 o1.k3
BNC-G o3.k1-5 o3.k1-5 o1.k2.5 o1.k2.5 o1.k2.5
BNC-H o3.k2.4.5 o3.k3.4.5 o1.k4 o1.k4 o1.k4
BNC-J o3.k2.3.4 o3.k2.3.4 o3.k2.5 o1.k2 o1.k2
BNC-K o3.k1-5 o3.k1-5 o1.k2 o1.k2 o1.k2

UMBC o3.k1.3-5 o3.k1.3-5 o1.k2.5 o1.k2.5 o1.k2.5

Table: Best models I.
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

Catalan o3.k2-5 o3.k2-5 o1.k2.5 o1.k2.5 o1.k2.5
Croatian o3.k3.4.5 o3.k3.4.5 o1.k2.5 o1.k2.5 o1.k2.5
Czech o3.k4.5 o3.k1.3.5 o1.k2.5 o1.k2.5 o1.k2.5
Danish o3.k1-5 o3.k1.3.5 o1.k2.5 o1.k2.5 o1.k2.5
Dutch o3.k1-5 o3.k3.4.5 o1.k2.5 o1.k2.5 o1.k2.5
Finnish o3.k1.3.5 o1.k2.4 o1.k2.4 o1.k2.4 o1.k2.4
Indonesian o3.k1-5 o3.k1-5 o1.k2.5 o1.k2.5 o1.k2.5
Lithuanian o3.k2.3.4 o3.k2.3.4 o1.k2.3 o1.k2.3 o1.k2.3
Bokmål o3.k2.4.5 o3.k2.4.5 o1.k2.5 o1.k2.5 o1.k2.5
Nynorsk o3.k1-5 o1.k2.5 o1.k2.5 o1.k2.5 o1.k2.5

Table: Best models II.
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

Polish o3.k2-5 o3.k2-5 o3.k2-5 o3.k2-5 o1.k2.5
Portuguese o3.k2.3.5 o3.k2.3.5 o1.k2 o1.k2 o1.k2
Romanian o3.k1.3-5 o3.k1.3-5 o1.k5 o1.k5 o1.k5
Serbian.sh o3.k1.2.4.5 o3.k2.3.5 o1.k2.5 o1.k2.5 o1.k2.5
Serbian.sr o3.k2-5 o3.k2.3.4 o1.k2.5 o1.k2.5 o1.k2.5
Slovak o3.k2.4.5 o3.k2-5 o1.k2.5 o1.k2.5 o1.k2.5
Spanish o3.k2.4.5 o1.k2.3 o1.k2.3 o1.k2.3 o1.k2.3
Swedish o1.k2.4 o1.k2.4 o1.k2.4 o1.k2.4 o1.k2.4

Table: Best models III.
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

BNC-A o3.k1-5 o1.k4.5 o1.k4.5 o1.k1-5 o1.k1-5
BNC-B o3.k1-5 o1.k2.3.5 o2.k4.5 o2.k4.5 o2.k4.5
BNC-C o3.k2-5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5
BNC-D o3.k3.4 o1.k2.5 o2.k2.5 o2.k2.5 o2.k2.5
BNC-E o3.k1.3-5 o1.k4.5 o1.k4.5 o1.k4.5 o1.k4.5
BNC-F o3.k3-5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5
BNC-G o3.k1-5 o1.k4.5 o1.k2.4.5 o1.k2.4.5 o2.k2.4.5
BNC-H o3.k3-5 o1.k4.5 o2.k2.4.5 o2.k2.4.5 o2.k2.4.5
BNC-J o3.k1-5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5
BNC-K o3.k2-5 o3.k2-5 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5

UMBC o3.k1.3-5 o1.k2.4 o1.k2.4.5 o1.k2.4.5 o1.k2.4.5

Table: Without tolerance for inherent noise I.
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

Catalan o3.k2-5 o3.k2-5 o1.k2.4 o1.k1.3-5 o1.k1.3-5
Croatian o3.k3-5 o1.k2.3 o1.k2.3 o1.k3-5 o1.k3-5
Czech o3.k2-5 o3.k3-5 o1.k2.3 o1.k1.3-5 o1.k1.3-5
Danish o3.k1-5 o1.k2.3 o1.k1.2.4.5 o1.k1.2.4.5 o3.k2-5
Dutch o3.k1-5 o1.k2.4 o1.k3.4 o1.k1-5 o1.k1-5
Finnish o3.k1.3.5 o1.k1.3.4 o1.k1.3.4 o1.k1.3-5 o1.k1.3-5
Indonesian o3.k1-5 o1.k3.5 o1.k3-5 o1.k3-5 o1.k3-5
Lithuanian o3.k2.3.4 o1.k2.3 o1.k2-5 o1.k2-5 o1.k2-5
Bokmål o3.k2.4.5 o3.k2.4.5 o1.k1.3-5 o1.k1.3-5 o1.k1.3-5
Nynorsk o3.k1-5 o1.k2.4.5 o1.k1-5 o1.k1-5 o1.k1-5

Table: Without tolerance for inherent noise II.
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Results

dataset best parameters for various n values
1k 10k 100k 1M 1G

Polish o3.k2-5 o3.k2-5 o1.k1.4.5 o1.k2-5 o1.k2-5
Portuguese o3.k2.4.5 o1.k2.3 o1.k3.4 o1.k3.4 o1.k3.4
Romanian o3.k2.4.5 o1.k2.4 o1.k2.3.4 o1.k2.3.4 o1.k2.3.4
Serbian.sh o3.k1.2.4.5 o1.k2.4 o1.k3.4 o1.k2-5 o1.k2-5
Serbian.sr o3.k2-5 o1.k4.5 o1.k4.5 o1.k4.5 o1.k4.5
Slovak o3.k2.4.5 o1.k2.3 o1.k1.3-5 o1.k1.3-5 o1.k1.3-5
Spanish o3.k2.4.5 o1.k2.3 o1.k1.3.5 o1.k1.3.5 o1.k1.3.5
Swedish o1.k2.3 o1.k2.3 o1.k1-5 o1.k1-5 o1.k1-5

Table: Without tolerance for inherent noise III.
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Visual fits
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Figure: Random walk fits well, Sichel not
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Figure: A rare case when Sichel fits within noise
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Random walk fits best

dataset Sichel binned random walk inherent noise

BNC-A 3.130e-2 1.489e-2 4.409e-4 9.847e-4
BNC-B 5.555e-2 1.274e-2 7.215e-3 7.741e-3
BNC-C 4.335e-2 1.431e-2 6.989e-3 9.494e-3
BNC-D 9.917e-2 8.387e-2 5.945e-2 8.510e-2
BNC-E 6.303e-2 2.251e-2 4.353e-3 5.000e-3
BNC-F 2.706e-2 2.196e-2 2.270e-2 2.630e-2
BNC-G 2.205e-2 1.495e-2 5.762e-3 9.199e-3
BNC-H 4.095e-2 3.265e-2 3.106e-2 3.385e-2
BNC-J 2.665e-2 6.854e-2 2.946e-2 7.940e-2
BNC-K 6.525e-2 1.388e-1 3.899e-2 2.134e-1

UMBC 6.320e-2 2.615e-2 1.390e-3 2.442e-3

Table: Best of the models and their fit I.
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Random walk fits best

dataset Sichel binned random walk inherent noise

Catalan 1.227e-1 6.102e-2 9.382e-4 1.751e-3
Croatian 1.027e-1 4.604e-2 2.063e-3 5.616e-3
Czech 5.783e-2 3.687e-2 2.563e-3 5.147e-3
Danish 1.511e-1 3.072e-2 2.772e-3 7.557e-3
Dutch 1.844e-1 3.447e-2 1.391e-3 2.408e-3
Finnish 9.712e-2 2.830e-2 1.659e-3 1.946e-3
Indonesian 9.896e-2 5.017e-2 1.390e-3 1.231e-2
Lithuanian 1.617e-1 3.113e-2 6.637e-4 1.184e-3
Bokmål 1.028e-1 3.332e-2 3.515e-3 3.564e-3
Nynorsk 7.418e-2 2.830e-2 3.757e-3 3.946e-3

Table: Best of the models and their fit II.
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Random walk fits best

dataset Sichel binned random walk inherent noise

Polish 1.675e-1 4.078e-2 1.518e-3 8.508e-3
Portuguese 6.421e-1 5.133e-2 4.514e-2 4.973e-2
Romanian 3.070e-2 6.539e-2 1.579e-2 2.338e-2
Serbian.sh 9.944e-2 4.676e-2 1.346e-3 4.531e-3
Serbian.sr 1.413845 1.389e-1 6.971e-3 7.189e-3
Slovak 5.507e-2 4.344e-2 2.184e-3 2.572e-3
Spanish 9.021e-2 6.501e-2 7.718e-4 8.365e-4
Swedish 2.225e-1 2.652e-2 2.310e-3 2.526e-3

Table: Best of the models and their fit III.
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Conclusions: the random walk model

� Fits notably better than earlier models
� Has clear genesis
� Opens a new way for checking statistical implications of

grammatical observations
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