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INTRODUCTION
In distributional semantics we derive the embed-
ding from a corpus, and the corpus is just a sample
from the entire distribution. We analyze the noise
of the obtained vectors and other sources of noise,
and how much the considerations of compositional-
ity discussed in [4] are affected by noise.

‘GF’ CORPUS
To study stems and inflections separately, in labora-
tory pure form, we took a large corpus of a highly
agglutinative language, Hungarian, and by morpho-
logical analysis produced a de-glutinized version
where the stem and the paradigmatic suffixes are
separated by a whitespace the same way two words
would. Perhaps inevitably, this became known as
the gluten free corpus of Hungarian.

az emberi méltóságért és békéért
a emberi méltóság CAU és béke CAU

folytatott harccal
folytat[PERF_PART] harc INS

Clusters of similar words naturally appear. Re-
markably, postpositions such as alatt cluster not
just with other postpositions but also with case end-
ings: the nearest neighbors are the terminative, ines-
sive, superssive cases, the postposition után ‘after’,
the adessive case, the postposition között ‘between’,
followed by the illative and sublative cases.

COMPOSITIONALITY
In [4] we used the compositional mechanism of
Context Vector Grammars [6] to demonstrate that
grammatical formatives such as the deadjectival
adverb-forming suffix -ly or the comparative -er
must contribute additively to the representations, so
that e.g.

~bigger − ~big + ~small ≈ ~smaller. (1)

The fact that embeddings perform well in ‘gram-
matical’ GA tasks such as gram3-comparative
or gram1-adjective-to-adverb suggests
that there exists e.g. a morpheme vector ~ER for
comparative. With the GF embedding, such mor-
phemes are part of the vocabulary and vectors are
explicitly learned for them; (1) thus becomes the ex-
act (and trivial) equation

( ~big+ ~ER)− ~big+ ~small = ( ~small+ ~ER). (2)

LINEAR STRUCTURE
The POS clusters of GF Hungarian corpus, projected into two dimensions. The two figures correspond to the
even and odd cut of the text.

HIGH DIMENSIONAL CONES
In d dimensions, the unit ball has surface area
2πd/2/Γ(d/2). If we equally divide this area among
n cones, each peaking at the origin and having half
angle θ, the surface area cut out by one cone is equal
to 1/nth of the total surface:
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In the usual case when n ∼ 105, d = 300, this
gives us a noise cone of about 0.25. In practice,
the winners in analogy task lookups often display
cosine similarities in the 0.4–0.5 range, well above
the noise level.

NOISE EFFECTS
We took a standard English corpus, the UMBC
Webbase [3], and a new Hungarian corpus of com-
parable size. We cut UMBC in two roughly equal
parts in two ways: even-odd cut and begin-end cut.
The Google analogy task (GA) was used to measure
the quality of the linear structure.
We also trained the GloVe [5] vectors on a morpho-
logically analyzed Hungarian corpus where the stem
was treated as separate from the suffix (see ‘GF’).
After running separately GloVe on the odd and the
even parts, we compared the cosine similarities of
the vectors in the two embeddings by five different
methods, and we repeated the experiment compar-
ing the beginning and end halves of UMBC, and the
even-odd cut on the Hungarian corpus.
The first (direct) comparison is the cosine similar-
ity of the words in the different embeddings. We
trained linear transformations to bring the vectors
obtained from the two subcorpora into closer align-
ment. We do this by fitting the best orthonormal
transformation (rot), or by the best general linear
transformation (gl), without normalization for vec-
tor length (nolen) and with normalization (len). Col-
umn @100 shows the results for the first 100 most
frequent words; column @5k shows 100 less fre-
quent words, between 4,900 and 5,000; and column
@50k the average similarity of the first 50k words.

cut cond @100 @5k @50k

even - odd
GA

71.5%-71.7%

direct .010 .004 .003
nolen-rot .973 .946 .863
len-rot .973 .945 .862
nolen-gl .977 .955 .880
len-gl .976 .952 .879

beg - end
GA

71.8%-70.7%

direct .002 .004 .003
nolen-rot .966 .898 .764
len-rot .966 .897 .763
nolen-gl .965 .908 .789
len-gl .964 .903 .787

Hun
even - odd

direct .357 .107 .072
nolen-rot .905 .884 .824
len-rot .903 .881 .823
nolen-gl .908 .899 .846
len-gl .903 .894 .844

SPARSE OVERCOMPLETE
We considered sparse overcomplete representations
computed of the same GloVe vectors by the method
of [2]a. The rotated and general linear similarities
are shown, as well as GA results. The raw num-
bers are not directly comparable to those obtained
for GloVe, since here d = 3000, for which (3) yields
.08, about a third of the .25 we obtained in 300 di-
mensions. In this light, the sparse vectors are more
stable than the raw GloVe vectors we obtained them
from. The sparse vectors have 3-600 nonzero ele-
ments out of 3,000.
The nonnegative vectors were also considered in the
same spirit as [2] and these are again quite stable.
We investigated the considerably more sparse vec-
tors suggested by [1], reimplementing their method
using the pyksvd libraryb. These vectors have at
most 5 nonzero components out of 2,000, referred
as ‘k=5’.

vecs dim cond @100 @5k 50k
Sparse

53.5%-53.7%
3k nolen-rot .627 .536 .458
3k nolen-gl .754 .688 .600

Nonneg
44.2%-45.7%

3k nolen-rot .532 .477 .415
3k nolen-gl .621 .599 .553

k=5
23.1%-23.5%

2k nolen-rot .523 .466 .505
2k nolen-gl .583 .515 .561

ahttps://github.com/mfaruqui/sparse-coding
bhttps://github.com/hoytak/pyksvd
cResearch partially supported by National Research, Devel-

opment and Innovation Office NKFIH grant #115288.
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