
Language Modeling with Matrix Embeddings

Gábor Borbély
Department of Algebra,

Budapest University of Technology and Economics,
Egry József u. 1.

1111 Budapest, Hungary
borbely@math.bme.hu

1 Preliminaries

Vector representations of words were at the periphery of
computer linguistics for decades however, recently they
became widely used and researched.

In our terminology, representing a word consist of a
function which assigns a vector (in Rd) to every word
from a finite set (vocabulary) V .

v : V 7→ Rd

The first results concentrated on language modeling
with neural architectures ((Xu and Rudnicky, 2000) and
(Bengio et al., 2003)) instead of n-gram models ((Kneser
and Ney, 1995)).

Referred as distributional vector semantics or word
embeddings or word vectors, they are now off-the-shelf
tools in NLP as of (Mikolov et al., 2013a) and (Penning-
ton et al., 2014). In these tools, the function v is learned
from a corpus of unilingual, unlabeled, tokenized text.
Their learning objective is similar to language modeling
in the sense that they maximize the presence of a word
in its neighboring context.

Word vectors are proven to be useful in applica-
tions: e.g. sentiment analysis (Socher et al., 2013),
diachronic semantics change (W. Hamilton, 2016) or
zero-shot learning (Dinu et al., 2015) and neural de-
pendency parsing (Dozat et al., 2017) and scientifically
investigated like (Arora et al., 2016).

In this paper we investigate certain properties and
limitations of word vectors with the aim of improving
them. We also present a novel method for learning not
vector, but matrix representation of words.

In section 2 and 3 we lay out some theoretical back-
grounds. Section 4 presents the actual training objec-
tives and models. There are a few numerical results in
section 5

2 Vector space structure

As seen in (Mikolov et al., 2013c) and in (Mikolov et al.,
2013b) the linear structure of a trained vector model
is undeniable, meaning that the semantic structure is
well represented by vector operations (linear combina-
tion and dot product). From analogy questions (king-
man+woman=queen) through word similarity (angle of
word vectors) and translation (vdog ·T eng to ger = vHund)

to even some phrases (Chinese+river=Yangtze), the lin-
ear vector space structure seems to be empirically jus-
tified.
However, word vectors alone are not suitable for com-

posing phrases or sequences of words. In the example
above Chinese+river is not the same as "Chinese river",
at least not more than "river Chinese". The vector addi-
tion is commutative, namely, one cannot distinguish the
interchange of the components. This is why the vector
addition itself is not suited for modeling composition.
The sum of its words may represent a phrase but tack-
ling the compositionality, in general, is a demanding
task.
In (Socher et al., 2013) a parse tree was used to recur-

sively process the phrases and make them into one sen-
tence representation. In (Hill et al., 2016) an LSTM ar-
chitecture (Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997)) was used to represent a phrase.
Learning compositional mechanisms and embeddings

of various length entities (words, phrases and sentences)
are in the central interest of novel neural language pro-
cessing.

3 Algebras

Naturally, the question arises; what are the appropriate
mathematical structures (and composition rules) for a
word embedding. The performance of the vector mod-
els suggest that the vector space structure is a good
starting point. We also mentioned that beside the use-
ful + operation, the words tend to have an additional
operation, which composes them and this composition
is non-commutative. An algebra over the real field is a
reasonable choice (Rudolph and Giesbrecht, 2010).

C, +

V, ·

A

R, ∗

Figure 1: Algebras versus other structures

In Figure 1 the symbols C, V , R and A represent
commutative groups, vector spaces, rings and algebras
respectively. A commutative group has a commutative



addition operator (among others); in addition to that,
a vector space has dot product (and also scalar multi-
plication). A ring has addition and (non-commutative)
multiplication and an algebra is equipped with all of
these operations.

Note that in a group, in theory, one can compute el-
ements like Chinese+river or even subtract: Volga −
Russia, but there is no way of comparing the result to
existing vocabulary entries. In a vector space, the dot
product can measure similarities between elements and
the scalar multiplication gives us the ability to calcu-
late averages over certain elements. In a ring, one can
use the multiplication operator to model composition,
but still lacks some aspects of the vector space. In an
algebra, all of these requirements are met.

As a special case of algebras, matrix algebras consist
square matrices and they are in the target of our studies.
Hence the name matrix embedding: we want to train
square matrices for each word in a vocabulary, given a
corpus of sentences.
The algebra operations would look something like

this:

green + orange ≈ yellow-ish color or a team with these colors

green ∗ orange ≈ "green orange" like an unriped fruit

4 Learning matrices

Let V be our vocabulary: a finite set of symbols (words).
Let C ⊂ V ∗ be a collection of sentences, i.e. corpus.
We seek a map which gives a matrix for each word:
M : V 7→ Rd×d. The size of the matrices (d) is a model
parameter.
In order to train such a map, one has to impose an

objective function which measures how good a sentence
is.

f : V ∗ 7→ R

We wish to find an appropriate f and optimize it with
respect to M given the corpus of sentences.
First of all, we make some restrictions of the function

f . Since we want to model the composition via matrix
multiplication, f will be evaluated solely on matrices,
not on series of matrices. The score of a sentence should
be the score of the product of its words.

f("the dog barks") = f(Mthe ·Mdog ·Mbarks)

Note that the compositionality takes place in the matrix
product, the product of three matrices is also a matrix,
which is in the same vector space as its components,
although not necessarily in the vocabulary.
As in (Pennington et al., 2014), we choose the score

function to be linear in the components. In the example
above, it is linear in all of its inputs: "the", "dog" and
"barks".

f(Mthe ·Mdog ·Mbarks) ≈ logP("the dog barks")

In our work we choose f similarly to (Rudolph and Gies-
brecht, 2010):

f(M) = v> ·M · w
f(Mthe ·Mdog ·Mbarks) = v> ·Mthe ·Mdog ·Mbarks · w

where v and w are column vector, depending on the
model which will be specified later.
In the following subsections we introduce various

models, which implement the above ideas. All of them
are suitable for optimization and indeed train the em-
bedding M but with different approaches. We detail
the numerical results in section 5.

4.1 Neural network model
In the following model one does not assert a probability
to a full sentence, but only a probability that a word
fits in a context. f shall be such that

f(contextbefore,word, contextafter) = P(word|context)∑
w∈V

f(contextbefore, w, contextafter) = 1.

Our architecture consists an embedding layer M , a com-
position layer, which is matrix dot product, and a read-
out layer, which is a softmax over the vocabulary (given
a fixed context).

1>

the dog

...
cat

has

...

︸︷︷︸
softmax over V

barks

1

Figure 2: Neural architecture of matrix embedding
model

In formulas, the objective is to minimize the entropy
in every context, like:

− log
exp

(
1> ·Mthe ·Mdog ·Mbarks · 1

)
∑

v∈V exp (1> ·Mthe ·Mv ·Mbarks · 1) → min

Or more precisely maximize the following in M .

∑
(cb,w,ca)∈C

1> ·
∏

b∈cb

Mb

 ·Mw ·
(∏

a∈ca

Ma

)
· 1

−
log

∑
v∈V

exp

1> ·
∏

b∈cb

Mb

 ·Mv ·
(∏

a∈ca

Ma

)
· 1


where cb and ca are the context before and af-
ter the word w and the products are ordered (non-
commutative) matrix dot products. The context are
not bound to be symmetric or constant width, an empty



product yields the identity matrix, which can be used
as a placeholder.

Note that this model does not assign probabilities
to a whole sentence, only to certain choices of words.
The probability of a sentence is hard to measure (see
(Kornai, 2010)), therefore we do not require the model
to calculate them.

4.2 Direct probabilistic model
One can rewrite the above model in a way that ev-
ery sentence, phrase and word gets a directly calculated
probability. As a motivation, we will try to eliminate
the softmax in the neural model, which will lead us to
the full probabilistic model.

If the softmax is to be eliminated, then the matrices
Mw should be restricted to ensure the total probability
of 1. A constraint will be added to M such that∑

w∈V

P(the w barks) =

∑
w∈V

1> ·Mthe ·Mw ·Mbarks · 1 =

P(the »anything« barks)

giving the probability of the skip-gram "the »anything«
barks" in the corpus. Since the above formula is linear
in the middle matrix, one can calculate a placeholder

M∗ :=
∑
w∈V

Mw

which does not change the probability of any sequence,
no matter where it is inserted. And we also want that
P(»anything«) = 1.

In this model the matrices have an inevitable proba-
bilistic interpretation. We postulate the following con-
straints over M :

• positivity of the elements: (Mw)i,j ≥ 0

• right-stochastic sum:∑
w∈V

Mw is a right-stochastic matrix

i.e. its rows sum up to 1.

Under these conditions on can state the followings.

• 1
d · 1

> · (M∗)n · 1 = 1 for n = 0, 1, 2 . . .

• if v ∈ R1×d has non-negative entries and sums up
to 1, then v ·M∗ also has non-negative entries and
sums up to 1 (i.e. keeps the probabilistic row vec-
tors).

• (M∗)n is also a right-stochastic matrix, therefore∑
w1∈V

. . .
∑

wn∈V

1
d
1>Mw1 · · ·Mwn1 = 1

d
1>(M∗)n1 = 1.

In this setup one can simply calculate the probability
of any phrase or series of words as

P(w1w2 . . . wn) = 1
d
1>Mw1Mw2 · · ·Mwn1.

This model can be trained on a weighted corpus,
where every sentence has an empirical probability p.
In such a case, one has to minimize the KL divergence.

arg min
constraints on M

∑
c∈C

P(c)=p

p · log
(

p
1
d1
> (
∏

w∈c Mw)1

)

If the corpus has no weights then we assume p ≡ 1.
The models so far were discriminative models.

4.3 Continuous WFSA
One can generalize wighted finite state automata by
modifying the above model, and one can optimize a
continuous finite state automaton to fit a weighted lan-
guage. Similar connection between WFSAs and matrix
representation of words can be found in (Asaadi and
Rudolph, 2016). We also introduce a learning algorithm
to obtain our matrix embeddings, which in turn can
help learning automata. As future work, these tech-
niques may be relevant in MDL (Minimum Descrip-
tion Length) learning of automata, as in (Kornai et al.,
2013).
One can see in the previous model that the left-hand-

side of the product can be considered as a context or
state vector.

1
d
1> ·Mthe ·Mdog︸ ︷︷ ︸

previous state

·Mbarks

︸ ︷︷ ︸
the state after "barks"

·1

︸ ︷︷ ︸
probability of the whole outcome

In a way, the initial row vector 1
d1
> is carried through

the sentence and one can ask the probability of the cur-
rent state by applying the column vector 1.
Some modification is needed to justify this intuition

and introduce a WFSA. We change the constraints on
the embedding M , since the state of an automaton
should always sum up to 1. In the previous model the
sum of the earlier mentioned row vector decreases as the
sentence spans. Let Mw be a right-stochastic matrix for
every word w ∈ V . In this way the automaton starts
from the uniform state 1

d1
> and every word acts as a

transition on this state.

v︸︷︷︸
state

action of w︷︸︸︷→ v ·Mw︸ ︷︷ ︸
new state

(1)

Some additional action is required, since the sum of
every state is now 1 and we want to obtain meaning-
ful probabilities. Let R ∈ Rd×|V | be a matrix of non-
negative entries which is responsible for the emissions.
In neural network terminology we would call that read-
out layer.
At every state v the columns of the matrix R deter-

mine which word should follow.

P(next words is w| state v) = v · R•,w︸ ︷︷ ︸
wth column

(2)

Constraints on R and M are listed below.



• Mw is a right-stochastic matrix ∀w ∈ V .

• The rows of R sum up to 1 (and R has non-negative
entries)

Under these constraints an automaton arises:

• The states are 1, 2 . . . d

• The initial state is uniform on the states: 1
d1
>

• A word w acts as a transition function on the states
as (1).

• The outcomes (or emissions) at a given state (prob-
abilistic row vector) v follows as (2).

And the probability of an emission sequence is the fol-
lowing product

P(w1w2 . . . wn) =1>R•,w1︸ ︷︷ ︸
P(w1)

·1>Mw1R•,w2︸ ︷︷ ︸
P(w2|w1)

· · ·

1>
n−1∏
i=1

MwiR•,wn︸ ︷︷ ︸
P(wn|w1w2...wn−1)

Given a corpus or a weighted language, one can use
the same objective function as in the previous section
and train M and R.

Note that, unlike in the previous two models, this
model is not sensitive to the future words to come. The
next emission and state does not depend on the follow-
ing words. In contrast to the previous one, this is a
generative model.

5 Results

Our experimental setup used the UMBC gigaword cor-
pus ((Han et al., 2013)) which was tokenized and split at
sentence boundaries (punctuation part-of-speech tag).
The words were not converted into lowercase. It con-
tains about 3.338G words, the average length of a sen-
tence is about 24 with standard deviation 15. For com-
putational reasons, we excluded long sentences leaving
126.7M sentences to work with.

Words with frequency less than 52 were replaced with
a unique symbol <UNK>, leaving roughly 100k types in
the vocabulary (precisely 100147).

The implementation is not detailed herein, but the
code is available1.
We encountered some serious numerical obstacles in

case of model 4.1. It is not certain that the numerical
issues are the result of implementation or come from
the mathematical model, but the problem occurs if the
stochastic gradient descent encounters the same token
repeated several times in the same sentence. Although,
this problem did not occur neither in model 4.2 nor

1https://github.com/hlt-bme-hu/lm_me, see C++ code for
neural model, python (theano) implementation for the other two
models

4.3. The first model differs from the others in many as-
pects: implementation language, mathematical model,
and also in gradient descent strategy.
Only the results of the second model are presented.

The third model did not reach a reasonable quality
within a reasonable computational time . The quality of
the models were measured on Google Analogy questions
(Mikolov et al., 2013a), see evaluation code below2. Co-
sine similarity was used on the flattened matrices.
In table 1 one can read the number of correctly an-

swered questions of each trained model. Commutative
means that the matrices were 100 × 100 diagonal ma-
trices, they form a commutative algebra. This can be
considered as a fallback to word vectors. The dense
models consist of 10× 10 dense matrices.

algebra model # correct
commutative 4.2 555
dense 4.2 81

Table 1

The model 4.3 could answer 1 or 2 questions after the
same amount of training.

6 Outlook

We introduced several techniques to train matrix em-
beddings of words with various numerical efficiency and
quality.
Training high quality embeddings and/or automata

is our future interest. There are some obvious obstacles
in computation time, since the training of a well tuned
embedding usually takes a day and matrix models are
expected to require more computations.
A possible computational enhancement is the use of

structured, sparse matrices, where we train only certain
elements in the matrices, hence taking a sub-algebra of
the full matrix algebra. This hastens some calculations
but keeps the desired algebra properties intact. To this
end, further studies of matrix algebras and their sub-
algebras are considered.
Currently these experiments are in a preliminary

state but many improvements and applications are pos-
sible. As my supervisor once has described it:

“Like socialism; appealing idea, but not
working in practice.”

— András Kornai

2https://github.com/hlt-bme-hu/eval-embed

https://github.com/hlt-bme-hu/lm_me
https://github.com/hlt-bme-hu/eval-embed
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