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Abstract. Several common tasks in natural language processing (NLP)
involve graph transformation, in particular those that handle syntactic
trees, dependency structures such as Universal Dependencies (UD) [1], or
semantic graphs such as AMR [2] and 4lang [3]. Interpreted Regular Tree
Grammars (IRTGs) [4] encode the correspondence between sets of such
structures and have in recent years been used to perform both syntactic
and semantic parsing. In this paper we introduce our tool that is capable
of automatic IRTG generation. Our IRTG covers 83% of noun phrases
(NPs) from the Wall Street Journal section of the Penn Treebank and a
pilot experiment had also been made for retrieving surface realizations
from UD graphs using independent data. We also describe this generated
IRTG which allows for simultaneous generation of structures of various
types and can be used for semantic parsing, generation, and semantics-
driven translation.

1 Introduction

One of the most limiting factors in common tasks in NLP, such as machine
translation, question answering and natural language inference, is the absence of
high-quality deep semantic parsing. The state-of-the-art tools are mostly based
on deep learning, which encode the meaning of words in multidimensional vector
spaces, and the understanding of the structures of these representations is very
limited. Another approach is using semantic representations based on concept
networks. The automatic generation of these representations is also limited, but
they facilitate more explicit analysis of tasks close to general artificial intelli-
gence, such as natural language inference or machine comprehension. Syntactic
parsers for natural language are key components for most processing pipelines
within human language technologies (HLT). A common approach taken by mod-
ern HLT systems is dependency parsing, which maps raw text to directed acyclic
graphs over words of each input sentence. One of the multiple dependency parsing
mechanisms implemented in the Stanford Parser [5] creates dependency graphs
by applying rule-based transformations on constituency structures output by a
probabilistic context-free grammar (PCFG) parser. The dep_to_4lang compo-
nent of the 4lang library builds graphs of syntax-independent concepts from the
output of any dependency parser that conforms to the Universal Dependencies



format, also using simple template-matching. In this end-to-end semantic parser
pipeline all components implement a form of graph transformation so its func-
tionality can be unified in a single graph grammar. We use Interpreted Regular
Tree Grammars [4] to simultaneously encode transformations between strings,
phrase structure trees and UD and 4lang graphs. Section 2 provides an overview
of the used or related tools and technologies, including the dependency parsing
component of the Stanford Parser, Universal Dependencies (supported by the
Stanford Parser), the 4lang formalism, and the IRTGs. In Section 3 we present a
regular tree grammar with four interpretations, corresponding to strings, phrase
structure trees, UD graphs, and 4lang graphs. Our grammar is non-deterministic,
which means that given an input structure, it can generate more than one deriva-
tions, resulting in many different output structure configurations regarding all
interpretations. Such a grammar allows converting from any of the above al-
gebraic structures to any or all of the others, e.g. generating English text from
dependency graphs. It can also be trained on correspondences between grammat-
ical and semantic structures and surface realizations. The grammar discussed in
this paper covers 83% of NPs of the Wall Street Journal section of the Penn
Treebank and a pilot experiment was also executed on a small independent (i.
e. not used for generating the grammar) test data for generating English text
from UD graphs, which resulted in a limited number of successful parses, and
also revealed some problems that need further investigation (discussed in Section
3.2).

2 Background

2.1 Dependency parsing with the Stanford Parser

The Stanford parser includes a component for dependency parsing [5] , which
consists of two phases: dependency extraction and dependency typing. After
parsing the phrase structure tree of a sentence, semantic heads need to be
identified, rather than syntactic ones, to be more useful for semantic depen-
dency analysis (extractions), i.e. choose content words as heads (rather than
auxiliaries, complementizers, etc.) and other words as dependents. Ambiguous
structures or multi-headed structures (represented as flat structures in the Penn
Treebank) also need to be resolved. For dependecy labeling, one or more pat-
terns are defined over the phrase structure tree using the tregex tree expression
syntax [6]. For example, "ADJP !< CC|CONJP < (JJ|NNP $ JJ|NNP=target)"
describes an ADJP not dominating a CC or CONJP, and dominating a JJ or
NP with a sister JJ or NNP. This is one of the patterns which describe the
UD relation amod. In theory, every node is matched against every pattern and
from the matching patterns, the most specific relation decides the type of the
dependency.



2.2 UD

The Universal Dependencies (UD) project1 [1] is a cross-linguistically consistent
annotation system and treebanks for 60+ languages. It provides a universal in-
ventory of categories and annotation guidelines while allowing language-specific
extensions. UD has evolved from Stanford Dependencies [7] by merging it with
Google universal tags [8], a revised subset of the Interset feature inventory [9],
and a revised version of the CoNLL-X format [10]. The two groups of core depen-
dencies are the clausal relations (which describe syntactic roles concerning the
predicate), and the modifier relations (which categorize the ways words modify
their heads). For the sake of a uniform analysis, nouns introduced by or hav-
ing attached preprositions and other case markings are treated as the head of
these relations. The formalism follows a lexicalist approach to enable computa-
tional use: the syntactic structure consists of lexical elements linked by binary
asymmetrical, one-to-one relations as opposed to constituency, which is a one-
to-one-or-more correspondence. UD also allows the cross-linguistic evaluation of
dependency parsers: more than 30 teams participated in the 2017 CoNLL shared
task on multilingual dependency parsing [11].

2.3 4lang

4lang [3] is a formalism which builds directed graphs for semantic representation
while abstracting away from syntax: in such graphs, nodes stand for language-
independent concepts, which do not have any grammatical attributes, and con-
tain shared knowledge of competent speakers. For example, freeze(N), freeze(V),
freezing, or frozen are not differentiated in 4lang representations, resulting in
a many-to-one relation between 4lang concepts and between words of a given
language.

Nodes are connected via three types of edges: 0-edge represents attribution
(flower 0−→ beautiful ), the IS_A relation (flower 0−→ plant) and unary predication
(flower 0−→ bloom). 1 and 2-edges connect binary predicates to their arguments
(James 1←− like 2−→ dog). Binary (transitive) elements, that do not correspond to
any word in a given phrase or sentence, are marked by UPPERCASE printnames.

There is another type of edge configuration, w1

1
⇀↽
0

w2, that may appear in
4lang graphs. This is necessary to consistently represent the relation between
the subject and the predicate: considering the example sentences I’m writing
(i 0−→ write) and I’m writing a paper (i 1←− write 2−→ paper), these representations
would suggest that the relation between I and write is dependent on whether the
object is specified or not. The example graph of Figure 1 represents the meaning
of the sentence John loves Mary’s cat.

The 4lang library contains tools for building directed graphs from raw text
(text_to_4lang) and dictionary definitions (dict_to_4lang). The core module
of the 4lang library, dep_to_4lang obtains dependency relations from text by
1 http://universaldependencies.org/



Fig. 1: 4lang graph of the sentence ’John loves Mary’s cat.

processing the output of the Stanford parser [5] and applies a simple mapping
from Stanford dependencies to 4lang subgraphs.

4lang is also the name of a manually created concept dictionary [12] which
contains more than 2000 definitions of language-independent concepts in four
languages (Hungarian, English, Latin and Polish), hence its name.

2.4 IRTGs and s-graphs

IRTG Interpreted regular tree grammars [4] are context-free grammars in which
each rule is mapped over an arbitrary number of algebras. Thus, when one rewrite
rule gets applied on one of the algebras, the corresponding operations are exe-
cuted on objects in each algebra. This means that an IRTG parser can accept
inputs in any of the defined interpretations and can convert the input data into
any of the other interpretations as output. In an example case of Figure 2, which
was implemented using Alto (an open-source parser, will be introduced later in
this section) [13], the two interpretations are the string and the tag tree alge-
bras, so it can either convert a string to a phrase structure tree and vice versa.
The string algebra has only one binary operation symbol *, which evaluates to
string concatenation. Operations of the tag tree algebra will be discussed
later in this section.

The rules are processed as follows: first a derivation tree is built using regular
tree grammars, then a function called tree homomorphism maps the derivation
tree over a term (f(t1, ..., tn) stands for the tree with the root label f and subtrees
t1, ..., tn), then the tree is evaluated over the algebra. For a formal description
the reader is referred to [14].

tag tree algebra The tag tree algebra [15] is a simple tree manipulation
language. Trees consist of single edges and nodes. Nodes marked with * are called
holes. Subtrees can be combined with the elementary tree using substitution
(leaving a variable in the appropriate place) and adjunction (using the @ op-



interpretation string: de.up.ling.irtg.algebra.StringAlgebra
interpretation tree: de.up.ling.irtg.algebra.TagTreeAlgebra

S! -> s(NP)
[string] ?1
[tree] ?1

NP -> np(DT, N_BAR)
[string] *(?1,?2)
[tree] @(?2,?1)

N_BAR -> n_bar(JJ, NN)
[string] *(?1,?2)
[tree] NP(*,?1,?2)

// terminals

DT -> a
[string] a
[tree] DT(a)

JJ -> large
[string] large
[tree] JJ(large)

NN -> dog
[string] dog
[tree] NN(dog)

Fig. 2: An example IRTG.



erator), as shown in Figure 3. T1 and T3 stand for elementary trees, in which
T2 (the subtree, which is allowed to contain additional holes) will be inserted.

T1= S(*, VP(V(loves), NP(NN(Mary))))
T2= NP(NN(John))
T3= S(*, VP(V(loves), *))
@(T1,T2)= S(NP(NN(John)), VP(V(loves), NP(NN(Mary))))
@(T3, T2)= S(NP(NN(John)), VP(V(loves), NP(NN(John))))

Fig. 3: An example illustrating the operations of the tag tree algebra.

Figure 3 also shows that when there are multiple holes in the tree, the binary
oparator @ inserts the same subtree to all of them.

s-graph The s-graph algebra [16] , which has been used for semantic parsing
previously [17], is designed for building larger graphs from smaller ones. An s-
graph’s nodes are marked with source labels from a fixed finite set. Source
labels identify which nodes should be merged when executing operations. Sources
are the nodes which carry source names. An s-graph can consist of a single root
node. The operations of the s-graph algebra are merge (which returns a graph
that contains all the nodes and edges of its operands), rename (which returns
a graph like the original except given source names have been changed) and
forget (which returns a graph like the original except a given source name
is removed from all nodes with that name). When used for semantic parsing
[4], source names correspond to the semantic argument positions of the given
grammar. The example in Figure 4 demonstrates the usage of these operators
by connecting two subgraphs. ?1 and ?2 represent the subgraphs to be merged to
the initial graph, which is between the quotation marks. First, the root label of
?2 is renamed to dep. Then it can be merged with the initial graph’s dep node.
After the merge the dep label is removed, because this node will not be used in
subsequent rules. In the final step the root of ?1 is merged with the root of the
initial graph.

Alto The Algebraic Language Toolkit, or Alto2 [13] is an open-source parser
which implements a variety of algebras for use with IRTGs, including the s-graph
and the tag tree algebras. It has been used previously for graph transformations
and semantic parsing as well [17], [4].

2 https://bitbucket.org/tclup/alto



merge(f_dep(merge("(r<root> :amod (d<dep>))", r_dep(?2))),?1)

Fig. 4: An example illustrating the operations of the s-graph algebra.

3 Parsing NPs with Interpreted Regular Tree Grammars

3.1 Rule generation

In this section we present the first steps of creating a framework which en-
codes transformations between strings, phrase structure trees and UD and 4lang
graphs. Our system supports the UD v2.1 format and is capable of automatic rule
generation from Penn Treebank lines and those parsed by the Stanford parser.
The code can be found at github.com/evelinacs/semantic_parsing_with_
IRTGs/tree/master/code/generate_grammar/template_based_grammar_generator.

To generate the IRTG rules, the program compares the phrase structure tree
and the dependency graph of each noun phrase. The input for the phrase struc-
ture tree data is in Penn Treebank format and the dependency graph data is
extracted from the output of the Stanford parser (which is generated by pattern
matching). During rule generation, the program compares the relations between
two words in the phrase structure tree and in the dependency graph. Given the
rigidity and ordered nature of the tag tree algebra, the rule generation is based
on the phrase structure of a subtree. This means that the RTG line (its left-
hand side, and the arguments on the right-hand side) is derived from the phrase
structure tree, and the [tree] interpretation either simply reflects the node type
of the head and the number of its children or a merge operation is performed
between two subtrees. To generate the [ud] and [fourlang] interpretations, the
order of the nodes in the phrase structure tree must be considered, as the di-
rection of some edges in these graphs are reversed with regards to the order of
nodes in the phrase structure tree, and this must be reflected in the generated
rules. The edge types in the [fourlang] interpretation are derived from the UD
edge types using a predefined mapping implemented before Figure 1. This map-
ping also contains information regarding technical nodes in the 4lang formalism,
which must be introduced for some relations in the [fourlang] interpretation to
produce the correct 4lang representation of the given structure.

In our experiment we have limited our grammar to trees with an NP as a
root node and any node within a tree must have at most three children. This
subset makes 84,8% of all NPs of the Penn Treebank.



Dependency Edge
advcl w1

0−→ w2

advmod
amod
nmod
nummod

appos w1

0
⇀↽
0

w2

dislocated

csubj w1

1
⇀↽
0

w2

nsubj
ccomp w1

2−→ w2

obj
xcomp
The treatment of case

case + nmod w1
1←− w3

2−→ w2

case + nsubj
case + obl
English subtypes
obl:npmod w1

0−→ w2

nmod:tmod w1
1←− AT 2−→ w2

obl:tmod
nmod:poss w2

1←− HAS 2−→ w1

Table 1. UD-conform version of the dep_to_4lang mapping.



Figure 5 presents the structure of the phrase a long way regarding the tree
and graph interpretations.

Fig. 5: Configurations of the phrase structure tree, the UD graph and the 4lang
graph for the phrase a long way.

As the structures of the phrase structure tree and the UD graph are funda-
mentally different, their respective rules for each interpretation must be imple-
mented to accommodate that. Appendix A presents the rules which are respon-
sible for parsing the aforementioned sentence.

When processing this IRTG, first a derivation tree (Figure 6) is built by
parsing the input according to the specified interpretation and the correspond-
ing RTG rules. If a viable derivation tree is found, corresponding outputs are
created based on all the other interpretations. For example, if the input is an UD
graph, then a phrase structure tree, a string and a 4lang graph can be retrieved
as outputs. The outputs are built from the leaf nodes of the derivation tree ac-
cording to the rules of the interpretations’ respective algebra. In the terminal
rules, a word, a subtree or a subgraph is produced for the string, the phrase
structure tree, and the UD and 4lang graph interpretations. Then the N_BAR
-> amod_JJ_NN_NBAR(JJ,NN) rule gets applied. In the string interpretation, a
concatenation of the arguments is executed. In the tree interpretation the sub-
trees are attached to an NP labeled head along with a placeholder node, marked
by *. The UD and 4lang interpretations are almost the same in this step: first
the root label in the subgraph provided as the second argument is renamed to
dep, then merged with the node having the same label in the graph between the
quotation marks. Next the dep label is removed, making the node with this label
internal (not used in later operations). Then the subgraph provided as the first
argument is merged with the root of the graph from the result of the previous
operation. In the rule NP -> det_DT_NBAR_NP(DT, N_BAR) the same operations
are applied in the string and UD interpretations. In the tree interpretation, the
subtree provided as the first argument replaces the placeholder node from the
previous rule. In the 4lang interpretation only the second argument is passed
along, as the determiner doesn’t contain much semantic information. Finally the
S! -> s(NP) rule is simply an identity operation that is, it returns its single
argument in all four interpretations.



Given the previous process, transforming the string a long way to a UD graph
happens as the following. First, each word is mapped to the corresponding termi-
nal rules which in turn create three subgraphs representing each word as a root
labeled node. Then following the derivation tree the rule responsible for concate-
nating the words long and way is matched (N_BAR -> amod_JJ_NN_NBAR(JJ,NN))
which creates an amod relation between the nodes representing the words by
merging them with the graph provided within the [ud] interpretation. The node
label is removed from the node representing the word long, and the other node
(representing way) keeps its root label so it can be used in the following rules.
Next, similar to the previous step, the rule concatenating the two substrings a
and long way is matched (NP -> det_DT_NBAR_NP(DT, N_BAR)) which creates
the det relation between the words a and way by merging the subgraph resulting
from the previous step and the node representing the word a. Finally the start
rule of the derivation tree creation is applied which contains no transformation,
so the result is the graph obtained from the previous step.

s

det_DT_NBAR_NP

amod_JJ_NN_NBAR

way_NNlong_JJ

a_DT

Fig. 6: The derivation tree of the phrase a long way.

3.2 Evaluation

Parsing the Penn Treebank To create a fully functioning IRTG, terminal
nodes (e.g. the words) had to be appended to the rule file. We also had to convert
from the Penn Treebank format to one that is understood by Alto. These tasks
were implemented in Python and the scripts can be found in our repository.

Our grammar have been evaluated on trees with an NP as a root node and
any node within a tree must have at most three children. This subset makes
84,8% of all NPs of the Wall Street Journal section of the Penn Treebank. The
WSJ section contains 243 914 NPs of which 206 841 meet the aforementioned
restrictions. Parsing this subset using the generated grammar resulted in 202
549 successful parses, which makes 97,9% of the test data and 83% of all NPs.
We can transform structures in this subset from any interpretation to any other
interpretation, including converting UD graphs to strings.



Generating text from UD graphs To test our grammar on an independent
dataset (i.e. different from the one that was used for generating it), we have
used a subset of the test data of the Surface Realization Shared Task [18] as
well, which contains UD graphs. We extracted subgraphs corresponding to all
NPs of the first 20 sentences, resulting in a small dataset of 38 noun phrases,
then manually reviewed the output of parsing this dataset using the previously
generated grammar. Our goal was to derive surface realizations from UD graphs.
Our grammar successfully parsed 18 NPs, which makes 47% of the test data.
For the remaining 20 graphs no output was generated. These either contain
dependencies which are not presented in the original input (e.g. flat), or due
to some bugs in the grammar (which need to be investigated), these structures
cannot be recognized by the parser. Some of the successfully parsed graphs had
incorrect word order. As our grammar is non-deterministic, such results are
expected due to the possibility of building multiple structures for the same input
data. Creating a new grammar using maximum likelihood training might resolve
the problem, but the causes of these errors need further investigation.

4 Conclusion and ongoing work

In this paper we presented an IRTG which implements a mapping between four
formalisms, i.e. strings, the output of the Stanford parser, UD v2.1 and 4lang.
Our system covers 83% of the NPs of the Wall Street Journal section of the Penn
Treebank and was capable to retrieve surface realizations from a small subset of
the test data of the Surface Realization Shared Task with limited success.

The grammar allows converting from any of the above algebraic structures
to any or all of the others. A probabilistic version of this grammar (as Alto
supports probabilistic IRTGs) can be trained using any parallel data. If a single
probabilistic IRTG were to implement the parallel parsing of strings, syntactic
constituency structures, dependency graphs and semantic graphs, it could be
trained simultaneously on each of these types of gold-standard data, resulting in
a single end-to-end system for semantic parsing. This might serve as a basis for
semantic generation, paraphrasing or machine translation in the future.



A An example IRTG

The following is an example IRTG for the phrase a long way.

interpretation string: de.up.ling.irtg.algebra.StringAlgebra
interpretation tree: de.up.ling.irtg.algebra.TagTreeAlgebra
interpretation ud: de.up.ling.irtg.algebra.graph.GraphAlgebra
interpretation fourlang: de.up.ling.irtg.algebra.graph.GraphAlgebra

// IRTG for the phrase ’a long way’

S! -> s(NP)
[string] ?1
[tree] ?1
[ud] ?1
[fourlang] ?1

NP -> det_DT_NBAR_NP(DT, N_BAR)
[string] *(?1,?2)
[tree] @(?2,?1)
[ud] merge(f_dep(merge("(r<root> :det (d<dep>))", r_dep(?1))),?2)
[fourlang] ?2

N_BAR -> amod_JJ_NN_NBAR(JJ,NN)
[string] *(?1,?2)
[tree] NP(*,?1,?2)
[ud] merge(f_dep(merge("(r<root> :amod (d<dep>))", r_dep(?1))),?2)
[fourlang] merge(f_dep(merge("(r<root> :0 (d<dep>))", r_dep(?1))),?2)

// terminals:

DT -> a_DT
[string] a
[tree] DT(a)
[ud] "(a<root> / a)"
[fourlang] "(a<root> / a)"

JJ -> long_JJ
[string] long
[tree] JJ(long)
[ud] "(long<root> / long)"
[fourlang] "(long<root> / long)"

NN -> way_NN
[string] way
[tree] NN(way)
[ud] "(way<root> / way)"
[fourlang] "(way<root> / way)"
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