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Abstract This paper introduces the huBERT family of models. The flag-
ship is the eponymous BERT Base model trained on the new Hungar-
ian Webcorpus 2.0, a 9-billion-token corpus of Web text collected from
the Common Crawl. This model outperforms the multilingual BERT
in masked language modeling by a huge margin, and achieves state-of-
the-art performance in named entity recognition and NP chunking. The
models are freely downloadable.
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1 Introduction

Contextualized embeddings, since their introduction in McCann et al. (2017)
have altered the natural language processing (NLP) landscape completely. Sys-
tems based on ELMo (Peters et al., 2018), and especially BERT (Devlin et al.,
2019) have improved the state of the art for a wide range of benchmark tasks.
The improvement is especially notable for high-level natural language under-
standing (NLU) tasks, such as the ones that make up the GLUE (Wang et al.,
2018) and SQuAD (Rajpurkar et al., 2016, 2018) datasets. In the long run,
BERT proved more successful than ELMo, not least because once it has been
pretrained on large amount of texts, it can be finetuned on any downstream task,
while ELMo cannot stand on its own and must be integrated into traditional
NLP systems.

The triumph of BERT also marks the move away from LSTMs (Hochreiter
and Schmidhuber, 1997) toward the attention-based Transformer (Vaswani et al.,
2017) architecture as the backbone of language representation models. BERT
was soon followed by an abundance of similar models, such as RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019) or BART (Lewis et al., 2019). These
models tweak different aspects of BERT, including the amount of training data,
the tasks used to pretrain it, or the architecture itself. Each paper reports
improvements over the last.

As always in NLP1, all the pioneering research above was centered on En-
glish. Support for other languages came in two forms: native contextual em-
beddings, such as CamemBERT (Martin et al., 2019) for French, or multilingual
1 With the possible exception of morphology.



variations of the models above. Examples for the latter are multi-BERT and
XLM-RoBERTa (Conneau et al., 2019), both of which were trained on corpora
with around 100 languages (Wikipedia for the former, the Common Crawl2 for
latter).

Both alternatives have their own advantages and disadvantages: native mod-
els are as expensive to train as the original English ones, costing up to hundreds
of thousands of euros; which seems excessive, especially since good quality mul-
tilingual models have already been published. On the other hand, the capacity
of multilingual models is shared among the many languages they support, which
hurts single-language performance. Medium-size languages, of which Hungarian
is one, are further disadvantaged by the size of the available textual data. In
the training corpora of multilingual models, larger languages are represented by
a proportionally higher amount of text, which introduces serious bias into the
final models. Taking this all into consideration, we came to the conclusion that
Hungarian is probably better served by native models.

In this paper, we introduce the huBERT family of models. As of now, the
family consists of two preliminary BERT Base models trained on Wikipedia and
the eponymous huBERT model, trained on a new nine-billion-token corpus; it is
also the first publicly available Hungarian BERT model. We evaluate huBERT
against multi-BERT on the two tasks they were pretrained, as well as on two
downstream tasks: named entity recognition (NER) and NP chunking. We find
that huBERT outperforms multi-BERT on the training tasks by a huge margin,
and achieves a new state of the art in both NER and NP chunking, thereby
strengthening our concluding sentence in the last paragraph.

The rest of the paper is organized as follows. In Section 2, we describe
the training corpora and the pretraining process behind the models. Section 3
details our experimental setup and presents our results. Section 4 highlights a few
shortcomings of relying solely on the new contextualized embedding machinery.
Finally, we conclude our work in Section 5.

2 Pretraining

In this section we describe the pretraining procedure in detail in the hope that
it helps others embarking on a similar venture avoiding potential pitfalls along
the way.

2.1 Background

Pretraining modern contextualized representations is a costly business. The
models themselves are huge (BERT-Base, which has become a standard, has
110 million parameters), and the associated training corpora also start at several
billion words. The quadratic resource requirements of the attention mechanism
can only be accommodated by high-end hardware. These factors all add up,
2 https://commoncrawl.org/
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and as a result, training a modern Transformer model takes days or weeks on
hundreds of GPUs or TPUs.

The financial costs incurred by such a training regimen are prohibitive for
smaller laboratories, unless they receive support from the industry. However,
most of the time the support is limited and it does not allow experimentation
with model architectures, let alone hyperparameter tuning. This means that
pretraining for smaller groups is a leap of faith, which either succeeds or not;
and this inequality of the playing field raises various ethical issues (Parra Escartín
et al., 2017).

Our situation is not different. We were kindly given the use of 5 v3-8 TPUs
by Google in the Tensorflow Research Cloud (TFRC)3 program, as well as two
weeks on a v3-256 TPU Pod. Our main goal was to train a BERT-Base model
on Webcorpus 2.0: a new, 9-billion-token corpus compiled from the Hungarian
subset of the Common Crawl (Nemeskey, 2020b). Based on the numbers in the
original BERT paper, we calculated that two weeks should be enough to train
the model to convergence. However, an earlier failed attempt at pretraining an
ALBERT (Lan et al., 2019) model that never converged convinced us to start
with a smaller corpus to ensure that the training process works.

2.2 huBERT Wiki

At about 170 million words in 400 thousand documents4, the Hungarian Wikipedia
is but a fraction of the English one. After filtering it according to the BERT
guidelines, its size further decreases to about 110 million words in 260 thousand
documents. This is considerably smaller than Webcorpus 2.0, but it contains
good quality, edited text, which makes it a valuable training resource. Its small
size also allowed us to pretrain a BERT-Base model on it in 2.5 days on a single
v3-8 TPU.

BERT models usually come in two flavors: cased and uncased. The former
operates on unprocessed text; in the latter, tokens are lower cased and diacritical
marks are removed. In keeping with this practice, we also trained two variants.
However, as diacritics are distinctive in Hungarian, we could not afford to lose
them, and replaced the uncased model with a lower cased one.

BERT models are pretrained with two tasks: masked language modeling
(MLM) and next sentence prediction (NSP). The language understanding ca-
pabilities of the model reportedly derive from the former (Lan et al., 2019; Liu
et al., 2019), as NSP is very easy to learn. Since we used the original BERT
training code, we kept both tasks.

As is the case with the English BERT, our models are all pretrained on
sequences of up to 512 wordpieces. As the training configurations published in
the literature are for much larger corpora, they are not directly adaptable to
our case. Hence, we experimented with different training regimens for both the
cased and lower cased variants:
3 https://www.tensorflow.org/tfrc
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1. Three models were trained with full-length sequences for 50,000, 100,000
and 200,000 steps. These roughly correspond to 90, 180 and 360 epochs,
respectively;

2. Following the recommendation in the BERT GitHub repository, one model
was trained with a sequence length of 128 for 500,000 steps (600 epochs)
and with a sequence length of 512 for an additional 100,000 steps (or 180
epochs).

All models were trained with a maximum learning rate of 10−4 and the maximum
possible batch size: 1024 for the model with 128-long sequences and 384 for the
rest. The training data for the masked language modeling task was duplicated
40 times with different mask positions. The official training code uses a learning
rate decay with a warmup period, which we set to 10% of the total number
of training steps. The code unfortunately does not support early stopping; it
does not even accept a validation set. However, as we shall see in Section 3.1,
performance on the test set showed no sign of overfitting.

All models use a wordpiece vocabulary of around 30,000 tokens to match
the English BERT-Base models. Increasing it 5,000 tokens did not yield any
improvements, so we opted for the smaller vocabulary in order to keep the model
smaller.

Model Seq. length Steps Hours Masked LM Next sentence

Cased
512 50,000 13 0.55 0.971
128 500,000 59 0.67 0.995
512 +100,000 25 0.67 0.99

Lower

512 50,000 13 0.5538445 0.982
512 100,000 25 0.61 0.998
512 200,000 50 0.63 0.998
128 500,000 59 0.64 0.991
512 +100,000 25 0.67 0.998

Table 1. Training times and accuracies of the different BERT models on the
two training tasks

Table 1 compares all configurations. In the cased case, the TPU went down
for maintenance during training, so the 100,000 and 200,000-step models are
missing from the results. Even without them, several observations can be made.
First, the 50,000-step models clearly underfit the data, even though they were
trained for twice as many epochs as the English BERT. On the other hand, the
difference between the 100,000 and 200,000-step models is much smaller than
between the 50,000 and 100,000-step models, suggesting a performance peak
around 300,000–400,000 steps.



Second, in line with the findings of Lan et al. (2019); Liu et al. (2019), the
next sentence prediction task seems very easy, as all but the first models attain
over 99% accuracy. In contrast, the masked LM task proved much harder, and its
accuracy seems rather low. Unfortunately, the evaluation results for the English
BERT are not published anywhere, which makes it difficult to put the numbers
in context. Based on the diminishing returns, the longest-trained models are
likely to be close to the maximum achievable on Wikipedia alone.

Finally, our experiences confirmed that the two-stage training regimen rec-
ommended in the BERT repository indeed leads to better results. The rationale
behind this method is that the first phase trains most of the model weights and
the second phase is “mostly needed to learn positional embeddings, which can be
learned fairly quickly”5. While this seems to be the case for the cased model,
the masked LM accuracy of the lower cased model improved by more than 2%
in the second phase, indicating either that substantial learning still happens at
this stage or that some of the dependencies in the data can be better exploited
by a 512-token window.

2.3 huBERT

Having confirmed that the BERT training code works and produces functional
models on Wikipedia, we proceeded to train the main huBERT model on the much
larger Webcorpus 2.0. We used the same configuration as for the preliminary
models, with two notable exceptions.

First, we only had time to pretrain one model. We chose to focus on the cased
model, as that is more universally usable. Second, as opposed to single TPUs,
TPU Pods are always preemptible, and our earlier experience with ALBERT
taught us that the training might be interrupted several times a day. Unfor-
tunately, the original BERT training script is not prepared for this eventuality
and once interrupted, it can never resume training. To mitigate this issue, we
wrote a wrapper script around the BERT training code that monitors the log
file and restarts training whenever the TPU Pod goes down. We also decreased
the number of steps between checkpoints to 1,000 (from the default 5,000) to
minimize the work lost.

In the end, our training quota expired after 189,000 steps, cutting the pre-
training slightly short. To validate the model, we ran the same evaluations as
we did for the preliminary models, this time on a held-out portion of Webcorpus
2.0. The results (MLM accuracy of 0.63 with a sequence length of 128 and 0.66
with 512) closely follows those reported in Table 1, which indicates that the
model might similarly be close to convergence and better results could only be
excepted of larger (e.g. BERT-Large) models.

5 https://github.com/google-research/BERT/#pre-training-tips-and-caveats
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2.4 Availability

All huBERT models can be downloaded freely from the huBERT homepage6. The
main huBERT model is also available from the Hugging Face model repository7

under the moniker SZTAKI-HLT/hubert-base-cc.
The emBERT NER and NP taggers, described in Section 3.2, replace the orig-

inal models based on multi-BERT and can be downloaded from inside emtsv or
from the GitHub repository8.

3 Evaluation

BERT models are usually evaluated on high-level natural language understand-
ing tasks, such as question answering or textual entailment. Unfortunately, no
Hungarian benchmark datasets exist for these tasks. Because of this, we evalu-
ate our models by contrasting their performance to the multi-language version
of BERT in two ways:

1. We compare their accuracy on the two training tasks on a held-out portion
of Wikipedia and Webcorpus 2.0.

2. We include our models in the emBERT module (Nemeskey, 2020a) and mea-
sure their performance on named entity recognition and NP chunking.

3.1 Training tasks

Table 2 presents the results of the first experiment. Both our cased and lower
cased models achieve similar accuracies on the held-out set as on the training
data, allaying any suspicion of overfitting. The huBERT Wiki models perform
slightly better on Wikipedia than huBERT, but attain significantly lower accuracy
on Webcorpus 2.0. Compared to this, huBERT is fairly robust across both corpora,
no doubt benefitting from its much larger and more varied training corpus. All
cased models clearly outperform multi-BERT on both tasks (multi-BERT is only
available in the cased configuration).

In fact, the performance of multi-BERT leaves a lot to be desired. Its accu-
racy on the next sentence prediction task is, at 50%, effectively random. The
masked LM loss is equivalent to a perplexity of about 130,000, which, given its
vocabulary of 120,000 wordpieces, is even worse than that.

On the one hand, this abysmal performance comes as a surprise, for two
reasons: first, it was also trained on Wikipedia; and second, multi-BERT fares
much better on downstream tasks (see Section 3.2, below). On the other, it goes
to show that multi-language models sacrifice too much of single-language per-
formance to be of actual use for the tasks they were trained on. This underlines
the importance of native Hungarian contextual embeddings.
6 https://hlt.bme.hu/en/resources/hubert
7 https://huggingface.co/SZTAKI-HLT/hubert-base-cc
8 https://github.com/dlt-rilmta/emBERT-models
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Case Model Wikipedia Webcorpus 2.0
MLM NSP MLM NSP

Cased
multi-BERT 0.00001 0.560 0.000004 0.455
huBERT Wiki 0.65 0.988 0.46 0.786
huBERT 0.64 0.985 0.61 0.959

Lower huBERT Wiki 0.641 0.99

Table 2. Accuracy of multi-language BERT and members of the huBERT family
on the two training tasks on the held-out set of the two training corpora.

3.2 NLP tasks

Tables 3 and 4 show the performance of huBERT-based models against leading
Hungarian systems on NP chunking and NER, respectively9. The tables are
extended versions of those found in Nemeskey (2020a). One difference to note
is that, for the sake of a fair comparison, we only included systems in Table 4
that were trained and tested on the standard split of the Szeged NER corpus.

Table 3 demonstrates that BERT-based models in general perform favorably
compared to traditional statistical models, represented here by members of the
hunchunk family. multi-BERT already outperforms HunTag3 in maximal NP-
chunking by 1.5% F1 score on the test set, but it could only match hunchunk’s
results on minimal NPs. huBERT Wiki, on the other hand, improves both scores
by 1–1.5%. huBERT tops the list with another 0.5% increase on both tasks,
achieving a new state of the art on both.

System Minimal Maximal

hunchunk/HunTag (Recski, 2010) 95.48% 89.11%
HunTag3 (Endrédy and Indig, 2015) – 93.59%
emBERT w/ multi-BERT 95.58% 95.05%
emBERT w/ huBERT Wiki 96.64% 96,41%
emBERT w/ huBERT 97.14% 96,97%

Table 3. Comparison of Hungarian NP chunkers

The results for named entity recognition (see Table 4) are less straightfor-
ward. emBERT with multi-BERT achieves 1% higher F1 score than the previous
best (Simon, 2013). As opposed to the NP chunking tasks, huBERT Wiki could
9 For training details and a more thorough description of the tasks and the corre-

sponding data, the reader is referred to Nemeskey (2020a)



not improve on the multilingual model – in fact, it reaches a slightly lower F1
score, even though the difference is not significant. huBERT, however, again man-
ages to squeeze another 0.5% out of the data, setting a new record on the Szeged
NER corpus.

System F1

(Szarvas et al., 2006) 94,77%
hunner (Varga and Simon, 2007) 95.06%
hunner (Simon, 2013) 96.10%
emBERT w/ multi-BERT 97,08%
emBERT w/ huBERT Wiki 97,03%
emBERT w/ huBERT 97,62%

Table 4. Comparison of Hungarian NER taggers

4 All that glitters is not gold

In this section, we dive briefly behind the numbers and show that even though our
BERT models established new state of the art on two downstream benchmarks,
their actual behavior on real-world data might lack in some areas. It must be
pointed out that the two issues described below occur only to the named entity
tagger, which implies a problem with insufficient training data (see Nemeskey
(2020a)) rather than with the capabilities of the model architecture itself.

4.1 Invalid tag sequences

The numbers for both NP chunking and NER paint a similar picture: all BERT-
based taggers outperform traditional machine learning systems on both tasks,
with huBERT beating multi-BERT by a few percent. In case of NER, the gap is
as small as 0.5%, which hardly justifies spending the resources needed to train a
native Hungarian BERT model. However, when the taggers are applied to data
outside the Szeged NER corpus, a different picture emerges.

In the original emBERT system, the labels emitted by the taggers were output
as-is. This runs the risk of producing invalid tag sequences, of which an example
is shown in Table 5. Here, multi-BERT generates invalid sequences such as B-ORG
B-ORG, E-MISC E-MISC and even B-MISC I-PER. The tag sequence emitted by
huBERT Wiki also contains an error, and its classification is not better than multi-
BERT’s, either. huBERT’s output, on the other hand, is perfectly valid and the
tagging is much more accurate as well.

It is worth mentioning that invalid tag sequences are rare, as the attention
mechanism BERT is based on is able to use information from all tokens in the
sequence, and hence the model finds the boundaries of named entities most of



the time. It is only when the input sentence has an odd structure that we
encountered invalid tag sequences. Indeed, the sentence in Table 5 is not a sen-
tence in the grammatical sense; instead, it is the list of characters in a play,
mistakenly grouped together by the sentence splitter. Still, tokenization errors
and fragmented data crop up in all corpora, and our systems have to be robust
enough to handle them. The huBERT-based tagger can be more robust to unfa-
miliar input than the other two because it was trained solely on (large and often
fragmented) Hungarian data.

Nevertheless, we cannot be sure that huBERT taggers always generate valid
output and hence we implemented a Viterbi-like algorithm on top of the tagger
that prevents invalid tag transitions. The transition probabilities are uniform
for each valid transition between tags (i.e. B-PER → I-PER) and 0 otherwise. We
decided against learning the probabilities from the training corpus, as it would
downweight rarely seen but otherwise valid transitions. This would effectively
prevent us from correctly tagging 1-* entities, as the O → O transition is much
more probable than O → 1-MISC, etc.

Sentence multi-BERT huBERT Wiki huBERT m-B Viterbi

BARABÁS B-PER B-ORG B-PER B-PER
ÁDÁMNÉ E-PER E-ORG E-PER E-PER

az O O O O
édesanyja O O O O

A B-ORG O O O
MESTER B-ORG B-ORG B-ORG B-ORG
SZTELLA E-ORG E-ORG E-ORG E-ORG

a O O O O
partnernője O O O O

MISI B-MISC 1-MISC 1-PER B-MISC
bohóc E-MISC O O E-MISC

NOVOTNI B-MISC B-PER B-PER B-MISC
NÁNÁSI I-MISC I-MISC I-PER I-MISC

PIRI E-MISC E-PER E-PER E-MISC
lektor E-MISC O O O

MAROSI 1-MISC 1-MISC 1-MISC 1-MISC
újságíró O O O O

LITTKÉNÉ B-MISC B-MISC 1-PER B-PER
NÉGY I-PER I-MISC O I-PER

KATONA I-PER I-MISC O I-PER
PERECESLÁNY E-PER E-MISC O E-PER

Table 5. Invalid tag sequences on a text fragment from the screenplay of Tragé-
dia (1979) by István Örkény



As seen in the last column of Table 5, applying the Viterbi algorithm to the
class transitions prevents the emission of invalid tag sequences, and occasionally
improves the results as well.

4.2 Overenthusiasm

Applying the NER taggers to single words demonstrates another peculiarity of
our BERT-based taggers: they seem overly enthusiastic to give a non-O label
to almost any single word, including “a” (the) , “macska” (cat) or “fut” (run).
This does not happen when the words are in a sentential context, e.g. “a macska
fut” (the cat is running) is correctly tagged as O O O. The cause of this behavior
is not yet clear, as the training corpus contains no one-word “sentences”, and
thus requires further research. As mentioned above, the chunker models are
unaffected by this issue, which makes the NER training corpus the primary
suspect.

5 Conclusion and future work

In this paper, we have introduced the huBERT family of models. The first three
members of the family are two preliminary BERT-Base models pretrained on
Wikipedia and the eponymous huBERT model pretrained in Webcorpus 2.0. Ac-
cording to our tests, all models, but especially the latter, outperform the mul-
tilingual BERT model both in the tasks used to pretrain them and in token
classification tasks, such as NP chunking and NER. huBERT achieves a new state
of the art in both NLP tasks. Additionally, the models trained on solely Hun-
garian corpora seemed more stable when applied to unfamiliar text. huBERT
is available on the Hugging Face Model Hub in both Pytorch and TensorFlow
flavors.

In the future, we expect further, more recent models, such as Electra (Clark
et al., 2020), to be added to the family.
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