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Abstract. We present a method to evaluate the similarity of word vec-
tor clusters, and use it to determine the coherence (self-similarity) and
relatedness of morphologically defined clusters
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1 Introduction

Word vectors encode not just semantic relations [1], but also morphological ones,
as in g‘o‘e% - g% + 566 = Seed. In agglutinative languages it is common to treat in-
flectionally related tokens as separate types (form-based, rather than stem-based
modeling). Our main aim is to show that the tokens considered unrelated by the
form-based model are indeed related on a morphological level. Furthermore, the
more specific case endings (delative, translative, ...) dominate the word vector
as opposed to the less specific case endings (nominative, accusative, ...) where
the word vectors contain richer semantic relations.

2 Methods

The idea of neural networks dates back to the 1940s [2], when McCulloch cre-
ated a computational network. The main idea is that our brain is composed of
neurons (nodes) and synapses (edges). We learn and memorize by creating and
strengthening synapses, and an artificial neural network — by analogy — should
learn by strengthening and weakening weights on the edges based on the sample
it receives. Constructing and training a neural network is a difficult task, because
we do not have a strong idea how to interpret the weights of the edges or the
nodes themselves — a neural network is a black box, and we do not always know
how the architecture of the network should look like, or how we should train a
network. The architecture in a skip-gram model [3] [4] consists only of a single
hidden layer and an output layer with hierarchical softmax classifier. The task
of the model is, for every word in the vocabulary, to learn the probabilities of
every other word being in the context of the vocabulary word.

The input is a one-hot vector representing the word, and the output is a
probability vector. As we can see in Fig. 1, there are separate weights for each
coordinate, and the number of nodes in the hidden layer defines the number of
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Fig. 1: Network architecture

weights. If the hidden layer counts 200 neurons, then we will have 200 weights
for each coordinate, thus for every word. To summarize, we create a model to
predict contexts only to learn the input weights to be used as vectors. The same
way, the model also learns the output weights, and the classification problem
reduces to a matrix dot product and to a softmax classification problem. For
adjusting the weights, the model uses backpropagation. The main differences
from the traditional neural networks are the subsampling, negative sampling
and the use of skip-grams with negative sampling [5].

We use the most noise-reduced tier of the Hungarian Webcorpus® [6,7] that
has the duplicates, foreign language pages, and script-generated text (such as
dates, headlines, tables of content) removed, leaving 710m word and punctu-
ation tokens. For morphological analysis, we used the emMorph module? [8] of
e-magyar [9]. To establish the clusters we trimmed the analyses until the last
stem, since the derivation does not concern us in this paper, and we used the <>
sign concatenating the analyses returned by emMorph. The following tables show
some sample lines before and after the normalization.

elméleti elmélet [/N]i[_Adjz:i/Adj] [Nom]

elméleti elméleti[/Adj] [Nom]

szamitogépes|szamit [/V]6 [_ImpfPtcp/Adjlgép[/Nles[_Nz:s/N] [Nom]
szamitogépes|szamitdgép [/N]es[_Adjz:s/Adj] [Nom]
szamitogépes|szamitogép [/N]es [_Nz:s/N] [Nom]

These two words become elméleti — [/Adj] [Nom] ‘theoretical’, szdmitdgépes —
[/Adj] [Nom] <>[/N] [Nom] ‘computational, computer-related’ after the normal-
ization.

We used gensim [10] skip-gram with negative sampling with the default hy-
perparameters in the creation of our models: the dimension of the word embed-

! http://mokk.bme.hu/resources/webcorpus/
2 https://github.com/dlt-rilmta/emMorph
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ding is 200, the window used is 5 words in both directions, 5 training epochs.
Negative sampling is set to a factor of 5, and minimal sample size is 5. The model
was generated using the surface forms only and morphological analyses were as-
signed to the words subsequently. In the resulting embedding we can observe
(Fig. 2) a strong correlation (p = 0.939) between the log-frequency of the words
and the length of their vectors posited in [11]. Knowing this, we can project the
vectors to the surface of the unit sphere without great loss of information. Later
in this paper we will use a set of 200000 uniformly distributed random vectors as
a baseline for comparing to the actual word vectors projected onto the surface
of a unit-radius 200-ball.

25 Scatterplot of vector length by word frequency

linear-regression
vector

Logarithm of frequency

5 10 15 20 25 30 35 4
Length of vector

Fig. 2: Length versus log, (frequency)

Another characteristic of the skip-gram model is that it prefers placing the
words in a specific part of n-dimensional space [12]. One technique we used to
measure the spatial preference of the model is to count the relative frequency
of each coordinate being positive, then plotting these numbers in an ascending
order. Fig. 3 shows that some coordinates are highly likely to be positive and
others negative, whereas for a random set of points the line would be flat since
every coordinate would have 0.5 probability to be positive or negative.

3 The statistics of grammatically defined clusters

We hypothesize that there is a coherent structure in the embedding and each
vector encodes a certain meaning and grammatical structure. The clustering
methodology we will be using here is a viable approach to classify word vectors
to the extent that we can analyze these clusters in a way that helps understanding
them. The model used has no a priori knowledge of these grammatical categories,
yet we will see that the clusters are indeed coherent.

Visualizing high-dimensional data is a difficult exercise [13]. We can use prin-
cipal component analysis to maximize the information retained in the first few
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Fig. 3: Probability of a certain coordinate being positive

dimensions. Plotting a sample of 1000 vectors from the spherical projection of
the first 3 principal components of some clusters of word vectors yielded Fig. 4,
which makes clear we have 3 clusters each restricted to a dominant orthant. What
we need to verify is that this phenomenon persists in the whole 200-dimensional
space. One way of doing this is by comparing the standard deviations and the
entropy of the clusters. If a cluster’s standard deviation is high, it indicates low
density, the lack of a core, and incoherent structure. If the standard deviation is
lower, it indicates a higher density, a more characteristic core. Number of occur-
rences and entropy (y axis) are plotted against the standard deviation (x axis)
in Fig. 5.

e [/Num|Digit][Nom]
[/Adjl[Nom]
e [/VI[Prs.NDef.35g]

Fig. 4: Clusters on the unit sphere

On the left panel we can see a square-like shape, showing weak correlation be-
tween the frequency and the standard deviation. The scatter plot of the entropy-
standard deviation shows that higher entropy generally means higher standard
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Fig. 5: Scatter plots of clusters
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deviation. After filtering out morphological analyses with low number of words,
first 5, then 50, Fig. 6 the correlations weaken. The Spearman correlation coef-

ficients for the 4 figures are: 0.512, 0.957, 0.384, 0.057.

Scatter plot of analyses with at least 5 different words catter plot of analyses with at least 50 different word:
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Fig. 6: Scatter plots of clusters

4 Quantifying similarity

Here we define and explain the intuition behind a similarity measure between sets
of vectors on the n-sphere. Since it is hard to have intuition in 200-dimensional
space, we begin with the definition of a cap (vectors at a small angle to an axis):

Definition 1. n-cap
Let m e S™, let a € [—m,7|]. The cap defined by m, « is

cap,(m) = {xlz € S™ A (m, x) > cos(a)}
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which is equivalent to
cap, (m) = {x]e € S™ A sim.,s(m, ) > cos(a)}
and a theorem about the surface of the n-sphere [14]:

Theorem 1. Let I,.(a,b) be the regularized incomplete beta function, and A,, =
27r"/2/F(%) be the surface area of the r-radius n-sphere. Then the area of the
spherical cap characterized by its h height is:

1

_ n—11
A= §An7"” iorh—n2)/r2 <2, 2) (1)

The theorem and the definition together show the ratio of the surface of

the cap to the n-sphere. For example, putting n = 200, h; = cos (12%4”) yho =

oS (12%”) into the theorem above we get 0.0327 and 10~* respectively. We can
verify this upper bound by placing uniformly random points on the surface of
the n-sphere, counting the points inside cap, (we performed simulations with
200k random vectors) and compare the ratio given by theorem 1 to the ran-
dom sample. To measure the compactness of clusters, we use an increasing cap
around the cluster centroid, and plot the ratio of word vectors lying in the cap

as a function of the minimal similarity of words to the cluster centroid. As we

Ratio of vectors with higher cosine similarity to mean of cluster
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Fig. 7: Ratio of points in a cap, (meancjuster)

can see on Fig. 7, the RANDOM cap vanishes around cos(a) = 0.2 (for this a,
theorem 1 limits the relative surface of the cap to 0.0023), while the other clus-
ters, most notably the [/Num|Digit] [Nom] (digit in nominative case) shows the
strongest coherence, which seems intuitive, as the numbers mostly indicate quan-
tity and amount (counterexamples are dates, or symbolical numbers like 7, 3,
24/7). The UNKNOWN cluster shows high coherence, as it is dominated by nouns.
The [/V] [Prs.NDef.3Sg] cluster (third person singular verbs) show the same
coherence as the [/N] [Acc] cluster (accusative nouns), while the [/Adj] [Nom]
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cluster (adjectives in noun case) shows lower coherence than any of the clusters
other than the RANDOM presented on the figure.

Since we want to filter out noise, and our ultimate goal is to measure sim-
ilarity, we can use the ratio of the words in a cap, with fixed o to measure
self-similarity, and we can also calculate the ratio of some words in other clus-
ters’ cap. That way, we obtain an asymmetrical similarity measure. Obtaining
the fixed « is based on filtering out the most noise. We use RANDOM as a base
of comparison: on Fig. 8, we show the ratios with that corresponding to RANDOM
subtracted. The plot shows the maximal difference to be around cos(a) = 0.13,

so we have chosen a = 17 (82.5°) (for which cos(a) &~ 0.1305). Thus the formal
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Fig. 8: Difference of the ratios from RANDOM

definition of the cluster similarity defined above:

Definition 2. Cluster similarity
Let Cy, Cy be two sets of points on the n-sphere, m be the mean vector of Cf.
The (signed) similarity of C1 and Cy is:

x € Cylsimeos(m, ) > cos(Lir
sim(C1, Co) = |{ 2 (CQ| ) (%1 )}|

where | .| is the cardinality of a set.

5 The role of affix frequency

We begin by examining the clusters based on their case endings to see whether
some specific case endings contribute significantly more to cluster coherence.
Table 1. summarizes the clusters and their respective self-similarities. We can
see that the more specific case endings like [/Adj] [Transl] and [/Adj] [Temp]
(translative and temporal case for adjectives) show higher self-similarity, while
the more general ones like [/Adj] [Nom] and [/Adj] [Supe] (nominative and
superessive) show lower self-similarity. This tendency continues with the cases
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affixed to nouns, where [/N] [A11] and [/N] [Transl] (allative and translative)
are among the highest self-similarity cases and [/N] [Nom] has one of the lowest
self-similarity from the paradigm. Let us now consider clusters that are more

Cluster Sim |Cluster Sim |Cluster Sim
[/Adj] [Nom] 0.822|[/N] [EssFor:képp] |0.889|[/Num] [Nom] 0.908
[/Adj] [Supe]l [0.910|[/N] [Nom] 0.922| [/Num] [Del] 0.955
[/Adj]1 [Subl] |0.924|[/N] [Ess] 0.926| [/Num] [Dat] 0.957
[/Adj] [Ine] 0.929|[/N] [EssFor:ként] [0.936|[/Num] [Ter] 0.960
[/Adj] [Elal 0.936|[/N] [Ine] 0.937| [/Num] [Caul 0.971
[/Adj] [Acc] 0.941|[/N] [EssFor :képpen] |0.941| [/Num] [T11] 0.977
[/Adj] [Ade] 0.945|[/N] [Cau] 0.946| [/Num] [A11] 0.978
[/Adj] [Ins] 0.951| [/N] [Ade] 0.949| [/Num] [Ine] 0.980
[/Adj] [Abl] 0.959| [/N] [Hyph:Hyph] 0.957| [/Num] [Acc] 0.983
[/aAdj][111] 0.960| [/N] [Ter] 0.962| [/Num] [Subl] |0.984
[/Adj] [Caul 0.961| [/N] [Supel 0.962| [/Num] [Ela] 0.985
[/Adj] [Dell 0.961|[/N] [Abl] 0.964 | [/Num] [Ade] 0.988
[/Adj] [Ter] 0.963| [/N] [Acc] 0.966| [/Num] [Ins] 0.992
[/Adj] [Dat] 0.967| [/N] [Temp] 0.966| [/Num] [Abl] 1.000
[/Adj][A11] 0.978|[/N] [Elal 0.968| [/Num] [Trans1]|1.000
[/Adj] [Trans1]|0.994|[/N] [Dell 0.969| [/Num] [Temp] |1.000

[/N] [111] 0.969| [/Num] [Supe] |1.000

[/N] [Dat] 0.969

[/N] [Subl] 0.969

[/N] [Ins] 0.972

[/N] [Transl] 0.979

[/N] [A11] 0.979

Table 1: Clustering by case ending

frequent or have higher entropy. We partitioned the clusters into 20 equal bins,
each 0.05 wide, by their respective standard deviation, then calculated the mean
and the standard deviation (o) of the vectors of each cluster, see Fig. 9.

Most clusters lay in the 1o stripe, and the 20 stripe is also rather popu-
lated. Each stripe is monotonically increasing. The interesting clusters are the
ones above the 20 stripe, because compared to their high entropy their variance
is smaller than expected. Summarizing on Table 2 the biggest non-ambiguous
clusters (counting more than 5000 words) outside the 2o line on Fig. 9, it shows
us that nouns, be they plural or singular, form highly coherent clusters. The
presence of infinitive and plural third person verbs among these most coher-
ent clusters is very interesting, because verbs in general did not show strong
coherence.

256



XV. Magyar Szamitégépes Nyelvészeti Konferencia Szeged, 2019. januar 24-25.

Scatter plot of morphological analyses seperated into 20 bins by standard deviation

=—— mean of bins
mean +- sigma

—— mean + 2sigma
cluster

Entropy

0.0 01 02 03 0.4 05 0.6 07
Standard deviation

Fig.9: Binning clusters by standard deviation

6 Asymmetrical similarity

In Section 4. we have already given the idea to compare one cluster’s mean to
another cluster’s elements. When comparing not round-shaped clusters, this way
of measuring similarity introduces asymmetry. Plotting a histogram of the dif-
ferences sim (Cy, Cy) — simg (Ca, C1) shows a distribution quite close to normal.

Distribution of symmetrical differences
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Fig. 10: Distribution of symmetrical differences

Most of these differences are around 0, showing that most of the clusters
are round shaped. The two tails of the distribution are the important parts,
because they show us pairs of clusters whose pairwise similarity in one di-
rection is 1, while in the other direction this similarity is 0. One example to
this phenomenon is the pair of [/N|Pro] [Subl] [1Sg], [/N|Pro] [3P1] [Dat]<
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Bin|oqgig|Cluster Simgei¢| #Words|Frequency
0.45(5.75| [/V] [Inf] 0.988 (14071 6677547
0.50|2.88| [/Num|Digit] [Nom] 0.977 126666 6000563
0.55|2.25|[/V] [Prs.Def.3P1] 0.990 |5230 1312497
0.55|2.56| [/N] [P1] [Subl] 0.980 (6795 582972
0.55|2.20| [/N] [P1] [Supel 0.979 |5325 519220
0.55|2.72| [/N] [P1] [Ins] 0.982 |10135 955157
0.55(2.17|[/V] [Prs.NDef.3P1] | 0.989 [10486 3296388
0.55(2.94| [/N] [A11] 0.979 13858 1073443
0.60(2.60| [/N] [Ins] 0.972 32886 3868455
0.60(2.42| [/N] [Subl] 0.969 (25687 3469518
0.60|2.21| [/N] [P1] [Acc] 0.974 120702 3601070
0.60(2.25| [/N] [Abl] 0.964 10270 649706
0.60(2.22|[/N] [Elal 0.968 (12717 1028608
0.65(2.04| [/N] [Adel 0.949 |7324 363706
0.65|3.99 |UNKNOWN 0.892 |199475 |5643460
0.65(2.58| [/N] [Acc] 0.966 (61671 12617934
0.65|2.06| [/N] [Poss.3Sg] [Accl| 0.962 |14164 2823258
0.70(2.48| [/N] [Nom] 0.922 |144945 50298170

Table 2: Clusters with unexpectedly high coherence

>[/N|Pro] [Poss.3P1] [Dat] clusters. Both of the clusters contain 4 vectors, but
the words of the first cluster have 42228 occurrences in the corpus, and the words
of the second cluster count 545 occurrences. The words are pronouns in both
cases, the first clusters’ words are énrdm, redm, rdm, énredm, (s = 0.1) mean-
ing ‘onto me’ with variable spelling, the difference is only stylistic, the words of
the second cluster are némelyikiknek, valamelyikiiknek, mindegyikiknek, bdrme-
lyikiknek, (s = 0.382) the first one meaning ‘to some of them’ and ‘of some of
them’, while the rest meaning the same, but changing ‘some’ to ‘specific one’,
‘all’; ‘any’. One reason for this strange phenomenon is that the énrdm, redm,
ram, énredm have identical meanings, the standard deviation of their cluster is
very low, while the other cluster of 4 words have significant difference in their
meanings.

In the following sections, the asymmetry is of less importance. As shown on
Fig. 10, most of the pairwise similarities have difference below 0.1, thus we do
not lose much by symmetrizing the similarity measure by taking the mean of the
similarities, (simq(C1, Cs) + sime(Ca, C1))/2.

6.1 Subcategories

E-magyar creates multiple subcategories for adjectives, nouns and numbers, and
we can measure the pairwise similarity of their paradigms. If some subcategories
show high similarity, we can say that it is not worth preserving as separate
categories. Comparison of the subcategories to the [/Adj] categories yields in-
teresting results.
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Cluster; Cluster; similarity|cases
[/Adj1[.] [/Ad3j1[.] 0.954 22
[/Adj1L.] [/Adjlcol]l[.] 0.921 14
[/adj1[.] [/Adjlnat] [.] 0.900 16
[/Adj1L[.] [/AdjlAttr] [.] 0.865 7
[/Adj1L.] [/AdjIPro]l[.] 0.843 18
[/adj1[.] [/Adj|ProlRell[.]1 [0.549 7
[/Adj1[.] [/Adj1[P1]1[.] 0.884 17
[/Adj1[P1]1[.1|[/AajI[P1]L.] 0.956 17
[/Adj1[P1]1[.1|[/Adjlcol]l [P11[.1 |0.949 9
[/Adj1[P1]1[.1|[/AdjInat] [P1]1[.] |0.943 16
[/Adj1[P1]1[.]1|[/Adj] [Poss.18g] [.1]0.855 10

Table 3: Adjectival subcategories

[.] marks the pairwise comparison of single morphemes, so in the first few
examples, we compare singular forms to singular form (because singular forms
are not marked, thus a single morpheme after the word root must mean singular),
and in the cases after, the plural forms. We can see a declining similarity when
comparing more and more specific clusters, with the [/Adjlcol]l [.] (adjectives
describing colors) and [/Adjlnat][.]1 (adjectives describing nationality) being
relatively similar to [/Adj]1[.], while [/Adj|Pro]l[.] (pronominal adjectives)
and especially the [/Adj|Pro|Rel] (relative pronouns like amilyen or amekkora,
‘such as’, ‘as large as, as much as’) show significantly less similarity. As we noted
at the beginning, more specific case endings may dominate the word vectors’
similarity clusterwise, which is indeed the case in the last examples. Compar-
ing plural adjectives, the similarities are significantly higher than their singular
counterparts’ similarities, while comparing singular to plural yields very low sim-
ilarity.

6.2 Paradigm self-similarities

In the previous section, we have already used the [.] to indicate the compari-
son of paradigms. While the nominative forms may have lower similarities, the
paradigm comparisons are dominated by the abundance of cases and case end-
ings, producing very high self similarities. [.] denotes only a single morpheme,
so this table aggregates only the 2-morpheme-long morphological analyses.

7 Conclusions and further research

Clustering word vectors by their morphological analysis has proven a good way
to examine the impact of inflection on word vectors. Because of the high di-
mension, naive statistical testing of the distances from the mean does not pro-
duce easily interpretable results. In contrast, the ‘cap similarity’ introduced here,
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Cluster; Simg | cases|Cluster; Simg ¢ |cases
[/Adj|Pro|Rel][.1]|1.000 |7 [/N|Unit] [.] 0.992 |14
[/Num|Pro] [.] 1.000 |9 [/Adj|nat] [.] 0.995 |16
[/Num|Roman] [.] |1.000 |6 [/v1L.] 0.989 |54
[/N|Acronx] [.] 1.000 |13 [/Post][.] 0.987 |8
[/NIProlRel]l[.] |[1.000 |15 [/N|Unit|Abbr][.]1|0.984 |14
[/Adjlcoll[.] 1.000 |14 [/Num] [.] 0.979 |18
[/N|mat][.] 0.998 |17 [/Num|Digit][.1 |0.975 |14
[/NILtr][.] 0.997 |13 [/N|Acron][.] 0.974 |14
[/N]|Abbr][.] 0.996 |13 [/NI[.] 0.958 |24
[/N|Prol[.] 0.996 |16 [/Adj|Prol[.] 0.958 |20
[/AdjlAttr][.] 0.995 |7 [/a43]1(.] 0.955 |22

Table 4: High self-similarity

while asymmetrical, has produced acceptable results, showed high coherence and
similarity where expected, and showed lower similarity where difference was ex-
pected, thus justifying the selection of clusters for most cases. There are excep-
tions however, such as treating [/Adj|Pro|Rel] as a subcategory of [/Adj],
which our method shows to be mistake due to their low similarity. Other future
work may also include using disambiguated text corpus to have bigger clusters
thus more data to perform the same analysis.

There are supervised methods for creating meaningful ultradense subspaces
for polarity, concreteness, frequency and part-of-speech (POS) [15,16], support-
ing operations like ‘give me a neutral word for greasy’. We plan on analyzing
the POS subspace, comparing the similarities of the clusters projected onto the
subspace with the similarities obtained without projection.
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