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1 Introduction

In everyday life, we often use the word ‘close’ or ‘similar’ to describe the

meaning of a word in relation to another word. For example, if we cannot

recall the word ‘puppy’, we could say ‘it is a dog, but smaller, younger’.

In another situation, if we cannot remember the word ‘tree bark’, we could

say ‘tree shell’, everyone would understand, because the meaning of ‘shell’

and ‘bark’ are somehow close in our minds. Going further, analogy tasks

encode a certain ‘direction’ of the words e.g. ‘man is to woman as king is to

_____’, and everyone can guess that the _____ is the word ‘queen’. To

give an other example, consider the following sentence: ‘butcher is to knife as

hairdresser is to _____’. We can identify the ‘profession :: tool’ relation

as a relative position of words, giving us a ‘direction’, but the tool in the

first case is also a cutter tool, so we tend to fill the blank with ‘scissors’, as

it fits in both ‘direction’ and ‘proximity’. Both examples treat similarity as

semantic similarity, but one could solve morphological analogy tasks too, like

‘can is to could as shall is to should’.

For a long time, linguists and mathematicians have tried to devise a

method to assign a vector to each word, to embed words into vector space

to be able to describe analogy tasks as finding the closest vector to
−−→
king −

−−→man+−−−−→woman. Critically, most of these efforts, starting with Katz and Fodor

(1963), assumed a discrete vector space (over GF(2) or GF(3)) and the idea

to create continuous vector representations started decades later (Schütze,

1995; Bengio et al., 2003; Collobert et al., 2011). In the recent years, there

has been a huge improvement in natural language processing (NLP) tasks

with the use of such word embeddings, such as negative-sampling skip-gram

models like word2vec (Mikolov et al., 2013a; Goldberg and Levy, 2014).

Due to the agglutinative nature of the Hungarian language, we have a
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magnitude more words than inflected languages like English or Romance

languages. With over 15 case endings only for nouns, and the possibility of

prefixing and suffixing, we have many morphological ways to express our-

selves. One could then ask the question whether the inflected form of the

words are ‘close’ to the non-inflected form of the word, or whether the ‘dis-

tance’ of the words grow bigger as the word is inflected more heavily. To

provide an example, one could say that fa ‘tree’ is similar to fától ‘from the

tree’, while fáinkról ‘of our trees’ is more distant, because the suffixes ‘pull

away’ the word from its nominative form.

In this thesis, we will be analyzing the impact of the words by inflection.

In section 2, we will present necessary definitions and theorems which will be

used in the latter sections. In section 3, we will explain how the word vectors

are created, and why Mikolov et al. (2013a) has a huge importance in NLP.

In section 4, we will demonstrate a method to process the morphological

analyses produced by existing tools to be used in the following sections. At

the end of the section, the measurements treating vector length and log-

frequency in Arora et al. (2015) are verified. In section 5, a general overview

is presented of the clusters established by the vectors of words with the

same morphological analyses, and a similarity measure is defined between

clusters. In section 7, we will compare the clusters by the affixes, measuring

the deviation caused by the affixes.

The main result of this thesis is the defined similarity measure, which

is proven useful for comparing word clusters and verifying the coherence of

existing clusters while offering a slightly different word clustering. Linguis-

tically, according to the model used, the current grammatical categories of

the words are well-founded, with only exception to one part of speech.
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2 Related theory

Definition 2.1. n-sphere

We can define the points of the n-sphere as the boundary points of the r-

radius n+ 1-ball.

Sn = {x ∈ Rn+1 : ‖x‖2 = r} (2.1)

Definition 2.2. Cosine similarity

The cosine similarity shows the cosine of the angle of two vectors.

simcos(u,v) =
〈u,v〉
‖u‖2 ‖v‖2

, where u,v ∈ Rn (2.2)

Definition 2.3. Cosine distance of two vectors

distcos(u,v) = 1− 〈u, v〉
‖u‖2 ‖v‖2

, where u,v ∈ Rn (2.3)

The idea for the method of generating uniformly distributed random

points came from Marsaglia, 1972, where the problem was stated for the

2-sphere.

Theorem 1. Let X be a vector from an n-dimensional standard Gaussian

normal distribution (0, In), where In denotes the identity matrix of n dimen-

sions. Then X
‖X‖2

is uniformly distributed on the n-1-sphere.

Proof. To see the uniformity of the distribution, we need to prove that X

is invariant to orthogonal transformations. For any orthogonal matrix Q,

QX ∼ Nn(0, In), hence the distribution is invariant under any rotation. Let

Y = X
‖X‖2

, then YQ = QX
‖QX‖2

. Since X is invariant to rotation, so is Y , and

since ‖Y ‖2 = 1 almost surely, then it must be evenly distributed on the

sphere.

Definition 2.4. Softmax function

The softmax or exponential normalized function is a logistic function that
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enables to interpret a series of values as a probabilistic variable. Let x ∈ Rn

be a sample, xi ∈ x a numerical observation. We can define the σ softmax

function:

σ(xi) =
exi
n∑
j=1

exj
for i ∈ 1, . . . , n (2.4)

Definition 2.5. Entropy

Information entropy is the average amount of information conveyed by an

event, when considering all possible outcomes. Let xi be events of X random

variable.

H(X) = −
n∑
i=1

P(xi)log2P(xi) (2.5)
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3 Creating vectors from words

You shall know a word by the

company it keeps.

John Rupert Firth

3.1 Vector space models

The idea of transforming text into vectors dates back to 1975 (Salton, Wong,

and Yang, 1975), when Salton decided to create a large occurrence dictio-

nary from multiple documents, then characterizing each document by the

occurrences of the words from the vocabulary. The ‘statistical semantics hy-

pothesis’ assumes that the word frequencies describe the meaning of the doc-

ument. One could then measure the similarity of these document vectors by

using their euclidean, cosine, Manhattan, or Jacquard distance. A document

about cats must contain the word ‘cat’ with greater frequency, another doc-

ument about domestic animals contains the word ‘cat’ with high frequency,

so the respective coordinates for the two document vectors will be similar.

One can even organize these vectors into clusters, creating groups of docu-

ments covering specific topics. Having document vectors enables querying a

document database, we can create queries for specific phrases, thus allowing

indexing and searching through large libraries. The so-called ‘bag-of-words’

hypothesis states exactly this phenomenon, a document’s word frequencies

show the relevance of the document to a query of the words. We can also

calculate the tf-idf product ‘term frequency – inverse document frequency’

product for each word. If a word appears frequently in one document, it has

high ‘term frequency’, and if that word appears only in a few documents,

it has high ‘inverse document frequency’, the tf-idf product is high, so that
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word is important for the document in a document collection (Turney and

Pantel, 2010).

Taking this one step further, for each word, we could count how many

times the other words from the vocabulary appears in a nearby window (in

a certain length to each direction, usually chosen from 2 to 5). That way,

we create a context vector for every word in the vocabulary, and as the

quote says, the context of a word describes the word itself. Furthermore, the

‘distributional hypothesis’ states that words in similar contexts have similar

meanings (Deerwester, Dumais, and Harshman, 1990; Harris, 1954). Spot-

ting this among the word vectors is quite easy – if two vectors are similar by

some similarity measure, the corresponding words have similar meaning.

This method seems easy and simple, but neural networks soon proven a

better and more efficient way of generating word vectors than linear counting.

(Mikolov et al., 2013b)

3.2 Skip-gram with negative sampling

The idea of neural networks dates back to the 40s (McCulloch and Pitts,

1943), when McCulloch created a computational network. The main idea is

that our brain is composed of neurons (nodes) and synapses (edges). We learn

and memorize by creating and strengthening synapses, and an artificial neural

network – by analogy – should learn by strengthening and weakening weights

on the edges based on the sample it receives. Constructing and training a

neural network is a difficult task, because we do not have a strong idea how

to interpret the weights of the edges or the nodes themselves – a neural

network is a black box, and we do not always know how the architecture of

the network should look like, or how we should train a network.

The architecture in a skip-gram model consists only of a single hidden
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layer and an output layer with a softmax classifier. The task of the model is,

for every word in the vocabulary, to learn the probabilities of every other word

being in the context of the vocabulary word. In the following paragraphs,

we will be using the figures of Chris McCormick to illustrate the model.

Figure 1: Network architecture

The input is a one-hot vector representing the word, and the output is

a probability vector. As we can see, there are separate weights for each

coordinate, and the number of nodes in the hidden layer defines the number

of weights. If the hidden layer counts 300 neurons, then we will have 300

weights for each coordinate, thus for every word. To summarize, we create a

model to do a fake task (predicting contexts) only to learn the input weights

to be used as vectors. The same way, the model also learns the output

weights and the classifation problem reduces to a matrix dot product and to

a softmax classifation problem.
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Figure 2: Classifying with skip-gram

For adjusting the weights, the model uses backpropagation, which is a

method for refreshing the weights by calculating the partial differentials of

the error caused by each weight. The main difference from the traditional

neural networks are the subsampling, negative sampling, and the use of skip-

grams, not continuous bag-of-words (CBOW). Skip-gram, in comparison to

bag-of-words, predicts the context from the specific word (the model ‘skips’

the word), while bag-of-words predicts specific words from their contexts.

Subsampling is a technique to reduce the importance of the common

words in the corpus. The intention behind the subsampling is that the words

like ‘the’, ‘a’, ‘have’ occur very frequently, yet encode little semantic informa-

tion about the context. The subsampling is probability based and uses the

following function to determine the probability that the word wi should be

taken into account when updating the weights of the neural network, where

z is the relative frequency function.

P(wi) =

(√
z(wi)

0.00001
+ 1

)
· 0.00001
z(wi)

(3.1)

Negative sampling is a technique to reduce calculation time. Without

negative sampling, for each word, we would need to increase the weight of

the edges of the correct guess (reward the specific edges for guessing the word

right), and we would need to decrease the weights which predicted the context
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wrong, so we would update every weight for every item in the vocabulary each

training step. With negative sampling, we select a few noise words (5, in our

case), and we update the network only by the error produced by these noise

words. Thus for each training step, we would update the network 1+5 times.

3.3 gensim word2vec

The software we are using to create word embeddings is Radim Řehůřek’s

gensim. (Řehůřek and Sojka, 2010) It is a Python package created in 2010

to ease the usage of word embeddings, but ended up being one of the most

robust, efficient and hassle-free softwares to realize unsupervised semantic

modeling from plain text. While the software offers the possibility of fine-

tuning every hyperparameter, by default it reduces noise, smooths vectors,

and even removes words with low frequency and low semantic distinguishing

value, so we used the default hyperparameters in the creation of our models:

method of training is ‘skip-gram with negative sampling’, the dimension of

the word embedding is 200, the window used is 5 words in both directions,

and negative sampling is set to 5, meaning that for every training iteration,

5 ‘noise words’ are drawn. The minimal samples were set to 5, meaning

that the model automatically cropped rare words. The training consisted

of 5 epochs, which was really fast, around 300000 words/second (while the

corpus being gzipped) with Dual Xeon E5620 processors running at 2.40

GHz, it took around two and half hours for the whole corpus.
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4 Manipulating the corpus

In the following section, we will offer a method to efficiently encode each

word’s morphological analysis without overly granulating the labels, while

retaining the most of the underlying morphological structure.

4.1 Hungarian Webcorpus

The text corpus which we are using is the Hungarian Webcorpus, one of

the largest Hungarian language corpora ever created, available in its entirety

under Open Content license (Halácsy et al., 2004; Kornai et al., 2006). The

corpus is based on 18.7 million pages crawled from the .hu domain. We

are using the most noise-reduced subset, which has the duplicates, foreign

language pages, and script-generated text (such as dates, headlines, tables of

content) removed, leaving 710m word and punctuation tokens.

4.2 Morphological analysis and word normalization

In order to get the morphological analysis for each word, we used the e-

Magyar digital language processing system (Váradi et al., 2017). E-magyar

offers a toolchain for corpus lemmatizing, morphological analysis, speech pro-

cessing, etc., however, in this thesis, we are only interested in obtaining every

morphological analysis for each word, regardless of the context, and how easy

it would be to disambiguate a word. For that, we used the emMorph module.

(Novák, Siklósi, and Oravecz, 2016)

The emMorph module is relatively easy to use, nonetheless, the interpreta-

tion of the morphological analyses plays a vital role in understanding this

thesis.
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Word Morphological analysis

számára szám[/N]a[Poss.3Sg]ra[Subl]

számára szám[/N]ár[/N]a[Poss.3Sg][Nom]

számára számára[/Post|(Poss)][Poss.3Sg]

óriási óriás[/N]i[_Adjz:i/Adj][Nom]

óriási óriási[/Adj][Nom]

női nő[/N]i[_Adjz:i/Adj][Nom]

női női[/Adj][Nom]

női nő[/N]i[Pl.Poss.3Sg][Nom]

We can see 3 fundamentally different analyses for the word számára here.

The first line means that the word root is szám, a noun ([/N]), the following

suffix is a, a third-person singular possessive suffix ([Poss.3Sg]), and the

last suffix is ra, a sublative suffix ([Subl]), meaning ‘onto his number’. The

second line marks a compound word, more specifically, a noun-noun com-

pound ‘number-price’ again in the possessive form ‘his number-price’. The

label marked by / codes the major category (part of speech) inflected with

a third-person singular possessive suffix and the [Nom] marks the nomina-

tive case. The third line corresponds to the usual postpositional sense of the

word, ‘for him/her’.

Considering that we need to create a single token from multiple analyses,

we need to devise a way of achieving that. We cannot simply concatenate

these lines, because in the end, we want to have the same token for női

‘women-related, female (adj.), his or her women’ and for óriási. The solution

is evident – we need to cut everything outside the square brackets, and then,

concatenate them with a special marker (<>) indicating the ambiguous nature

of the word. This still does not fulfill our expectations for a word with the

label [/N][Nom]<>[/Adj][Nom] would be different than a word with the
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[/Adj][Nom]<>[/N][Nom] label. To avoid this, we sorted the analyses in

lexicographic order.

Compounds and derived words still pose problems. Consider the following

words:

Word Morphological analysis

elméleti elmélet[/N]i[_Adjz:i/Adj][Nom]

elméleti elméleti[/Adj][Nom]

együttműködés együtt[/Adv]működik[/V]és[_Ger/N][Nom]

együttműködés együtt[/Prev]működik[/V]és[_Ger/N][Nom]

együttműködés együttműködés[/N][Nom]

számítógépes számít[/V]ó[_ImpfPtcp/Adj]

gép[/N]es[_Adjz:s/Adj][Nom]

számítógépes számít[/V]ó[_ImpfPtcp/Adj]

gép[/N]es[_Nz:s/N][Nom]

számítógépes számítógép[/N]es[_Adjz:s/Adj][Nom]

számítógépes számítógép[/N]es[_Nz:s/N][Nom]

Since it is unnecessary to store the fact that an adjective was derived from

a noun, we can further simplify the variety of the labels. Furthermore, we

can drop the analysis of the compound word until the last stem, meaning

számítógépes ‘computational, computer-related, person using a computer’

becomes [/Adj][Nom]<>[/N][Nom]. Együttműködés ‘cooperation’ becomes

[/N][Nom] and elméleti ‘theoretical’ becomes [/Adj][Nom]. To summarize

the changes we have made so far:
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Word Morphological analysis

számára [/N][Poss.3Sg][Nom]<>[/N][Poss.3Sg][Subl]<>

[/Post|(Poss)][Poss.3Sg]

óriási [/Adj][Nom]

női [/Adj][Nom]<>[/N][Pl.Poss.3Sg][Nom]

elméleti [/Adj][Nom]

együttműködés [/N][Nom]

számítógépes [/Adj][Nom]<>[/N][Nom]

Noise still remains in the corpus. We can notice a pattern concerning the

numbers:

Word Morphological analysis

60 [/Num|Digit][Nom]

13 [/Num|Digit][/Num|Digit][Nom]

1.5 [/Num|Digit][/Num|Digit][/Num|Digit][Nom]

10,5 [/Num|Digit][/Num|Digit][/Num|Digit][/Num|Digit][Nom]<>

[/Num|Digit][/Num|Digit][/Num|Digit][Nom]

6-8 [/Num|Digit][Nom][Hyph:Hyph][/Num|Digit][Nom]

2002 [/Num|Digit][/Num|Digit][/Num|Digit][/Num|Digit][Nom]

In the sentence ‘ten green bottles hanging on the wall’, we can replace

‘ten’ with an arbitrary number without changing the apparent meaning of

the sentence: ‘there is an arbitrary number of bottles hanging on the wall’.

We do not need to retain the fact that there is a dot, a comma, or a hyphen

in a number. The rule we used to filter out these instances was the following:

if [/Num|Digit][Nom] was the end of the morphological analysis, we have

shrunk the analysis to ‘digit, nominative case’.

Until this point, we have only written about the normalization of the mor-

phological analyses, but seeing the next few examples, we need to construct
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a way to eliminate the inconsistencies in our data.

Word Morphological analysis Freq
folytatni [/V][Inf] 19456
folytatni. [/V][Inf][Punct] 182
Isk UNKNOWN 19
Isk. [/N|Abbr][Nom]<>[/N|Abbr][Nom][Punct] 6047
feketére [/Adj|col][Subl] 1100
Feketére [/Adj|col][Subl]<>[/N][Subl] 28
nagy [/Adj][Nom]<>[/Adv|AdjMod] 655076
Nagy [/Adj][Nom]<>[/Adv|AdjMod]<>[/N][Nom] 107074
NAGY [/Adj][Nom]<>[/Adv|AdjMod]<>[/N][Nom] 2531
nagy- [/Adj][Nom][Hyph:Hyph]<> 1299

[/Adv|AdjMod][Hyph:Hyph]<>
[/CmpdPfx][Hyph:Hyph]

Nagy- [/N][Nom][Hyph:Hyph] 257
nagy. [/Adj][Nom][Punct]<>[/Adv|AdjMod][Punct] 134
-Nagy [/N][Nom] 66
-nagy [/Adj][Nom]<>[/Adv|AdjMod] 46
...nagy UNKNOWN 40

As we can see, there are similar words with often similar morphological

analyses, but with extra characters before or after them, and often with vary-

ing case. My algorithm to clear these inconsistencies is based on carefully

grouping the lowercased form of the words by stripping the non-alphanumeric

characters before and after the alphanumeric characters, and then merging

words having the same stripped word form and the approximately same mor-

phological analysis. The approximately same morphological analysis means

that either the word has [Hyph:Hyph], [Punct]or [Hyph:Slash] in the end,

which can be discarded, or the word’s analysis is subset of a more frequent

word’s analysis with the same stripped form. In our case, folytatni ‘to con-

tinue’ will be merged with folytatni., because they have the same stripped

form and the latter has [Punct] in the end. The word Isk (abbreviation for
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school) will be merged with Isk. because they share the same stripped form,

the latter has higher frequency, and the former has UNKNOWN analysis. We

cannot merge Feketére with feketére, because the capital cased variant has

additional meaning (‘onto the black one’ vs ‘onto a person named Black’).

In the case of nagy, ‘big, great’, we have color coded the merges to make it

clearer. First, they have the same stripped form not shown in the table, nagy,

so we can concentrate on the analyses. Here, like in the previous case, the

capital cased variant has the meaning ‘Great’, as shown in the morphological

analysis [/N][Nom]. We can see the hyphenated word nagy-, which can be

used in compounds: nagy- és kisvárosok ‘big and small towns’. The boldface

fonts mark that the word will remain in the corpus and that words having

the same stripped form, similar analysis, and lower frequency will be merged

into that word.

The effect of these simplifications is summarized in the next table:

Before After Reduction

word types 7728127 7449116 3.61%

morphological analyses (labels) 139640 9245 93.4%

number of unknown tokens 6321835 5747920 9.08%

4.3 Obtaining word vectors

After obtaining the word embedding, we needed to measure the length of the

vectors obtained. If we could project them to the surface of the unit sphere

without great loss of information, we could compare them more easily.
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Figure 3: Length versus log2(frequency)

We can see a strong connection between the log-frequency of the words

and the length of their vectors (Arora et al., 2015), so we have projected the

words onto the surface of a 200-ball and added a set of 200000 uniformly

distributed random vectors as a baseline for measurements.

An other characteristic of the skip-gram model is that it prefers placing

the words in a specific part of n-dimensional space. It is hard to measure this

because plotting the 2- or 3-dimensional PCA projection of the points lead

to far not obvious figure. One technique to measure the spatial preference of

the model is to count the relative frequency of each coordinate being positive,

then plotting these numbers in an ascending order.
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Figure 4: Probability of a certain coordinate being positive

The figure above shows that some coordinates are highly likely to be in

the positive half of the space, while other coordinates are highly likely to be

in the negative half of the space. If it were random, than the line would be

flat - every coordinate would have 0.5 probability to be positive or negative.
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5 Understanding word vectors

Justify my love.

Madonna

With our model trained, we could extract the hidden input weights from

the neural network of the model – our data, the vectors. We suspect that

there is a coherent structure in this vector space and each vector encodes a

certain meaning and grammatical structure. We would like to justify that

the clustering methodology we will be using in the following two sections

is a viable approach to classify word vectors and that we can analyze these

clusters in a way that helps understanding the word vectors.

We would like to emphasize the nature of this phenomenon, because the

model used has no a priori knowledge of these grammatical categories, how-

ever, it will be seen that the clusters are indeed coherent in spite of the lack

of grammatical knowledge.

5.1 Clusters

The problem a data scientist often faces is data presentation. In lower dimen-

sions, we have techniques to visualize features, be it continuous, categorical,

ordinal, with the addition of colors, using bigger or smaller dots in a scatter

plot, using triangles for females, squares for males, we can visualize up to

4 or 5 dimensions without having an overly complicated figure. That is to

say, if there is a slight hierarchy and we have some categorical features. In

our case, having 200 equally important dimensions, we cannot select 3 and

consider only those when we want to plot the data.

Nevertheless, we have tools from linear algebra to choose a mix of dimen-

sions while retaining as much variance as possible from the original data,
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and this method is called principal component analysis. Plotting a sample of

1000 vectors from the spherical projection of the first 3 principal components

of certain cluster of word vectors yielded an interesting figure:

Figure 5: Clusters on the unit sphere

As we can see, each of these 3 clusters seem to have a core or a dominant

quadrant – a dense area where most of the points are settled, and the points

get sparser farther dense area. We need to verify if this phenomenon persists

in the whole 200-dimensional space, and we need to find a way to identify a

core and measure the density of these clusters.

5.2 Cluster statistics

To find out whether there is coherent structure of the word vectors, first,

we need to analyze the clusters. One way of doing is the comparison of the

standard deviations and the entropy of the clusters. If a cluster’s standard

deviation is high, it indicates low density, the lack of a core, and incoherent
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structure. If the standard deviation is lower, it indicates a higher density, a

more characteristic core. Plotting the clusters by their standard deviation

on the x axis, and by the number of occurrences and their entropy on the y

axis yields these two plots:

Figure 6: Scatter plots of clusters

On the first figure, we can see a square-like shape, showing weak correla-

tion between the frequency and the standard deviation. The scatter plot of

the entropy-standard deviation shows that higher entropy generally means

higher standard deviation, however, after filtering out morphological analyses

with low number of words, first 5, then 50, the plot showed a more circular,

yet correlated shape:
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Figure 7: Scatter plots of clusters

We can spot a few outliers on this figure. The most notable in the upper-

right corner is the RANDOM cluster, generated as stated in theorem 1, showing

that our data is far less random than uniform random, the other two with

high entropy are the cluster with the UNKNOWN label, and the cluster with

12.5 entropy is the [/N][Nom] cluster, mainly because it is the largest by

frequency.
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6 Quantifying similarity

In the following section, we are defining and giving intuition to a similarity

measure between sets of vectors on the n-sphere, and applying it to the

clustered word vectors.

6.1 Measuring the density

It is hard to have intuition in 200-dimensional space, especially on the surface

of the 200-dimensional ball (called 199-sphere), but having the right intuition

about the volume and the surface of the 200-ball is crucial in the evaluation

of the following figures. First, let’s see a theorem about the surface of the

n-sphere, stated by Hopcroft and Kannan (2014):

Theorem 2. For any c > 0, the fraction of the surface above the plane

x1 =
c√
n−2 is less than or equal to 4

c
e−

c2

2 .

Definition 6.1. n-cap

Let m ∈ Sn, let α ∈ [−π, π]. The cap defined by m, α is

capα(m) = {x|x ∈ Sn ∧ 〈m,x〉 ≥ cos(α)} (6.1)

which is equivalent to

capα(m) = {x|x ∈ Sn ∧ simcos(m,x) ≥ cos(α)} (6.2)

We can combine the theorem and the definition above to get an upper

bound for the ratio of the surface of the cap and the n-sphere. Substituting

c = cos(α)
√
n− 2 into theorem 2, we get an upper bound of 0.4 for α =

11π
24

and 0.001447 for α = 11π
12

. We can verify this upper bound by placing

uniformly random points on the surface of the n-sphere and counting the

points inside the cap, however, this method appeared to be unreliable for

24



20000 points on the surface of the 199-sphere, that is why the random sample

was increased to 200000 points. With this method, we can finally measure

and plot the ratio of points inside capα and compare this ratio to the random

sample. To measure the compactness of clusters, we use an increasing cap

around the cluster centroid, and plot the ratio of word vectors lying in the

cap as a function of the minimal similarity of words to the cluster centroid.

Note that the cap increases from the right of the figure to the left.

Figure 8: Ratio of points in a capα(meancluster)

As we can see in fig. 9, the RANDOM cap vanishes around cos(α) = 0.2 (for

this α, theorem 2 limits the relative surface of the cap to 0.027), while the

other clusters, most notably the [/Num|Digit][Nom] (digit in nominative

case) shows the strongest coherence, which seems intuitive, as the numbers

mostly indicate quantity, amount (counterexamples are dates, or symboli-

cal numbers like 7, 3, 24/7). The [UNKNOWN] cluster shows high coherence,

the reason can be the fact that this cluster is dominated by nouns. The

[/V][Prs.NDef.3Sg] cluster (third person singular verbs) show the same co-

herence as the [/N][Acc] cluster (accusative nouns), while the [/Adj][Nom]
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cluster (adjectives in noun case) show lower coherence than any of the clusters

other than the RANDOM presented on the figure.

Since we want to filter out noise, and our ultimate goal is to measure sim-

ilarity, we can use the ratio of the words in a capα with fixed α to measure

self-similarity, and we can also calculate the ratio of some words in other clus-

ters’ cap. That way, we obtain a asymmetrical similarity measure. Obtaining

the fixed α is based on filtering out the most noise, the most randomness. We

use RANDOM as a base of comparison: in fig. 9, we show the ratios with that

corresponding to RANDOM subtracted. Plotting showed us that the maximal

difference is around cos(α) = 0.13, so we have chosen α = 11π
24

(82.5◦) to have

a round number, because cos(11π
24

) = 1

2

√
2−
√

2+
√
3
≈ 0.1305.

Figure 9: Difference of the ratios from RANDOM

6.2 Adjectives

In section 6.1, we have presented that the [/Adj][Nom] cluster has unex-

pectedly low coherence. Reviewing our methodology has shown us that the

comparative and superlative forms of the adjectives were merged with the
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non-comparative adjectives. This happened because we have cropped the

derivation markers from the morphological analyses show in section 4.2. Con-

sider the following examples:

Word Morphological analysis

melegebb [/Adj][_Comp/Adj][Nom]

legjobb [/Supl][/Adj][_Comp/Adj][Nom]

legmegfelelőbb [/Supl][/Prev][/V][_ImpfPtcp/Adj][_Comp/Adj][Nom]

The superlative affix is located at the beginning of the words in the Hun-

garian language. As a direct consequence, the affix is marked before the

root, thus it was cropped. The comparative nature of the adjectives is also

marked before the root as [_Comp/Adj]. The word melegebb ‘warmer’ poses

no additional problem, we can use its analysis after cropping the [/Adj]

from the beginning of the word. The superlative forms legjobb ‘the best’ and

legmegfelelőbb ‘the most suitable’ are a bit more complicated. Due to the

agglutinative nature of the language, a lot of affixes can appear between the

[/Supl] (superlative affix) and the root. We cropped everything between

them by the same reason we cropped in section 4.2, the fact that the word

was derived is not important, we only need the comparative adjective nature

of the word.

Replotting the figure presented in section 6.1, we can clearly see that

the separate clusters of the comparative adjectives results in very coherent

clusters, even better clusters, than the digits themselves. The [/Adj] cluster

became only slightly more coherent, but this does not come as a surprise

since only the 3.86% of the adjectives are comparative.
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Figure 10: Ratio of points in a capα(meancluster) with finer adjective clustering
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7 The role of affix frequency

In the following section, we are examining the clusters based on their case

endings to see whether some specific case endings contribute significantly

more to the similarities than other case endings.

7.1 Self-similarities

We can use the defined similarity measure to see whether the clusters are

justified. Consider the following clusters and their respective self-similarities:

Cluster Self-similarity
[/Adj][Nom] 0.822
[/Adj][EssFor:ként] 0.904
[/Adj][Supe] 0.910
[/Adj][Subl] 0.924
[/Adj][Acc] 0.941
[/Adj][Ade] 0.945
[/Adj][Ill] 0.960
[/Adj][All] 0.978
[/Adj][Transl] 0.994
[/Adj][EssFor:képpen] 1.000
[/Adj][Temp] 1.000

We can see that the more specific case endings like [/Adj][Transl] and

[/Adj][Temp] (translative and temporal case) show higher self-similarity,

while the more general ones like [/Adj][Nom] and [/Adj][Supe] (nomi-

native and superessive) show lower self-similarity. This tendency continues

with the cases of noun, where [/N][All] and [/N][Transl] (allative and

translative) are among the highest self-similarity cases and [/N][Nom] has

one of the lowest self-similarity from the paradigm. More examples can be

found on the next page.
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Cluster Sim Cluster Sim Cluster Sim

[/Adj][Nom] 0.822 [/N][EssFor:képp] 0.889 [/Num][Nom] 0.908

[/Adj][EssFor:ként] 0.904 [/N][Nom] 0.922 [/Num][Del] 0.955

[/Adj][Supe] 0.910 [/N][Ess] 0.926 [/Num][Dat] 0.957

[/Adj][Subl] 0.924 [/N][EssFor:ként] 0.936 [/Num][Ter] 0.960

[/Adj][Ine] 0.929 [/N][Ine] 0.937 [/Num][Cau] 0.971

[/Adj][Ela] 0.936 [/N][EssFor:képpen] 0.941 [/Num][Ill] 0.977

[/Adj][Acc] 0.941 [/N][Cau] 0.946 [/Num][All] 0.978

[/Adj][Ade] 0.945 [/N][Ade] 0.949 [/Num][Ine] 0.980

[/Adj][Ins] 0.951 [/N][Hyph:Hyph] 0.957 [/Num][Acc] 0.983

[/Adj][Abl] 0.959 [/N][Ter] 0.962 [/Num][Subl] 0.984

[/Adj][Ill] 0.960 [/N][Supe] 0.962 [/Num][Ela] 0.985

[/Adj][Cau] 0.961 [/N][Abl] 0.964 [/Num][Ade] 0.988

[/Adj][Del] 0.961 [/N][Acc] 0.966 [/Num][Ins] 0.992

[/Adj][Ter] 0.963 [/N][Temp] 0.966 [/Num][Abl] 1.000

[/Adj][Dat] 0.967 [/N][Ela] 0.968 [/Num][EssFor:ként] 1.000

[/Adj][All] 0.978 [/N][Del] 0.969 [/Num][Supe] 1.000

[/Adj][Transl] 0.994 [/N][Ill] 0.969 [/Num][Temp] 1.000

[/Adj][EssFor:képp] 1.000 [/N][Dat] 0.969 [/Num][Transl] 1.000

[/Adj][EssFor:képpen] 1.000 [/N][Subl] 0.969

[/Adj][Hyph:Hyph] 1.000 [/N][Ins] 0.972

[/Adj][Prs.NDef.3Sg] 1.000 [/N][Transl] 0.979

[/Adj][Temp] 1.000 [/N][All] 0.979

[/N][Inl] 1.000

[/N][Prs.NDef.3Sg] 1.000

30



7.2 Coherent clusters

We now return to clusters that are more frequent or have higher entropy

(already shown in fig. 6). We partitioned the clusters into 20 equal bins by

their respective standard deviation, then calculated the mean and the stan-

dard deviation (σ) of the vectors of each cluster. The clusters with difference

from the mean by more than 2σ are the interesting clusters, meaning that

their standard deviation is significantly lower than the typical cluster of the

same frequency (fig. 12) or entropy (fig. 11). We can measure the difference

from the mean in σ.

Figure 11: Binning clusters by standard deviation

On the figure, we can see that most of the points lay in the 1σ stripe,

and the 2σ stripe is also rather populated. Each stripe is monotonically

increasing. The interesting clusters are the ones above the 2σ stripe, because

compared to their high entropy their variance is smaller than expected.

Taking a closer look at the bigger, non-ambiguous clusters (counting more
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than 5000 words) outside the 2σ reveals that the nouns, be they plural or

singular, form highly coherent clusters, and UNKNOWN shows the least coher-

ence. The presence of infinitive and plural third person verbs among these

most coherent clusters is very interesting, because verbs in general did not

show strong coherence.

Bin σdiff Cluster Simself #Words Frequency
0.45 5.75 [/V][Inf] 0.988 14071 6677547
0.50 2.88 [/Num|Digit][Nom] 0.977 26666 6000563
0.55 2.25 [/V][Prs.Def.3Pl] 0.990 5230 1312497
0.55 2.56 [/N][Pl][Subl] 0.980 6795 582972
0.55 2.20 [/N][Pl][Supe] 0.979 5325 519220
0.55 2.72 [/N][Pl][Ins] 0.982 10135 955157
0.55 2.17 [/V][Prs.NDef.3Pl] 0.989 10486 3296388
0.55 2.94 [/N][All] 0.979 13858 1073443
0.60 2.60 [/N][Ins] 0.972 32886 3868455
0.60 2.37 [/N][Del] 0.969 12867 883380
0.60 2.44 [/N][Pl][Nom] 0.967 47068 11506915
0.60 2.28 [/Adj][Pl][Nom] 0.968 10934 1229296
0.60 2.57 [/N][Dat] 0.969 21785 1939670
0.60 2.42 [/N][Subl] 0.969 25687 3469518
0.60 2.21 [/N][Pl][Acc] 0.974 20702 3601070
0.60 2.25 [/N][Abl] 0.964 10270 649706
0.60 2.22 [/N][Ela] 0.968 12717 1028608
0.65 2.04 [/N][Ade] 0.949 7324 363706
0.65 3.99 UNKNOWN 0.892 199475 5643460
0.65 2.58 [/N][Acc] 0.966 61671 12617934
0.65 2.06 [/N][Poss.3Sg][Acc] 0.962 14164 2823258
0.70 2.48 [/N][Nom] 0.922 144945 50298170

We can look up the outliers by frequency the same way we did by entropy.

The figure in this case looks a bit different, because we are not able to

visualize frequency on a linear scale, thus the mean, which minimizes the
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squared error of the points, is much higher on the figure than on the usual

figures.

Figure 12: Binning clusters by standard deviation

There are less clusters outside the 2σ stripe, and most of them are also

present on fig. 11, which can be expected since there is correlation between

the entropy and the frequency. The singular, third person verbs appear in

this list, and they also show high coherence. The entirety of the bigger, non-

ambiguous clusters located outside the 2σ can be found below.
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Bin σdiff Cluster Simself #Words Frequency
0.45 18.70 [/V][Inf] 0.988 14071 6677547
0.50 17.57 [/Num|Digit][Nom] 0.977 26666 6000563
0.55 3.87 [/V][Prs.NDef.3Pl] 0.989 10486 3296388
0.60 3.12 [/N][Ins] 0.972 32886 3868455
0.60 2.86 [/V][Prs.Def.3Sg] 0.982 7369 3564999
0.60 9.76 [/N][Pl][Nom] 0.967 47068 11506915
0.60 2.78 [/N][Subl] 0.969 25687 3469518
0.60 2.89 [/N][Pl][Acc] 0.974 20702 3601070
0.60 3.20 [/N][Supe] 0.962 17881 3959914
0.60 11.11 [/V][Prs.NDef.3Sg] 0.966 15483 13067569
0.65 3.44 [/N][Ine] 0.937 24379 5801299
0.65 3.35 UNKNOWN 0.892 199475 5643460
0.65 7.81 [/N][Acc] 0.966 61671 12617934
0.70 5.14 [/N][Nom] 0.922 144945 50298170
0.70 2.66 [/Adv] 0.852 19591 27564415
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7.3 Asymmetrical similarity

In section 6.1, we have already given the idea to compare one cluster’s mean

to another cluster’s elements. When comparing not round-shaped clusters,

this way of measuring similarity introduces asymmetry. Plotting a histogram

of the differences (by subtracting the upper triangular matrix from the lower

triangular matrix while preserving the direction of the comparison) shows a

distribution quite close to normal distribution.

Figure 13: Distribution of symmetrical differences

Most of these differences are around 0, showing that most of the clus-

ters are approximately round shaped. The two tails of the distribution are

the important parts, because they show us pairs of clusters whose pairwise

similarity in one direction is 1, while in the other direction this similarity is

0. One example to this phenomenon is the pair of [/N|Pro][Subl][1Sg]

[/N|Pro][3Pl][Dat]<>[/N|Pro][Poss.3Pl][Dat] clusters. Both of the
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clusters contain 4 vectors, but the words of the first cluster have 84456 oc-

currences in the corpus, and the words of the second cluster count 1090

occurrences. The words are pronouns in both cases, the first clusters’ words

are énrám, reám, rám, énreám, meaning ‘onto me’ with variable spelling,

the difference is only stylistic, the words of the second cluster are néme-

lyiküknek, valamelyiküknek, mindegyiküknek, bármelyiküknek, the first one

meaning ‘to some of them’ and ‘of some of them’, while the rest meaning

the same, but changing ‘some’ to ‘specific one’ , ‘all’, ‘any’. The relation of

‘valamelyiküknek’ and ‘bármelyiküknek’ is strongly simplified in the previous

sentence, but the explanation of this semantical difference is not the subject

of this thesis. One reason for this strange phenomenon is that the énrám,

reám, rám, énreám have identical meanings, the standard deviation of their

cluster is very low, 0.04, while the other cluster of 4 words have significant

difference in their meanings.

In the following sections, the asymmetry is of less importance. We can

create a pairwise symmetrical similarity measure by taking the mean of their

2 similarities. As shown in fig. 13, most of the pairwise similarities have

difference below 0.1, thus we do not lose much by symmetrizing the similarity

measure.

7.4 Subcategories

E-magyar creates multiple subcategories for adjectives, nouns and numbers,

and we can measure the pairwise similarity of their paradigms. If some sub-

categories show high similarity, we can say that it is not worth preserving

as separate categories. Comparison of the subcategories to the [/Adj] cate-

gories yields interesting results.
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Cluster1 Cluster2 similarity cases
[/Adj][.] [/Adj][.] 0.954 22
[/Adj][.] [/Adj|col][.] 0.921 14
[/Adj][.] [/Adj|nat][.] 0.900 16
[/Adj][.] [/Adj|Attr][.] 0.865 7
[/Adj][.] [/Adj|Pro][.] 0.843 18
[/Adj][.] [/Adj|Pro|Rel][.] 0.549 7
[/Adj][.] [/Adj][Pl][.] 0.884 17
[/Adj][Pl][.] [/Adj][Pl][.] 0.956 17
[/Adj][Pl][.] [/Adj|col][Pl][.] 0.949 9
[/Adj][Pl][.] [/Adj|nat][Pl][.] 0.943 16
[/Adj][Pl][.] [/Adj][Poss.1Sg][.] 0.855 10

[.] marks the pairwise comparison of single morphemes, so in the first

few examples, we compare singular forms to singular form (because singular

forms are not marked, thus a single morpheme after the word root must

mean singular), and in the cases after, the plural forms. We can see a

declining similarity when comparing more and more specific clusters, with

the [/Adj|col][.] (adjectives describing colors) and [/Adj|nat][.] (ad-

jectives describing nationality) being relatively similar to [/Adj][.], while

[/Adj|Pro][.] (pronominal adjectives) and especially the [/Adj|Pro|Rel]

(relative pronouns like amilyen or amekkora, ‘such as’, ‘as large as, as much

as’) show significantly less similarity. As indicated in section 7.1, more spe-

cific case endings may dominate the word vectors’ similarity clusterwise,

which is indeed the case in the last examples. Comparing plural adjectives,

the similarities are significantly higher than their singular counterparts’ sim-

ilarities, while comparing singular to plural yields very low similarity.
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7.5 Paradigm self-similarities

In the previous section, we have already used the [.] to indicate the compar-

ison of paradigms. While the nominative forms may have lower similarities,

the paradigm comparisons are dominated by the abundance of cases and

case endings, producing very high self similarities. [.] denotes only a single

morpheme, so this table aggregates only the 2-morpheme-long morphological

analyses.

Cluster1 Simself cases
[/Adj|Pro|Rel][.] 1.000 7
[/Num|Pro][.] 1.000 9
[/Num|Roman][.] 1.000 6
[/N|Acronx][.] 1.000 13
[/N|Pro|Rel][.] 1.000 15
[/Adj|col][.] 1.000 14
[/N|mat][.] 0.998 17
[/N|Ltr][.] 0.997 13
[/N|Abbr][.] 0.996 13
[/N|Pro][.] 0.996 16
[/Adj|Attr][.] 0.995 7
[/Adj|nat][.] 0.995 16
[/N|Unit][.] 0.992 14
[/V][.] 0.989 54
[/Post][.] 0.987 8
[/N|Abbr|ChemSym][.] 0.986 6
[/N|Unit|Abbr][.] 0.984 14
[/Num][.] 0.979 18
[/Num|Digit][.] 0.975 14
[/N|Acron][.] 0.974 14
[/N][.] 0.958 24
[/Adj|Pro][.] 0.958 20
[/Adj][.] 0.955 22
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8 Evaluation

Clustering word vectors by their morphological analysis has proven a good

way to examine the impact of inflection on word vectors. We have tried sta-

tistical tests on the distances from the mean by cluster, and comparing them

to the RANDOM cluster, but did not produce easily interpretable results, mainly

caused by the high dimensionality. The ‘cap similarity’ on the other hand,

while asymmetrical, has produced acceptable results, showed high coherence

and similarity where expected, and showed lower similarity where difference

was expected, thus justifying the selection of clusters for most cases. There

are exceptions however, such as treating [/Adj|Pro|Rel] as a subcategory

of [/Adj], which our method shows to be mistake due to their low similarity.
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9 Further research

Rothe, Ebert, and Schütze (2016) succeeded in creating meaningful ultra-

dense subspaces for polarity, concreteness, frequency and part-of-speech (POS),

supporting operations like ‘give me a neutral word for greasy ’. We could an-

alyze the POS subspace, comparing the similarities of the clusters projected

onto the subspace with the similarities obtained without projection. We are

expecting interesting results from this projection.

Another idea of an exciting measurement arose at fig. 4. There is a

stripe of coordinates with about 0.5 probability of being positive, we could

discard these, about 50 or even 100 coordinates, reducing the dimension, and

compare them to a model trained with the same number of dimensions. We

are hoping to receive more distinct vectors thus more distinct clusters after

this operation.

Other advancements are still to be elaborated, however, these two ideas

already suggest a path for further studies.
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