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Chapter 1

Introduction

This thesis reimplements and extends the dep to 4lang functionality using an
interpreted regular tree grammar (IRTG), which maps rules of a regular tree
grammar (RTG) to pairs of operations over Universal Dependencies (UD)
and 4lang graphs, thereby allowing for efficient transformation between the
two representations. Our contribution is available on GitHub under an MTI
license.1

The thesis is structured as follows: Chapter 2 describes the history of
dependency parsing and its recent applications, as well as introducing the
UD formalism, followed by a manual error analysis of three state-of-art de-
pendency parsers of 2017. In Chapter 3 we give a theoretical background
of semantic parsing and a short review of some early and more recent sys-
tems as well. Chapter 4 explains interpreted regular tree grammars and the
s-graph formalism. Then we present an IRTG which achieves the aforemen-
tioned reimplementation and extension of dep to 4lang. Our system contains
several enhancements, such as UD-conformity and the treatment of the UD
relation case.

1https://github.com/kornai/4lang/tree/master/exp/alto
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Chapter 2

Dependency parsing

This chapter gives a brief review on dependency parsing. We do not intend to
provide a full historical overview or description of any grammatical theories in
full detail. We provide a short description of dependency grammars, followed
by a review of approaching the task of dependency parsing in Section 2.1. In
Section 2.2 we briefly describe the Universal Dependencies project, then in
Section 2.3, we provide a manual error analysis of the outputs of three recent
dependency parsers which received top scores at the CoNLL 2017 shared
task.

We give an introduction on the roots and main features of depenedency
grammar, for a detailed overview of the field, see Nivre (2005) Although
constituent-based grammars have more prevalence in traditional schools of
grammar, the dependency-based approach, which state that syntactic struc-
ture consists of lexical elements linked by binary relations, also has a long
tradition. Rooted in Panini’s grammar of Sanskrit, the first modern work on
dependency grammars is the one of Tesnière’s (1959).

The notion of dependency means that words (head and dependent) are
connected to each other via directed links. The finite verb counts as the root,
or the structural center of the sentence, while the relations between heads
and dependents determine the structure, as in the example of Figure 2.1.
There are many well-known theories of dependency grammars, for summary
see (Nivre, 2005, p. 3).
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Figure 2.1: Dependency analysis of the sentence ’The dog was chased by the
cat.’ Source: http://universaldependencies.org/introduction.html

2.1 Approaches to dependency parsing

In the early days of dependency parsing, most of the efforts were focused on
the grammar-driven approach. These can be split into two main categories.

The first one is based on the formalization of dependency grammar, Gaif-
man (1965) is one of the earliest works. It is a formal description of de-
pendency grammar. Gaifman’s dependency system contains a finite number
of rules for dependency analysis. His three types of rules include 1. rules
that list the possible dependents of category X and their relative order (Fig-
ure 2.2), 2. rules that give the list of all words belonging to the grammatical
categories X, and 3. a rule that gives the list of all categories the occurrence
of which may govern a sentence. Beside rules, there are general structure
requirements (Gaifman, 1965, p. 306). His relations are dependent-to-head
relations, opposed to today’s head-to-dependent ones.

Figure 2.2: A dependency rule. Reproduced from (Gaifman, 1965, p. 306)

The second type of approach sees parsing as constraint-satisfaction, where
sentence representations are filtered successively by dropping those that vi-
olate constraints until only valid representations remain. Maruyama (1990)
is one of the earliest works. He argues that firstly, one needs to construct
an initial constraint network using a core grammar, then to remove all local
inconsistencies, finally to add new constraints and go back to the previous
step if any ambiguity remained. He illustrates this with a PP-attachment
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example. The sentence Put the block on the floor on the table in the room
contains many structural ambiguities. For the sake of simplicity, the author
treats the symbols V , NP and PP as terminals. The core grammar is con-
structed to contain the terminals, the dependency labels and the constraints.
Constraints define which terminals can modify which terminals and under
what circumstances. They also define what label should be assigned to the
resulting dependency relations. An example constraint is that if a PP mod-
ifies a PP or an NP , its label should be POSTMOD. These constraints
narrow down the number of the possible parse trees. According to the gram-
mar, the example sentence has 14 different syntactic structures. These are
not generated one by one, instead a complex data structure, a constraint
network is built. Based on this structure, parse trees can be generated. Fig-
ure 2.3 shows a possible dependency structure.

Put the block on the floor on the table in the room
V1 NP2 PP3 PP4 PP5

OBJ POSTMOD

LOC

POSTMOD

Figure 2.3: A possible dependency structure of the sentence ’Put the block
on the floor on the table in the room’ (Maruyama, 1990, p. 34). Arrows are
drawn from the dependent to the head to emphasize that the information is
contained in the role of the modifier.

Today the majority of dependency parsers employ data-driven methods,
which involve probabilistic models and evaluation with supervised learning.
For an overview of the field, see Jurafsky and Martin (2018b). Eisner (1996)
is the most important among the first tries, he provides three different proba-
bilistic models with different weighting schemes which all have part-of-speech
tags in addition to word tokens and dependency relations. This algorithm
serves as a basis for many modern parsers. McDonald et al. (2005), whose
system is highly influenced by Eisner’s, applied discriminative estimation
methods to probabilistic dependency parsing (Nivre (2005)). Their system
achieved a competitive parsing accuracy on both English and Czech data.
The two main types of data-driven parsing are shift-reduce parsing and
graph-based parsing. Shift-reduce parsing uses a context-free grammar, a
stack and a list of tokens. It accepts words one by one, starting at the begin-
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ning of a sentence, and tries linking each word as a head or dependent of the
previous word, based on a simpler notion of dependency grammar, together
with a deterministic parsing strategy. Dependency links form a tree with a
unique root and the parser should make a single left-to-right pass through
the input string while establishing each link as early in its left-right pass as
possible. A function named oracle decides which step should be chosen at
any time. The basic algorithm of a generic transition-based parser is shown
in Figure 2.4.

function dependencyParse(words) returns dependency tree
state ← [root], [words ], [ ] ; initial configuration
while state not final
t ← Oracle(state) ; choose a transition operator to apply
state ← Apply(t, state) ; apply it, creating a new state
return state

Figure 2.4: A generic transition-based dependency parser (Jurafsky and Mar-
tin, 2018b, p. 9)

The oracle returns a transition operator in each step, based on the current
configuration. Then it applies that operator to the current configuration,
resulting in a new configuration. After all the words have been consumed
and only the ROOT element is left behind, the process ends. State-of-the-art
systems use supervised machine learning to map configurations to transition
operations, as the system of Chen and Manning (2014).

Another data-driven approach is graph-based parsing. This method searches
through all possible trees for a sentence and selects a tree with the highest
score. Edge-factored approaches calculate a score from the scores of edges
comprising the trees. The scores of edges are derived from training data.
First, a fully-connected, weighted, directed graph is generated, where nodes
represent words and edges represent head-dependent relations. Another root
node is added to the graph with edges leading to all the other nodes. Then
for each node, excluding the root, the edge with the highest score leading
to it is selected. If this yields a maximum spanning tree, then this is the
desired parse tree. If the result contains cycles, another algorithm must be
employed to resolve this. Integrations of graph-based and transition-based
parsers had also been implemented. Nivre and McDonald (2008)’s system is
based on letting one model generating features for the other to learn from,
and Zhang and Clark (2008)’s system uses a transition-based decoder for a
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combined system. Most recent systems are based on neural networks. State-
of-the art parsers will be further discussed in Section 2.3. In natural language
processing, dependency parsing is widely used, as seen in its downstream ap-
plications such as sentiment analysis (Wilson et al. (2005), Wu et al. (2009))
and question answering (Cui et al. (2005)).

2.2 Universal Dependencies

The Universal Dependencies (UD) project1 (De Marneffe et al. (2014)) is a
cross-linguistically consistent annotation system and treebanks for over 60
languages (as of version 2.1, released in November 2017, Nivre et al. (2017);
the next version, v2.2 will be released on 15 April 2018). It aims to provide
a universal inventory of categories and annotation guidelines while allowing
language-specific extensions. UD has evolved from Stanford Dependencies
(De Marneffe and Manning (2008)) by merging it with Google universal tags
(Petrov et al. (2011)), a revised subset of the Interset feature inventory (Ze-
man (2008)), and a revised version of the CoNLL-X format (Buchholz and
Marsi (2006)). It has two groups of core dependencies: the clausal relations
describe syntactic roles concerning the predicate, and the modifier relations
categorize the ways words modify their heads (Jurafsky and Martin (2018b)).
Table 2.1 presents a selected set of UD’s total of 42 relations.

The formalism follows a lexicalist approach for the sake of computational
use, but this gave rise to many difficulties which needed to be solved. One
example is the treatment of copulas. Copulas are treated as a dependent of
a lexical predicate. This analysis had been chosen because many languages
lack an overt copula in constructions like in Figure 2.5. Even English lacks
the overt copula in raising-to-object or small clause constructions, like in
Figure 2.6 (De Marneffe et al. (2014)).

De Marneffe et al. (2014) also argue that although compounds and mod-
ifications are strictly separated in a lexicalist approach, compounds cannot
be treated uniformly. There are three types of relations for compounds in
the UD formalism. mwe is used for fixed grammatical expressions (mwe(of,
instead)), name labels proper names of multiple elements and compound is
used for the remaining multiword expressions.

Prepositions and other case-marking elements are treated as a dependent
of the noun it introduces or is attached to, for the sake of a uniform analysis.

1http://universaldependencies.org/
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Clausal Argument Relations Description
nsubj Nominal subject
dobj Direct object
iobj Indirect object
ccomp Clausal complement
xcomp Open clausal complement
Nominal Modifier Relations Description
nmod Nominal modifier
amod Adjectival modifier
nummod Numeric modifier
appos Appositional modifier
det Determiner
case Prepositions, postpositions and other

case markers
Other Notable Relations Description
conj Conjunct
cc Coordinating conjunction

Table 2.1: Selected dependency relations from the UD set ((Jurafsky and
Martin, 2018b, p. 3)).
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Ivan is the best dancer

nsubj

cop

det

amod

Ivan lučšij tancor
Ivan best dancer

nsubj

amod

Figure 2.5: Dependency structure of the sentence ’Ivan is the best dancer’ in
English and Russian. Reproduced from (De Marneffe et al., 2014, p. 4586).

I judge Ivan the best dancer

nsubj dobj

xcomp

nsubj

det

amod

Figure 2.6: Dependency structure of the sentence ’I judge Ivan the best
dancer’. Reproduced from (De Marneffe et al., 2014, p. 4587).

In Figure 2.7, the case marker is depending on the object. In cases where
case markers are morphemes, such as in Figure 2.8, the morpheme, which is
responsible for the case marking, is not separated from the noun as a case
dependent. Instead, POS-tags are included in the representation to mark
case.

These solutions provide similar treatment to constructions of different
languages. For phenomena which appear only in a small subset of languages
and generalization is not possible, special language-specific subrelations had
been introduced.
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wkfraiti at hsrj
and when I saw ACC the movie

dobj

case

Figure 2.7: Dependency structure of the sentence ’And when I saw the movie’
in Hebrew. Reproduced from (De Marneffe et al., 2014, p. 4587).

Ya napisal pis’mo perom
I wrote the letter with a quill

nsubj dobj

nmod

nsubj (napisal/VERB, Ya/NOUN-NOM)
dobj (napisal/VERB, pis’mo/NOUN-ACC)

nmod(napisal/VERB, perom/NOUN-INSTR)

Figure 2.8: Dependency structure of the sentence ’I wrote the letter with a
quill’ in Russian. Reproduced from (De Marneffe et al., 2014, p. 4587).

2.3 An error analysis

In this section we shall present a manual error analysis of three state-of-the-
art dependency parsers. The results were presented at MSZNY2018 (Ács
and Recski (2018)).

2.3.1 Background

As a response to the heightened interest in UD and dependency parsing,
the 2017 edition of the Conference on Natural Language Learning (CoNLL)
organized a shared task on “Multilingual Parsing from Raw Text to Universal
Dependencies” Zeman et al. (2017). The training data – based on version
2.0 of the Universal Dependency dataset – consisted of 64 treebanks for 45
languages. Test treebanks contained at least 10,000 words for each language
in the training set and an additional 4 surprise languages.

33 research groups submitted solutions to the task, their systems were
ranked based on the macro-average of labeled attachment F-scores (LAS)
achieved on each language. LAS matches require that a dependency is as-
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Overall Hungarian
LAS CLAS UAS LAS CLAS UAS

UnstableParser (Stanford) 76.30 72.57 81.30 77.56 76.08 82.35
C2L2 (Cornell) 75.00 70.90 80.32 76.55 74.36 82.07
IMS (Stuttgart) 74.42 70.18 79.90 73.55 70.87 79.90

Table 2.2: LAS, CLAS and UAS scores of all three parsers

signed to the correct pair of tokens in a sentence and with the correct label.
In contrast, unlabeled attachment score (UAS) is more lenient in that it dis-
regards edge labels. A third metric commonly used to evaluate dependency
parsers is Content-word Labeled Attachment Score (CLAS), which only con-
siders relation between content words and not function words or punctuation.

In Section 2.4.3 we shall analyze errors made by the top three parsers in
the competition. The Stanford Dozat et al. (2017) and C2L2 (Cornell) Shi
et al. (2017) teams submitted neural parsers that use LSTMs for representing
input sentences; both of these systems leverage character-level representa-
tions to handle languages with rich morphologies. The Stuttgart IMS team’s
solution Björkelund et al. (2017) uses CRFs for POS/morphological tagging
and a neural tagger for predicting supertags. Overall scores and scores for
Hungarian data achieved by each of these three systems is presented in Ta-
ble 2.2. Note that the gap between these three systems and the next teams is
quite large so that Stanford, C2L2, and IMS are the top three systems based
on any of the metrics presented here, and in particular for the Hungarian
data.

2.3.2 Dependency parsing of Hungarian

The Hungarian section of the Universal Dependencies dataset has been cre-
ated using the Szeged Dependency Treebank Vincze et al. (2010), challenges
of the conversion process are described in Vincze et al. (2017). A manual
error analysis similar to ours has been performed on Hungarian data before:
Farkas et al. (2012) inspects 200 sentences from the output of Bohnet’s parser
Bohnet (2010) trained on the Szeged Dependency Treebank. A meaningful
comparison of our analysis and theirs is not possible due to the differences
between the two tasks: most error classes are specific to the respective an-
notation systems.
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UnstableParser C2L2 IMS
punct 43 punct 46 punct 44
cc 13 cc 17 cc 17
det 11 det 16 det 11
advmod 9 conj 6 advmod 11
amod 7 conj-nmod 5 amod 7
conj 7 cc-advmod 5 amod-conj 6

Table 2.3: Types of erroneous edges

2.3.3 Evaluation

We inspected manually the analyses given by each of the three parsers on
the first 50 sentences of the Hungarian test data. We grouped errors both by
the types of dependency relations they involved and by the types of errors,
i.e. the way in which the parsers misinterpreted the structure of a phrase, a
clause, or an entire sentence. The number of erroneous edges in each output
is similar in all three outputs: the Stanford data contained 208, C2L2 245,
and IMS 261. Table 2.3 lists the top errors by edge type.

As we shall also see when grouping errors by their possible cause, punctu-
ation is the single largest error class for each of the three systems. It has been
questioned whether edges in a dependency graph that connect punctuation
symbols to some word in the sentence are relevant to dependency structure,
in fact the UD community is currently experimenting with the CLAS score
as a means to disregard these edges when evaluating dependency parsers (Ze-
man et al., 2017, p.7). The cc relation is also ignored by CLAS scoring: it
is responsible for connecting conjuncts such as és (‘and’), de (‘but’), etc. to
some other word in the sentence.

Error types

We shall now describe the most common classes of errors, based on a close
observation of each misinterpreted sentence. Besides punctuation and con-
juncts we shall discuss 4 additional problem classes that are each responsible
for between 2 and 7% of all observed errors (see Table 2.4 for counts).

14



UnstableParser C2L2 IMS
punct, cc 59 63 61
root 9 (15) 9 (17) 10 (19)
conj 9 9 7
modifier POS 8 5 13
structural ambiguity 6 (8) 6 (8) 5 (7)

Table 2.4: Number of occurrences of each error type (number of edges af-
fected, if different)

Root elements

In nearly a fifth of all sentences observed, parsers assigned the root depen-
dency to the wrong word, i.e. they failed to identify the main predicate of the
sentence. These errors are worthy of attention not only because of their fre-
quency but because they are usually responsible for several further erroneous
edges – if the parser misses the main predicate, it is likely to miss relations
of each of its dependents. An example of this phenomenon is shown in Fig-
ures 2.9 and 2.10, which show the gold and erroneous dependency analyses
of the sentence in (1).

(1) –
–

Azért
Because

nem
not

lehetett
be-can-past

olyan
so

rossz
bad

közelről
near-del

élvezni
enjoy-inf

a
the

nehézsúly
heavy-weight

Lewis-Holyfield-csúcsrangadóját!
Lewis-Holyfield-faceoff-acc!

It can’t have been that bad, enjoying the Lewis-Holyfield faceoff from
so close!

Coordination

Another group of errors involves coordinating conjunctions. In UD, con-
junctions are treated asymmetrically: one of the coordinated elements is
considered the head of the conjunction and others are connected only to this
element (via the conj relation) but not to any other word in the sentence.
Parser errors occur when these non-head elements of a conjunction are also
connected to other words. These erroneous relations can be justified, since
they reflect dependencies that actually hold between some word and each
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Figure 2.9: Gold analysis of (1)

Figure 2.10: Incorrect analysis of (1) by the IMS parser
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Figure 2.11: Partial analysis of (2)

Figure 2.12: Partial analysis of (2) by both the C2L2 and the Stanford parser

element of a coordinated structure – nevertheless this treatment goes against
UD conventions. An example is shown in Figure 2.12, a partial analysis of
the sentence in (2).

(2) Ezek
these

is
too

leginkább
mainly

csak
just

a
the

januári
January-att

napokban,
day-pl-ine,

amikorra
when-subl

a
the

fa
tree

már
already

kiszáradt
dry-out-past

és
and

egy
a

csillagszóró
sparkler

is
too

lángba
flame-ine

boŕıthatja
cover-def

–
–

mondta
say-past

az
the

alezredes.
colonel.

But only in the days of January, when the tree is dry and a sparkler
might burn it down – said the colonel.

Modifiers

The UD relations nmod and amod represent the dependencies between a noun
and its nominal or adjectival modifier, respectively. Similarly, the advmod

relation connects adverbs to predicates or modifiers. A large portion of errors
were caused by parsers mixing the above three labels on edges that were
otherwise correctly identified, i.e. they connected the modifiers to the right
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az Y2K problémát
the Y2K problem-ACC

gold POS DET NOUN NOUN
gold dependency det nmod
IMS POS DET ADJ NOUN
IMS dependency det amod

Table 2.5: Gold and IMS analyses of a noun phrase

türelmetlenül újra tárcsáz
impatient-ESS again dial
‘dials again impatiently’

gold POS ADJ ADV VERB
gold dependency amod advmod
IMS POS ADJ ADV VERB
IMS dependency advmod advmod

Table 2.6: Gold and IMS analyses of a noun phrase

word. Since the distinction between nmod, amod, and advmod is based entirely
on the part-of-speech (POS) categories of dependents, one may expect that
each of these errors are direct results of POS-tagging mistakes. In fact, out
of 26 such errors in the three datasets (Stanford: 8, C2L2: 5, IMS: 13), only
14 (4, 2, 8) are in line with the above assumption: the output contains an
incorrect POS-tag for the modifier word and the dependency label reflects
the same mistake (an example is shown in Table 2.5). In the remaining 12
cases dependency labels were assigned incorrectly despite a correct POS-tag.
In 4 cases, however, 2 made by the Stanford system and 2 by IMS, one may
argue that the incorrect dependency labels are actually justified, while gold
labels are a result of annotators’ compliance with gold POS-tags that are
linguistically questionable. An example is shown in Table 2.6.

Structural ambiguity

The final error group involves sentences that are structurally ambiguous and
whose parses are consistent with a different constituent structure than the
one reflected by the gold dependency annotation. The ambiguous phrase
of one such sentence is shown in (3), with English paraphrases for both

18



Figure 2.13: Gold analysis of (3).

Figure 2.14: UnstableParser’s analysis of (3).

possible readings. The two dependency structures are shown in Figure 2.13
and Figure 2.14.

(3) a
the

Péterfy
Péterfy

kórház
hospital

sürgősségi
emergency

belgyógyászati
internal-medicine

és
and

klinikai
clinical

toxikológiai
toxicology

osztálya
department-poss

The department of emergency internal medicine and clinical toxicology
The emergency department of internal medicine and clinical toxicology
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2.3.4 Comparison

Farkas et al. (2012) includes an error analysis on the output of Bohnet’s
parser trained on Hungarian data from the Szeged Dependency Treebank.
Their method is similar to ours and involves manual inspection of 200 parser
errors on the news section of the Szeged dataset.

2.3.5 Conclusion

We have presented the results of manual error analysis of three dependency
parsers on a small sample of Hungarian data. We have identified several error
classes that are in some ways technical: those concerning punctuations and
conjuncts have little relevance to the dependency structure of content words
and underline the necessity of alternative evaluation metrics like CLAS, while
those involving coordinating conjunctions introduce edges that may be justi-
fiable and might challenge UD’s current treatment of coordination. Modifier
relations have brought to light errors in POS-tagging and some possible in-
consistencies in the gold standard data. Finally, we have seen examples of
structural ambiguity, which remains one of the most challenging problems
in syntactic analysis.we have presented the results of manual error analysis
of three dependency parsers on a small sample of Hungarian data. We have
identified several error classes that are in some ways technical: those con-
cerning punctuations and conjuncts have little relevance to the dependency
structure of content words and underline the necessity of alternative eval-
uation metrics like CLAS, while those involving coordinating conjunctions
introduce edges that may be justifiable and might challenge UD’s current
treatment of coordination. Modifier relations have brought to light errors
in POS-tagging and some possible inconsistencies in the gold standard data.
Finally, we have seen examples of structural ambiguity, which remains one
of the most challenging problems in syntactic analysis.
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Chapter 3

Semantic parsing

In this chapter we provide a literature overview of semantic parsing, which
means translating language to a formal representation of meaning. To intro-
duce some issues of semantic representation, Section 3.1 begins with a short
overview of Katz and Fodor’s The structure of a semantic theory, then we
describe some of the earliest graph-based models. Then in Section 3.2, we
continue with describing some earlier and some more contemporary systems
as well.

3.1 Theoretical background

Katz and Fodor (1963), in their paper The structure of a semantic theory,
describe what form a semantic theory should take to accurately show the
structure of the language. The main difficulty regarding its modeling is
referred to as the projection problem: speakers are able to produce and un-
derstand an infinite number of sentences, based on the finite number of rules
they know and the also finite number of sentences they have heard. They
argue that a semantic theory should accomplish this with the same accuracy,
using known elements and rules which combine them. It should detect non-
structural ambiguity, semantic relations within the sentence, semantically
anomalous sentences and also create paraphrases.

The authors conclude that the meaning must be somewhere else, not en-
tirely in the grammar, because: 1. two sentences can have the same grammar
descriptions even if they are different in meaning (The dog bit the man vs.
The cat bit the woman), 2. the grammar can be entirely different when their
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meaning is essentially the same (The dog bit the man vs. The man was
bitten by the dog).

In their view a theory cannot deal with discourse information, as it would
be required to take all the knowledge of the speakers into account. As dis-
course is out of the question and grammar is insufficient in itself, they argue
that a dictionary is needed. The entries of the dictionary consist of two main
parts. One is the grammatical part, which is essentially the part of speech
classification, and the other is the semantic part, which contain each of the
distinct senses of the lexical item as a given part of speech. The semantic
part also consists of two parts: semantic markers, which contain systematic
semantic relations and are enclosed in parentheses in Figure 3.1, and the
distinguishers, which are enclosed in brackets. The unenclosed element noun
is the grammatical marker.

bachelor

noun

(Human)

(Male)

[who has
never

married]

[young knight
serving under

the standard of
another king]

[who has the first or
lowest academic

degree]

(Animal)

(Male)

[young fur seal
when without a mate
during the breeding

time]

Figure 3.1: The structure of lexical items (Katz and Fodor (1963), page 186)

Speakers can understand senteces if some words are ambiguous in them.
This means that the dictionary in itself is also insufficient. The authors
state that there must be projection rules, which select the appropriate sense
of the given word. These rules require the lexicon to be structured as in
Figure 3.1. The projection rules amalgamate sets of paths dominated by a
grammatical marker, so it assigns a set of readings to the concatenation of
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the items until it reaches the highest mark (i.e. the sentence). Word meaning
representations also contain constraints and limitations on semantic contents
on certain paths of the representation.

Quillian (1969) is among the earliest to propose a graph-based model:
word meanings are represented as directed graphs of concepts which should
be learned automatically. He assumes that human memory works in a similar
way. This non-hierarchical structure consists of type and token nodes, which
are organized into planes and appear multiple times in each concept when
used in definitions. He discusses his theory through the architecture of a text
comprehender program, which will be further discussed in Section 3.2.1.

Woods (1975), unlike Quillian, does not propose a complete semantic net-
work, but argues about some problems about interpreting links in a network
to represent knowledge through them, and some possible solutions about the
issue. In his view, semantics can be seen in two inherently different ways.
A linguist should find that a sentence can mean multiple things while some
sentences mean nothing, and they can be translated to formal expressions.
On the other hand, a philosopher is looking for the meaning of the formal
expression, which is always true or false. Woods argues that these two ap-
proaches should be united in the semantic description of a natural language.
He states that semantics is the relation between things and the linguistic
expressions which denote them. These links connect fact together inside a
large representation, which should contain every representation which can be
linked to a sentence by a human. There must be an algorithm which retrieves
this representation from the original sentence.

The author’s reasoning is that a proposition’s every paraphrase cannot
be reduced to a canonical, standard form because in addition to defining
the nodes and the links, their meaning should also be specified. A seman-
tic network should also have attribute-value pairs where the attribute links
have an intensional node which is linked to predicates and facts. This way,
differences of intension and extension must be explicitly stated. Extension
is essentially a function (”what does it mean to be red”), but an intensional
representation is also necessary. However, the author admits that there are
some problems with this approach. It cannot treat quantifiers properly, also
a huge amount of elements must have an explicit meaning if the model aims
to represent general knowledge.

In reaction to Woods, Brachman (1977) argued about the nature of con-
cepts and stated that the uniformity of the notation is misleading in previous
works. In his paper titled What’s in a concept: structural foundations for
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semantic networks, he proposes a complicated structure of primitive links
which can specify the concept as a set of attribute definitions. In a seman-
tic model, such as Quillian’s, nodes represent objects, assertions, events and
classes of individuals. Those classes have subclasses, connected via the IS A
relation. The nodes for classes are called concept nodes. They contain the
information that Woods referred to as extension. Instance nodes represent
both the individuals and their supersets. A concept node and a value is con-
nected via a named link. Such a link names the relationship, and according
to Brachman, this is what should be called the concept. Properties should
be described by binary relations.

In Schank and Rieger III (1974)’s opinion,it’s important to differenti-
ate between the domains of parsing (extraction of information, implicit and
explicit) and inference (adding-on probably correct information) to under-
stand natural language. Schank’s theory of Conceptual Dependencies (CD)
contains six main conceptual categories which describe how dependencies
between them should be interpreted. The main categories are real world
objects, real world actions (Table 3.1), attributes of objects, attributes of
actions, times and locations. The four conceptual cases are OBJECTIVE,
RECIPIENT, DIRECTIVE and INSTRUMENTAL.

Conceptualizations are governed by syntactic rules. Tenses are consid-
ered to be the link between an object and its state, or modifications of the
main link between the actor and the action. CD also contains 14 language-
independent inferences. A system which operates based on this theory will
be further described in Section 3.2.2.

Sowa (1976)’s Conceptual Structures, which aim to provide a semantic
basis for natural languages, consist of concepts and relations between them.
Graphs are formed using rules which ensure that graphs can be translated
to well-formed logical formulae. In this formalism, the basic primitive is the
concept, which is represented by a box with a sort label. As concepts can
differ in terms of how general they are, the sort labels are ordered. The other
type of nodes is called conceptual relation, represented by a labeled circle.
A well-formed graph is shown in Figure 3.2.

Well-formed graphs are like well-formed sentences or logical formulae;
they don’t have to be true or describe a plausible event. Concept graphs are
mapped to predicate calculus. Constants or quantified variables are assigned
to each concept by the operator φ, as in Figure 3.3.

This structure, as the author argues, is an important step towards a
simpler user interface for computer applications.
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Name Description

ATRANS
the transfer of an abstract relationship, such as possession,
ownership and control

PTRANS the transfer of the physical location of an object

MTRANS
the transfer of mental information between animals
or within an animal

MBUILD
the construction of new information from old
information by an animal

CONC the conceptualizing or thinking about an idea by an animal
PROPEL the application of a physical force to an object
SMELL -
SPEAK -
LOOK-AT -
LISTEN-TO -
MOVE -
GRASP -
INGEST -
EXPEL -

Table 3.1: Schank’s 14 ACTs. Reproduced from (Schank and Rieger III,
1974, p. 17.).

As for more recent graph-based systems, AMR and 4lang will be discussed
in Section 3.2.3 and Section 3.2.4.

Although not a graph-based semantic model, we also mention WordNet
(Miller (1995)) which is a large lexical database. It contains more than 166,
000 word form and sense pairs. It supports the syntactic categories noun,
verb, adjective and adverb. The basic lexical relation is synonymy, as the
database uses sets of synonyms, also referred to as synsets, to represent word
senses. Other relations are antonymy, hyponymy, meronymy, troponymy and
entailment, as in Table 3.2. Version 3.0 contains 117,798 nouns, 11,529 verbs,
22,479 adjectives and 4,481 adverbs. The average verb has 2,16 senses, and
the average noun has 1,23 senses. (Jurafsky and Martin (2018a). Version 3.1
is currently available only for online search1. Figure 3.4 presents the lemma
entry for the noun and verb fox.

WordNet had been used for various tasks, for example detecting and

1http://wordnetweb.princeton.edu/perl/webwn
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NOUN RELATIONS
Relation Definition Example
Hypernym From concepts to superordinate breakfast1 → meal1

Hyponym From concepts to subtypes meal1 → lunch1

Instance Hypernym From instances to their concepts Austen1 → author1

Instance Hyponym From concepts to concept instances composer1 → Bach1

Member Meronym From groups to their members faculty2 → professor1

Member Holonym From members to their groups copilot1 → crew1

Part Meronym From wholes to parts table2 → leg3

Part Holonym From parts to wholes course7 → meal1

Substance Meronym From substances to their subparts water1 → oxygen1

Substance Holonym From parts of substances to wholes gin1 → martini1

Antonym Semantic opposition between lemmas leader1 ⇔ follower1

Derivationally Related
Form

Lemmas w/same morphological root destruction1 ⇔ destroy1

VERB RELATIONS
Hypernym From events to superordinate events fly9 → travel5

Troponym
From events to subordinate event
(often via specific manner)

walk1 → stroll1

Entails From events to the events they entail snore1 → sleep1

Antonym Semantic opposition between lemmas increase1 ⇔ decrease1

Derivationally Related Form Lemmas w/same morphological root destroy1 ⇔ destruction1

Table 3.2: Noun and verb relations in WordNet. (Jurafsky and Martin,
2018a, p. 7.)
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Figure 3.2: The representation of the phrase ’boy walking’. Reproduced from
(Sowa, 1976, p. 338.).

past((∃x)(∃y)(∃z)(cat(x) ∧ chase(y) ∧mouse(z) ∧ agnt(y, x) ∧ ptnt(y, z)))

Figure 3.3: The representation of the sentence ’A cat chased a mouse’. Re-
produced from (Sowa, 1992, p. 80.).

interpreting English puns (Miller et al. (2017)) and measuring word similarity
(Camacho-Collados et al. (2017)) in SemEval 2017 shared task.

3.2 Systems

This chapter describes some systems based on the models explained in the
previous chapter. In section 3.2.1 we provide an overview of Quillian’s teach-
able language comprehender, followed by Schank’s program which performs
inference tasks in Section 3.2.2. Then we describe some of the more con-
temporary systems, such as AMR systems in Section 3.2.3 and 4lang in Sec-
tion 3.2.4.

3.2.1 Quillian’s teachable language comprehender

Quillian (1969), in his paper titled The teachable language comprehender,
provides a complete model of language understanding through the architec-
ture of his program’s memory. The teachable language comprehender (TLC)
is able to understand written text, although a quite limited pool of it. TLC
requires a human overseer to provide factual information and form tests,
which mandate certain features to be present in the input (e.g. word or-
der, word ending, etc). To accomplish this, the human monitor must use a
language which is similar to a string manipulation language.
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NOUN
fox1 - alert carnivorous mammal with pointed muzzle and ears and a bushy
tail; most are predators that do not hunt in packs
fox2 - a shifty deceptive person; synonyms: dodger,slyboots
fox3 - the grey or reddish-brown fur of a fox
fox4 - Charles James Fox (English statesman who supported American
independence and the French Revolution (1749-1806))
fox5 - George Fox (English religious leader who founded the Society of
Friends (1624-1691))
fox6 - a member of an Algonquian people formerly living west of Lake
Michigan along the Fox River
fox7 - the Algonquian language of the Fox

VERB
fox1 - deceive somebody; synonyms: flim-flam, play a joke on, play tricks,
trick, fob, pull a fast one on, play a trick on
fox2 - be confusing or perplexing to; cause to be unable to think clearly; syn-
onyms: confuse, throw, befuddle, fuddle, bedevil, confound, discombobulate
fox3 - become discolored with, or as if with, mildew spots

Figure 3.4: A portion of the WordNet 3.1 entry for the noun and verb fox.
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The memory consists of two main parts: the units and the properties.
Units represent things that can be represented by a single word, a sentence
or a noun phrase in English. Properties specify predications, for example verb
phrases, relative clauses or modifiers. The words are located in a dictionary,
outside of the memory. The items’ more general forms (such as person for
client) are called the supersets of the items. In cases of words which cannot
be assigned to a more general concept, the NIL unit serves as their superset.
The words in the dictionary are connected to the units which describe its
meaning, in the memory, via pointers. The unit’s first item must be a pointer
to the superset, and it also contains pointers to the describing properties, as
in the example of Figure 3.5.

Figure 3.5: A piece of information in the memory. Reproduced from (Quil-
lian, 1969, p. 13.). Stars represent pointers.

With this structure, an infinite number of new units can be made (the ex-
isting one becomes the superset, it is linked to the new concept’s properties).
For example, there’s the unit Joe Smith, but if one wants to talk about him
when he was three years old, a new unit should be generated, whose superset
is the original Joe Smith and its property is his age.

Properties are attribute-value pairs, so prepositions and verbs and their
objects can be handled. In this memory structure, the intersections can
quickly be found via breadth-first search; it marks the already found units
with the concept (activation tagging): first it founds the nearest intersection,
later the further ones.
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To sum up how text comprehending happens: when it sees a new word, it
makes a new, empty unit for it, then looks for the candidates, which are the
possible senses of the word, and finally finds the correct properties. There are
three problems with this approach: 1. a word can have multiple meanings, 2.
how to compile the properties which describe the new concept, 3. references
should be also understood. The author solves them by adding a new empty
unit for every new word, with a list of pointers to the representations of
the possible meanings in the memory. Besides activation tagging, it uses
the aforementioned form tests, which contain syntactic information. For
example, for the phrase lawyer’s client, the form tests check whether the
word lawyer precedes the word client or the word lawyer has the ’s ending.

Ambiguity is handled with the help of superset intersections. Three types
of superset intersections exist: 1. the intersection of the superset-chain of
two properties 2. the intersection of two possible interpretation’s superset
chains 3. the intersection of superset chains of a property and a possible
interpretation. The latter gives relevant information regarding the meaning
of the text.

The data and the form tests are generalized in the memory, so if it under-
stands lawyer’s client, it can also understand woman’s client. From lawyer, it
reaches the concept person via professional, then it can find woman through
person. Form tests work similarly.

TLC can also comprehend more complex sentences. For example, while
dealing with the sentence lawyer’s young client, it cannot find relevant form
tests for lawyer’s young, so it stores the relevant properties (for example
EMPLOY), then in the next iteration it finds that young is connected to the
property AGE, and client (PERSON) has the AGE property, so they can be
connected. Finally it decides which word is the head with the help of form
tests.

3.2.2 Schank’s inference making program

Schank and Rieger III (1974)’s system was not designed to excel in text
comprehension, rather it aims to be an easily extendable and theoretically
accurate program. The theory of Conceptual Dependencies was briefly in-
troduced in Section 3.1.

The propositional information is stored in a list in the memory, in predicate-
conceptual slots pairs. The stored proposition is called a bond, it is stored
under a so-called superatom. This way propositions resemble simple con-
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cepts. Simple concepts are defined by an occurrence set, which is a set of
pointers to superatoms. The knowledge about a concept is essentially the
occurrence set, pointed to the propositions in the superatom.

Superatoms have other characteristics, such as STRENGTH, MODE,
TRUTH, REASONS, OFFSPRING and RECENCY. STRENGTH indicates
the credibility of the proposition, MODE contains its truth value, TRUTH
is used when the proposition is true at the present time, REASONS are the
superatoms used to infer the given proposition and OFFSPRING is the in-
verse of REASONS. Another function is RECENCY, which is shared with
simple concepts, and contains the value of the system clock.

Inferences, which are lambda-functions under predicates, have the same
structure. Pattern matching happens in these lambda-functions as the pro-
gram does the testing. Inferencing is done in breadth-first order.

In the example sentence John hit Mary, the conceptualization looks like
as in Figure 3.6. After the memory established the referents of each concept,
the conceptualization takes a shorter form, where C001 refers to John’s hand
in the memory and C002 stands for the time of the event. Next the memory
divides the conceptualization into subpropositions, as seen in Figure 3.7.
The causal relation (number 9) becomes the superatom. Inferences are made
based on inference patterns in the memory. For example, John has a movable
hand since he propelled his hand. Because John propelling his hand resulted
in physical contact with Mary, she must have been hurt.

3.2.3 AMR systems

AMR (Banarescu et al. (2013)) aims to be a simple representation intended
to represent any English sentences. AMRs are directed graphs which use
PropBank framesets. Proposition Bank is an annotated corpus of semantic
roles and focus on the argument structure of the verbs (Palmer et al. (2005)).
An example is shown in Figure 3.8.

The same AMR is used for sentences with the same meaning, regardless
its syntactic form. They are intended to use for deriving meanings from
strings and vice versa.

Nodes represent entities, properties, events or states. Leaves are labeled
with concepts, which are English words, PropBank framesets or keywords.
Keywords are special entity types, quantities or logical conjunctions. Re-
lations link entities. AMR uses approximately 100 relations (Banarescu
et al. (2013)) it can treat general semantic relations, co-reference, questions,

31



((CAUSE ((PROPEL C1: ((ISA #PERSON)(NAME ”JOHN”))
C2: ((ISA #HAND)(PART C1))
C1
C3: ((ISA #PERSON)(NAME ”MARY”))
))
(PHYSCONT C2 C3))
) (TIME C4:)(ISA #TIME)(BEFORE #NOW)))
)

((CAUSE ((8 PROPEL #JOHN #C001 #JOHN #MARY))
((PHYSCONT #C001 #MARY)))
(TIME #C002))

Figure 3.6: Conceptualization for the sentence ”John hit Mary”. (Schank
and Rieger III, 1974, p. 35.).

modals and negations. Relations also have their inverses.
However, AMR has many limitations. It doesn’t contain inflectional mor-

phology and articles, also it doesn’t have the universal quantifier. Words like
all modify their head concept. It does not distinguish between real or hy-
pothetical events, and cannot tell whether the event happens in the past,
present or future.

Flanigan et al. (2014)’s JAMR is the first approach for AMR parsing and
serves as a baseline for future works.

SemEval shared tasks

2016

Task 8 of SemEval 2016 shared task (May (2016)) required participants to
generate graphs for English sentences in the news and forum domain. As
training data, the corpus LDC2015E86 was made available, which contains
19,572 sentences and the corresponding 31,830 AMRs. For other resources,
see (May, 2016, p. 1064). The evaluation data contained 1,053 previously
unseen English sentences and AMR annotations. 11 systems were submitted
to the task. The results of the top three systems are shown in Table 3.3.

Brandeis/cemantix.org/RPI (Wang et al. (2016)) and RIGA (Barzdins
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1. JOHN PROPELLED SOMETHING
2. A HAND WAS PROPELLED
3. JOHN MOVED SOMETHING
4. A HAND WAS MOVED
5. A HAND IS PART OF JOHN
6. SOMETHING WAS PROPELLED FROM JOHN TO MARY
7. A HAND AND MARY WERE IN PHYSICAL CONTACT
8. JOHN PROPELLED HIS HAND
9. 8 CAUSED 7
10. IT WAS BEFORE ”NOW” THAT 1 - 9 OCCURRED

Figure 3.7: Subpropositions for the sentence ”John hit Mary”. (Schank and
Rieger III, 1974, p. 37.).

Frameset accept.01 “take willingly”
Arg0: Acceptor
Arg1: Thing accepted
Arg2: Accepted-from
Arg3: Attribute

Figure 3.8: The argument structure of the verb accept (Palmer et al., 2005,
p. 75.).

and Gosko (2016)) are based on Wang et al. (2015)’s CAMR, which was made
available to the participants as a strong baseline parser alongside JAMR. CU-
NLP (Foland and Martin (2016)) used recurrent neural networks.

The results and the relative lack of interest in participation led to the
conclusion that AMR parsing is a challenging task so the organizers decided
to conduct another competition in 2017.

2017

The SemEval 2017 shared task (May and Priyadarshi (2017)) had two sub-
tasks on AMR parsing: in the parsing subtask, participants had to generate
AMR graphs for English sentences of biomedical domain, and in the genera-
tion subtask participants were asked to produce English sentences from AMR
graphs in the news/forum domain. For training the systems, the Bio-AMR
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Figure 3.9: Representing the meaning of “The boy wants to go”(Banarescu
et al. (2013), page 179).

Full AMR Instances Attributes Relations
RIGA 0.6196 0.7298 0.6288 0.5507
Brandeis/cemantix.org/RPI 0.6195 0.7433 0.6043 0.5494
CU-NLP 0.6060 0.7338 0.6141 0.5323

Table 3.3: The best three systems of the 2016 shared task

v0.8 and LDC2016E25 datasets were made available. The Bio-AMR v0.8
contains 6,452 AMR annotations of sentences from cancer-related papers,
and LDC2016E25 contains 39,260 sentences and the corresponding 51,402
AMRS. For the additional resources available, see ((May and Priyadarshi,
2017, p. 537.)).

In the parsing subtask, 5 teams participated, one of them submitted two
systems. The team The Meaning Factory (van Noord and Bos (2017)) ’s
TMF-1 is a character-level sequence-to-sequence deep learning model, while
TMF-2 is based on CAMR (Wang et al. (2016)). UIT-DANGNT-CLNLP
submitted two wrapper layers for CAMR (Nguyen and Nguyen (2017)). Ox-
ford implemented a neural encoder-decoder (Buys and Blunsom (2017)) and
RIGOTRIO submitted their parser from the 2016 task (Gruzitis et al. (2017))
after implementing extensions for this task. CMU used their system of 2016
(Flanigan et al. (2016a)) and refused to submit a new system description
paper. The results are presented in Table 3.4.

In Table 3.4, ’Unlabeled’ indicates that all argument labels were replaced
with a single general label. In ’No WSD’, the PropBank frames which in-
dicate different senses, are conflated. For ’NER’, only named entities are
scored, and ’Wiki’ means that only wikifications are scored. ’Negation’ means
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Smatch Unlab. No WSD NER Wiki
TMF-1 0.46 0.5 0.46 0.51 0.46
TMF-2 0.58 0.63 0.58 0.58 0.4
UIT-DANGNT-CLNLP 0.61 0.65 0.61 0.66 0.35
Oxford 0.59 0.63 0.59 0.66 0.18
CMU 0.44 0.47 0.44 0.48 0.59
RIGOTRIO 0.54 0.59 0.54 0.46 0

Smatch Neg. Concepts Reent. SRL
TMF-1 0.46 0 0.63 0.29 0.43
TMF-2 0.58 0.24 0.76 0.35 0.54
UIT-DANGNT-CLNLP 0.61 0.24 0.78 0.37 0.56
Oxford 0.59 0.27 0.74 0.43 0.57
CMU 0.44 0.33 0.65 0.27 0.41
RIGOTRIO 0.54 0.31 0.71 0.34 0.51

Table 3.4: Main parsing results: For Smatch (Cai and Knight (2013)), a
mean of ten runs with ten restarts per run is shown; standard deviation was
about 0.0003 per system. For the remaining ablations, a single run was used
(May and Priyadarshi (2017) page 539.)

that only concepts with an outgoing polarity are scored, while in ’Concepts’
relations are omitted. In ’Reentrancies’, only concepts with at least two in-
coming relations are scored. Finally, ’Semantic Role Labeling’ (SRL) means
that only relations corresponding to PropBank are scored.

4 teams submitted their systems for the generation subtask. The system
CMU was the same as the year before (Flanigan et al. (2016b)),Sheffield
inverted previous work on transition-based parsers (Lampouras and Vlachos
(2017)), RIGOTRIO uses transformation-based rules for 10% of the AMRs,
the remaining were converted to text using the JAMR tool. FORGe (Mille
et al. (2017)) used rule-based graph-transducers, and ISI is an extension of
Pourdamghani et al. (2016). Evaluation results are presented in Table 3.5.

Beside BLEU, three other metrics were used for evaluation. Win + tie
percentage indicate the sum of better pairwise comparisons and equal com-
parisons. Win considers ties as loses, and TrueSkill (Sakaguchi et al. (2014)),
which is a metric for player rankings of videogame competitions rewards
unexpected events more than expected ones.

The fact that so few teams participated in the task indicates that AMR
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Win Win + Tie Trueskill BLEU
RIGOTRIO 54.91 81.49 1.07 18.82
CMU 50.36 72.48 0.85 19.01
FORGe 43.64 57.43 0.45 4.74
ISI 26.05 38.39 -1.19 10.92
Sheffield 8.38 21.16 -2.20 3.32

Table 3.5: Main generation results (May and Priyadarshi (2017), page 542)

parsing still counts as a very challenging task. Although parsing of biomed-
ical domain seemed more difficult, the results are no worse than the other
subtask’s. The best teams used the same technology that dominated the
2016 task.

3.2.4 4lang

4lang is a formalism which builds directed graphs for semantic representation.
In such graphs, nodes stand for concepts, which do not have any grammatical
attributes, and contains shared knowledge of competent speakers. These can
be connected via three types of edges, namely 0, 1 and 2 (Kornai et al.

(2015). 0-edge represents attribution (apple
0−→ delicious ), the IS A relation

(emu
0−→ bird) and unary predication (cat

0−→ meow). 1 and 2-edges connect

binary predicates to their arguments (John
1←− buy

2−→ book). The most
common binaries can be found in Table 3.6.

The 4lang library2 contains tools for building directed graphs from raw
text (text to 4lang) and dictionary definitions (dict to 4lang). The core mod-
ule of the 4lang library, dep to 4lang obtains dependency relations from text
by processing the output of the Stanford parser (DeMarneffe et al. (2006)).
A mapping was created manually from Stanford dependencies (De Marn-
effe and Manning (2008)) to subgraphs of nine possible graph configurations
(Table 3.7). We present the reimplementation of this mapping with several
modifications and enhancements in Section 4.4.

4lang is also a name of a manually created concept dictionary (Kornai
and Makrai (2013)) which contains more than 2000 definitions of language-
independent concepts. Definitions are generic and contain only the core
information (except true homonyms), so they are suitable for all possible

2https://github.com/kornai/4lang
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HAS shirt
1←− HAS

2−→ collar

IN letter
1←− IN

2−→ envelope

AT move
1←− AT

2−→ way

CAUSE humor
1←− CAUSE

2−→ laugh

INSTRUMENT sew
1←− INSTRUMENT

2−→ needle

PART OF leaf
1←− PART OF

2−→ plant

ON smile
1←− ON

2−→ face

ER slow
1←− ER

2−→ speed

FOLLOW Friday
1←− FOLLOW

2−→ Thursday

MAKE bee
1←− MAKE

2−→ honey

Table 3.6: Most common binaries in the 4lang dictionary (Recski, 2018, p.
4.).

uses of the given word. 4lang gets its name for the fact that its concepts are
mapped in four languages (Hungarian, English, Latin, Polish).
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Dependency Edge

amod

w1
0−→ w2

advmod
npadvmod
acomp
dep
num
prt

nsubj

w1

1
⇀↽
0
w2

csubj
xsubj
agent

dobj

w1
2−→ w2

pobj
nsubjpass
csubjpass
pcomp
xcomp

appos w1

0
⇀↽
0
w2

poss
w2

1←− HAS
2−→ w1prep of

tmod w1
1←− AT

2−→ w2

prep with w1
1←− INSTRUMENT

2−→ w2

prep without w1
1←− LACK

2−→ w2

prep P w1
1←− P

2−→ w2

Table 3.7: Mapping from Stanford dependency relations to 4lang subgraphs
(Recski, 2018, p. 12.).
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Chapter 4

Parsing with IRTGs

Many graph formalisms were discussed in the previous chapters, such as
graph-based dependency parsing, AMR and 4lang. As these formalisms use
graph transformations, the task of semantic parsing can be viewed as a graph
transformation problem. This chapter explains s-graphs and the use of in-
terpreted regular tree grammars (IRTG) for implementing graph transfor-
mations. Section 4.1 provides a description of IRTGs in general, followed by
Section 4.2 which describe the Algebraic Language Toolkit (Alto). Then we
present our reimplementation and extension of the dep to 4lang functional-
ity. Our system contains several enhancements, such as UD-conformity and
the treatment of the UD relation case.

4.1 IRTGs and s-graphs

In his paper titled Semantic construction with graph grammars, Koller (2015)
discusses interpreted regular tree grammars (IRTGs). The grammar consists
of rewrite rules embedded within operations of one or more algebras. Thus,
when a rule gets applied on one algebra, the corresponding operations are
executed on objects in each algebra. When processing rules, first a derivation
tree is built using regular tree grammars (RTGs), which are for replacing
nonterminals with the use of production rules, as in Figure 4.1. Formally,
a grammar like this is a structure G = (N,Σ, P, S), where N is a signature
of nonterminal symbols, Σ is a signature of terminal symbols, S ∈ N is
a distinguished start symbol, and P is a finite set of productions of the
form B → t, where B is a nonterminal symbol, and t ∈ TN∪Σ (Gécseg
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RTG rule homomorphisms

S ->r1(NP,VP)
1: x1 • x2

2: x1 • x2

VP ->r2(V, NP)
1: x1 • x2

2: x2 • x1

NP ->r3
1: John
2: Hans

NP ->r4
1: the box
2: die Kiste

NP ->r5
1: opens
2: öffnet

Figure 4.1: An IRTG with an example derivation (Koller (2015), page 4)

and Steinby (1997)). After the tree is built, it is interpreted as a tuple
(a1, ..., ak) ∈ A1 × ... × Ak of elements from the algebras A1, ..., Ak. The
derivation of elements is done by mapping. The derivation tree (t) is mapped
to a term using tree homomorphism function (h). It expands rules from the
initial set of trees to the others. Then the term is evaluated over the algebra.
In the example of Figure 4.1, homomorphisms are string concatenations,
corresponding to RTG rules.

An algebra that has been previously used for semantic parsing is the s-
graph algebra or HR algebra (Courcelle (1993), mentioned in Koller (2015)).
An s-graph grammar is an IRTG where at least one algebra is the s-graph
grammar (Groschwitz et al. (2015)). An s-graph’s nodes may be marked
with a set of source names from a fixed finite set. Intuitively, source names
identify nodes that should be merged when subgraphs are merged by algebra
operations. Sources of the graph are the nodes which carry source names.
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Figure 4.2: S-graph examples (Koller (2015), page 5)

An s-graph can consist of a single node which is the root source. The s-
graph algebra defines three operations for combining graphs: rename, forget
and merge. The result of the rename operation is a graph which is like
the original except given source names have been changed to another source
name. Forget results in a graph which is like the original except a given
source name is removed from all source nodes with that name. Any other
source names are retained. Merge returns a graph that contains all the nodes
and edges of its operands such that nodes with the same source names are
mapped to the same nodes in the result, having all the adjacent edges of these
original nodes. The process of combining subgraphs together will be further
discussed in Section 4.2. Two subgraphs cannot be merged if they share
the same edges. A graph parser needs to handle extensible subgraphs only.
A subgraph is extensible if there is another subgraph such that by merging
these two subgraphs the result is a graph that contains all the edges in the
base graph. For a more formal explanation of the HR algebra discussed in
this section, see Koller and Kuhlmann (2011).

In semantic applications, e.g. Koller (2015), source names correspond
to the semantic argument positions of the given grammar. An example of
its use for semantic representation is shown in Figure 4.2. The argument
structure of the verbs is represented as follows: the word itself is the root

source node, which indicates the starting point of the representation. The
other nodes are, in the case of the verb want, the subj and vcomp-sources,
respectively. The root sources of the arguments will be inserted there, as
seen in Figure 4.3.

Other formalisms can also be used for manipulating graphs. Chiang et al.
(2013) discusses parsing with hyperedge replacement grammars (HRGs).
HRG is also a context-free rewriting formalism. Koller (2015) points out
some differences between IRTGs and HRGs. HRGs are used for manipu-
lating hypergraphs. Such graphs may contain hyperedges with an arbitrary
number of endpoints, which are labeled with nonterminal symbols. Rule
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Figure 4.3: S-graphs of Figure 4.2 combined (Koller (2015), page 6)

applications replace a hyperedge with the graph on the right side, thus the
endpoints of the nonterminal hyperedge become the external nodes (Koller
(2015)) of the graph. A main difference between the two formalisms is that
HRG rules build graphs in a top-down way, while IRTGs work with a bottom-
up approach, using simple graph-combining operations and also they name
the semantic argument positions, unlike HRGs.

4.2 Alto

The Algebraic Language Toolkit, or Alto1 (Gontrum et al. (2017)) is an
open-source parser for IRTGs discussed in Section 4.1. It is able to express
a variety of algorithms generically as operations on tree grammar.

When constructing a grammar file for Alto, one must specify the inter-
pretations. The interpretation consists of an algebra and a mapping from
tree nodes to terms and variables. In the example case of interpretation

graph: de.up.ling.irtg.algebra.graph.GraphAlgebra, a graph alge-
bra is specified.

As discussed in Section 4.1, the HR grammar uses the operations merge,
rename and forget for combining subgraphs. A basic rule from our grammar
can be seen in Figure 4.4. nsubj is the name of the abstract operation. In
the first line, RTG rule X → nsubj(X,X) is interpreted as two subgraphs
which we intend to merge with the base graph A: "(g<gov> :1 (d<dep> :0

g))". Initially, the first subgraph X is merged to the base graph, by renaming
the root source node of it to gov. Then the second subgraph X is merged, its
root is renamed to dep. After merging the subgraphs together, the label dep
is forgotten, as it becomes an internal node and later rules won’t refer to it.
The final step is to rename the gov node to root. The process is illustrated
on Figure 4.5. Figure 4.6 illustrates this further on the sentence ’John loves

1https://bitbucket.org/tclup/alto
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X -> _nsubj(X, X)

[graph] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :nsubj (d<dep>))"),

r_dep(?2)

)

)

)

[fourlang] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :1 (d<dep> :0 g))"),

r_dep(?2)

)

)

)

Figure 4.4: An example from our grammar, illustrating the operations of the
HR algebra. The grammar is discussed further in Section 4.4.

Mary’.

4.3 Alto for AMRs

The authors of Groschwitz et al. (2015) evaluated their system (i. e. Alto)
on version 1.4 of the ”Little Prince” AMR-bank2. It consists of 1562 man-
ually annotated sentences. Their experiments evaluated parsing times on
the same dataset. First they tested a top-down and a bottom-up algorithm.
The bottom-up algorithm outperformed the top-down approach as the latter
spent more time analyzing ungrammatical graphs, and needed to be aborted
after the runtime grew too large. Then the authors compared their system to
Bolinas (Andreas et al. (2013)), a bottom-up graph parsing system based on
Chiang et al. (2013) ’s algorithm for HRG. Alto outperformed the previously

2amr.isi.edu
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Figure 4.5: The state of the three subgraphs before and after executing the
operations of Figure 4.4.

state of the art Bolinas by several orders of magnitude.
Koller (2015) illustrates the treatment of complements using the grammar

of Table 4.1. For representing the sentence The boy sleeps, a derivation tree is
generated. The homomorphism hs projects the tree to the term hs(t), which
will result in the string the boy sleeps in the string algebra. Simultaneously,
the other homomorphism, hg projects the derivation tree to hg(t), which
creates the s-graph on Figure 4.7. The same grammar is also able to analyze
sentences with control verbs. For deriving the sentence The boy wants to sleep
(Figure 4.8), the rule for sleep must be used as the VP argument of want 1.
Before merging G1 and G3, the root source must be renamed to vcomp, so
that argument position can be filled. G3’s subj source is not renamed, so the
merge operation can fuse the subj-arguments of sleep and wants, resulting
the s-graph of Figure 4.8. Raising verbs (wants in the example) can also
be handled by this grammar. The rule passes its grammatical object to its
complement, where subj is renamed to obj, so the object will fill the role of
the subject.

Koller (2015) also explains modification. AMR models modification as
follows: the modification edges point from the modifier to the modifiee. An
s-graph grammar can represent it by merging root-sources without renaming
them beforehand. In the grammar of Table 4.9, the author uses shorthand
notations for basic s-graphs. For example, the rule for coord merges its re-
named arguments with a three-noded s-graph. One node is a root-source
and the other two are unlabeled nodes for the source names 1 and 2. This
graph is abbreviated as Gcoord. Similar notations refer to similar graphs in
the rules of snores and sometimes. The derivation can be seen in Figure 4.9.
The meaning of the relative clause is represented by the subtree starting at
rc. It combines the s-graph for the relative pronoun, which is a single unla-
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RTG rule homomorphisms

S → comb subj(NP, VP)
s: x1 • x2
g: f subj (x2||x1[subj])

VP → sleep
s: sleep
g: G3

NP → boy
s: the boy
g: G2

VP → want 1(VP)
s: wants to •x1
g: f vcomp(G1||x1[vcomp])

VP → want 2(NP, VP)
s: wants •x1 • to • x2
g: f vcomp(G1||Fobj(x1[obj]||x2[subj → obj, root→ vcomp]))

Table 4.1: An s-graph grammar that illustrates complements (Koller (2015),
page 6)

Figure 4.7: A derivation for “the boy sleeps”, using the grammar in Table 4.1
(Koller (2015), page 7)
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Figure 4.8: A derivation of “the boy wants to sleep”, using the grammar in
Table 4.1 (Koller (2015), page 7)

RTG rule homomorphisms

NP → nmod rc(NP, RC)
s: x1 • x2
g: x1||x2

RC → rc(RP, VP)
s: x1 • x2
g: (froot(x2||x1[subj]))[subj → root]

RP → who
s: who
g: <root>

VP → coord(VP, VP)
s: x1 • and • x2
g: f1, 2((< 1 >← and < root >→< 2 >)||x1[1]||x2[2])

VP rightarrow sometimes(VP)
s: sometimes •x1
g: (<root> ← sometimes||x1

VP → snore
s: snores
g: snore<root> →< subj >

Table 4.2: An s-graph grammar featuring modification (Koller (2015), page
8)
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Figure 4.9: A derivation for “the boy who sleeps snores” using the grammar
in Table 4.2 (Koller (2015), page 8)
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beled node, with the subgraph for sleep. The relative pronoun’s root node is
renamed to subj. Merging happens without forgetting the root source and
designating a new one. The grammar handles the s-graphs for adjuncts as
they have a root-source which represents the place for inserting the modi-
fiee. To summarize, complements and adjuncts are treated differently in the
AMR-Bank. For combining a head with its complements, the roots of the
complements will be renamed to their argument positions, then the argu-
ment names are forgotten, as the complements have been filled. Adjuncts,
on the other hand, can be combined to their head with simply merging them,
renaming and forgetting is not needed.

4.4 Mapping UD dependencies to 4lang graphs

In this section we present an IRTG which reimplements dep to 4lang func-
tionality, extends it to support UD, and some additional phenomena, such as
the UD relation case. Most of the mapping simply upgrades the previously
existing edges for Stanford Dependencies to Universal Dependencies, but sev-
eral modifications and enhancements also had been made. These issues are
discussed in Section 4.4.2. The grammar file is available on GitHub.3

There is a significant amount of overlap between Stanford Dependencies
and Universal Dependencies, but they differ, for example, in the following:
prepositional modifiers are replaced with case, and the passive dependencies,
such as nsubjpass are now treated as subtypes. Table 4.3 presents the UD-
conform version of 4lang rules.

4.4.1 Basic edge types

The majority of the rules simply replace the name of the dependency relation
to a 4lang edge. As mentioned in Section 3.2.4, 0-edges denote attribution,
predication and the IS A relation. 1 and 2-edges connect arguments to a
binary predicate. A simple rule like Figure 4.10 had already been explained
in details in Section 4.2. Simply said, two subgraphs (the two Xs in the
parentheses in the first line) are merged with an initial subgraph between the
quotation marks. Rules for 2-edges are constructed in a very similar fashion,
the dependency name is simply replaced by the label 2. Figure 4.11 shows

3https://github.com/kornai/4lang/blob/master/exp/alto/ud/en_ud_bi.irtg
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Dependency Edge

advcl w1
0−→ w2

advmod
amod
nmod
nummod

appos w1

0
⇀↽
0
w2

dislocated

csubj w1

1
⇀↽
0
w2

nsubj

ccomp w1
2−→ w2

obj
xcomp

Table 4.3: UD-conform version of the mapping of Table 3.7.

the IRTG rule for the w1

0
⇀↽
0
w2 edge type. w1

1
⇀↽
0
w2 edges are implemented

similarly.

4.4.2 The case relation

UD uses the relation case for three different purposes. As mentioned before,
prepositional modifiers of SD were replaced with the relation case in UD.
Thus, all these phenomena should have the same edge configuration in 4lang
as prepositional modifiers.

The first configuration, case in conjunction with obl, provides an anal-
ysis for constructions like in Figure 4.12. The corresponding 4lang graph is
represented in Figure 4.13. Figure 4.14 presents the IRTG rule. The RTG
rule

X -> _obl_case(X, X, X)

specifies three subgraphs to be merged into the initial graph "(g<gov> :obl

(d1<dep1> :case (d2<dep2>)))". Initially, the first subgraph’s root node
is renamed to gov, and merged into the central graph. Then the second
subgraph’s root is renamed to dep1, and merged. The third subgraph’s

50



X -> _nummod(X, X)

[graph] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :nummod (d<dep>))"),

r_dep(?2)

)

)

)

[fourlang] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :is_a (d<dep>))"),

r_dep(?2)

)

)

)

Figure 4.10: An example for w1
0−→ w2 -edges from our grammar.
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X -> _appos(X, X)

[graph] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :appos(d<dep>))"),

r_dep(?2)

)

)

)

[fourlang] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :0 (d<dep> :0 g))"),

r_dep(?2)

)

)

)

Figure 4.11: An example for w1

0
⇀↽
0
w2 -edges from our grammar.
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root is then renamed to dep2 and also merged. After these steps, the labels
dep1 and dep2 are forgotten, and as a final step, gov is renamed to root.

give the toys to the children
V P V

obl

case

Figure 4.12: Treatment of case with the oblique nominal. Source:
http://universaldependencies.org/u/dep/obl.html.

Figure 4.13: 4lang representations of case in conjunction with obl.

In the second configuration, case and nmod stand together, as in Fig-
ure 4.15. This requires the exact same treatment described above. Fig-
ure 4.16 provides an example of the third configuration, nsubj and case.
Although its dependency graph is structured differently, the 4lang graph is
the same as in the previous configurations. As the relation case never ap-
pears without one of these three other dependents, it is unnecessary to specify
a rule for case alone. However, obl, nmod and nsubj appear without case.
For such occurrences a rule is specified for each of them. The presence of
case forces the rules discussed to be applied when necessary.

4.4.3 Some other issues

As in the previous dep to 4lang mapping, we ignore technical relations such
as orphan, goeswith and reparandum. iobj should be treated in the defi-
nitions. Our system doesn’t currently handle purely grammatical functions,
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X -> _obl_case(X, X, X)

[graph] r_gov_root(

f_dep2(

f_dep1(

merge(

merge(

merge(

r_gov(?1),

"(g<gov> :obl (d1<dep1> :case (d2<dep2>)))"

), r_dep1(?2)

),

r_dep2(?3)

)

)

)

)

[fourlang] r_gov_root(

f_dep2(

f_dep1(

merge(

merge(

merge(

r_gov(?1),

"(d2<dep2> :1 (g<gov>) :2 (d1<dep1>))"

),

r_dep1(?2)

),

r_dep2(?3)

)

)

)

)

Figure 4.14: Rule for case with the oblique nominal.
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the office of the Chair

nmod

case

the Chair ’s office

case

nmod

Figure 4.15: Treatment of case with the nominal modifier. Source: univer-
saldependencies.org/u/dep/case.html.

Sue is in shape

nsubj

case

Figure 4.16: Treatment of case with the nominal subject. Source:
http://universaldependencies.org/u/dep/case.html.

such as vocative, expl, aux etc. as well as the relations compound and
parataxis.

Noun-noun compounds are notably difficult semantic phenomena. Kiparsky
et al. (1982) notes, cited by Kornai (2018), that ropeladder means a ladder
made of rope, manslaughter is slaughter undergone by man, and testtube de-
notes a tube used for test. The relation parataxis connects two syntactically
independent clauses, so it is unclear whether we need to connect them via
4lang edges. Another use is shown in Figure 4.17, which presents an exam-
ple where two standalone sentences are connected to a single sentence. In
this case, as the words world and CIA refer to the same entity, it could be

treated in 4lang graphs as the relation appos: w1

0
⇀↽
0
w2. Figure 4.18 shows

a reported speech example. 4lang graphs should assign this type to the edge

type w1

1
⇀↽
0
w2. Since the dependency structure does not differentiate between

these two cases, our system cannot do so.
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Divided world the CIA

amod

parataxis

det

Figure 4.17: Dependency structure of the sentence ’Divided world the CIA’.
Source: http://universaldependencies.org/u/dep/parataxis.html.

The guy , John said , left early in the morning

punct

punct

parataxis

Figure 4.18: Dependency structure of the sentence ’The
guy, John said, left early in the morning’. Source:
http://universaldependencies.org/u/dep/parataxis.html

4.4.4 Subtypes for English

As mentioned before, SD’s passive dependencies are handled as language-
specific subtypes in UD. Table 4.4 presents the treatment of subtypes for
English. obl:npmod is used in constructions like middle-aged. Syntactically,
this relation is an argument of a verb, but regarding its function, it is a

nominal modifier, so it is treated as w1
0−→ w2. When the nominal modifier and

the oblique nominal specifies time, it is labeled as nmod:tmod and obl:tmod,
respectively. We adopted the 4lang representation of SD’s relation tmod:

w1
1←− AT

2−→ w2. nmod:poss is present in constructions like the cat’s owner.

The 4lang representation of SD’s relation poss, w2
1←− HAS

2−→ w1, had been
adopted for such cases. Figure 4.19 gives an example IRTG rule for handling
these types of configurations.
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Dependency Edge

obl:npmod w1
0−→ w2

nmod:tmod w1
1←− AT

2−→ w2

obl:tmod

nmod:poss w2
1←− HAS

2−→ w1

Table 4.4: Mapping of the language-specific subtypes of English to 4lang
subgraphs

X -> _nummod(X, X)

[graph] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(g<gov> :nmod_tmod (d<dep>))"),

r_dep(?2)

)

)

)

[fourlang] r_gov_root(

f_dep(

merge(

merge(r_gov(?1), "(AT / AT :2 (d<dep>) :1 (g<gov>))"),

r_dep(?2)

)

)

)

Figure 4.19: The treatment of nmod tmod.
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Chapter 5

Conclusion and future work

In this work an IRTG was presented which reimplements and extends dep to
4lang functionality. We have mapped the previously existing edges for Stan-

ford Dependencies to Universal Dependencies, also the following extensions
and enhancements have been made: 1. UD-conformity, 2. handling of the
UD relation case. In the UD formalism, case is used for three different
purposes. Correspondingly, the rules obl case, nmod case and nsubj case

have been implemented.
As for ongoing work, we are currently working on dep to AMR, which

maps UD dependencies to AMR graphs. We aim to develop a system which
is capable of UD-4lang-AMR conversion. In the future we plan to implement
a parallel interpretation of constituents, dependencies and semantics, as the
patterns which maps constituency trees to dependency graphs in dependency
parsers can be implemented as IRTGs. In such a system, surface-meaning
correspondences could be encoded explicitly.
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64



Lertpradit, S., Leung, H., Li, C. Y., Li, J., Li, K., Ljubešić, N., Logi-
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Puolakainen, T., Pyysalo, S., Rademaker, A., Ramasamy, L., Rama, T.,
Ravishankar, V., Real, L., Reddy, S., Rehm, G., Rinaldi, L., Rituma, L.,
Romanenko, M., Rosa, R., Rovati, D., Sagot, B., Saleh, S., Samardžić,
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