
Comparing word segmentation algorithms

Judit Ács Géza Velkey
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

judit@aut.bme.hu, evelkey@gmail.com

Abstract We present a comparison of four morphological segmentation algorithms,
one of which is Morfessor, an open source unsupervised morphological segmenter,
the others are our work. One is based on the simple compression method, byte-pair
encoding, one is based on the observation that ngrams at morpheme boundaries have
a different distribution from global ngram distributions. The last method uses neural
networks for segmentation. All methods are trained and tested on Hungarian web
corpora.

1 Introduction
Morphology is the study of word structure, how words are formed and how
they are related to each other. Traditionally linguists define morpheme as the
smallest unit that has semantic meaning on its own. Morphological analysis
is the process of segmenting words into smaller units, called morphemes and
analyzing their syntactic and semantic roles.

Morphemes are either bound or free. Bound morphemes may only appear
as parts of a larger word, while free or unbound morphemes stand on their
own. Bound morphemes are further categorized into derivational and inflec-
tional morphemes. The former category consist of morphemes that change the
grammatical category or the meaning of the word, while the latter category only
affects plurality, tense, case and so on.

Morphological analysis plays a central role in many natural language pro-
cessing tasks such as information retrieval, machine translation or spell check-
ing. However, the large variation of morphological paradigms across different
languages makes it especially hard to create general solutions for morphologi-
cal analysis. For example Chinese or Vietnamese are both isolating languages
i.e. they almost exclusively use free morphemes, therefore analysis below word
level is neither hard nor necessary. In contrast, Uralic languages such as Hun-
garian exhibit rich morphology, and the number of grammatical unique word
forms is very large. English – by far the most well resourced language – lies
somewhere in the middle, therefore most general solutions do not focus as much
on morphology as for example Hungarian NLP would necessitate.

Rule-based morphological analyzers apply an often very large and compli-
cated set of rules that describe the morphology of a natural language and use
finite state transducers as inference engines. The creation of these rules may



Judit Ács and Géza Velkey

require years of work from trained linguists. On the other hand, statistical ana-
lyzers train in a supervised fashion thus they require labeled corpora, which are
very limited in size or non-existent for most languages. Another problem is that
morphological rules are very much language-dependent with little applicability
outside a language family. [1] showed that the multilingual learning of morphol-
ogy works better when the languages in question are related. The difficulty of
creating morphological analyzers and the relative lack of interest in morphology
from the English-speaking community resulted in a paucity of freely available
analyzers.

Although labeled treebanks are scarce, unlabeled corpora is readily available
in large quantities on the Internet, resulting in a steady interest in the unsuper-
vised learning of morphology. Most work tackles the first task of morphological
analysis, morpheme segmentation. In the case of inflectional morphology, the
word is composed of morphemes that are concatenated after each other and mor-
phological segmentation is the task of recovering morpheme boundaries inside
words.

The paper is organized as follows: Section 2 gives a brief overview of related
work, Section 3 describes the four algorithms we compared, data and prepro-
cessing steps are detailed Section 4. Section 5 presents the results and Section 6
concludes the paper.

2 Related Work
Unsupervised morphological segmentation has been studied since the 1950s [2, 3]
with [4] being the first to employ probabilistic notions, namely the conditional
entropy of words at different positions in the word. [5] gives a thorough re-
view of the field. More recently, Morfessor [6] has been the go-to solution for
unsupervised segmentation, and it remains the most popular openly available
unsupervised segmenter. Morpho Challenge [7] is an online competition where
competitors have to solve several morphological problems, including unsuper-
vised segmentation. Morpho Challenge was organized 5 times between 2005 and
2010 and hasn’t been organized since. It included tasks in four languages: En-
glish, Finnish, German and Turkish. Morfessor-based algorithms outperformed
all other solutions in all languages except German.

In 2016 another morphology-related shared task was organized, called the
SIGMORPHON 2016 Shared Task, which among 15 others included Hungarian
data [8]. The task was supervised morphological reinflection. An example of
English reinflection is the conversion of ran to its present participle, running.
The winning team outperformed all other teams in all languages and all subtasks
with a relatively simple Bidirectional LSTM model [9].

3 Algorithms
We compare four algorithms: Morfessor, character pair, entropy-based and neu-
ral network word segmentation. Although strictly speaking, only the last group



Judit Ács and Géza Velkey

can be classified as a machine learning method, and the others as statistical
methods, we use the term supervision to describe the degree which they employ
the gold standard segmentation. We also separate a training and a testing or
segmentation phase for each method.

3.1 Morfessor
Morfessor is an unsupervised morphological segmenter introduced by [6], which
was later extended to semi-supervised algorithms in [10]. Morfessor has several
implementation, and we used the Morfessor 2.0 Python package [11]. The system
trains on a list of unsegmented words and repeatedly segments the corpus into
morpheme-like segments. The goodness of the segmentation is measured by
Minimum Description Length. To our knowledge, Morfessor is the state-of-the-
art unsupervised segmenter for the Finnish language.

3.2 Character pair segmentation
Character pair segmentation is based on byte pair encoding[12], which is a simple
data compression algorithm that repeatedly replaces the most common pair of
consecutive bytes and replaces them with a byte that does not occur within
that data. A table of replacements is required to rebuild the original data. Our
character pair segmentation method finds the most frequent N bigrams and
replaces them with N characters that do not appear in the original data. This
process is repeated I times, each iteration using the previous iteration’s output
as its input. This allows the method to replace longer sequences than two.

i t e r a t i o n 1 : abcdefabc −> AcdefAc
i t e r a t i o n 2 : AcdefAc −> BdefB

After this process, we decode the replacement table until all replacements
contain a non-terminal on their left side and two or more terminals on their
right side:

b e f o r e decoding :
A −> ab
B −> Ac

a f t e r decoding :
B −> abc

We treat the right hand side of these rules as morphs and sort them according
to length and frequency. The segmentation phase tries to match each segment
starting from the longest ones and if a segment is found in a word, it is split
into three parts, then the same function is called recursively on each segment,
until the string length 0 is reached.

segment(deabcdef) -> segment(de) + " " + segment(abc) +
" " + segment(def)



Judit Ács and Géza Velkey

3.3 Entropy-based segmentation
This method exploits the linguistic observation that morphemes – as character
strings or ngrams – tend to occur in more diverse context than ngrams in general.
We quantify this notion by measuring the cross entropy between the neighboring
ngram distribution of morphemes. Cross entropy is defined between discrete
distributions p and q as:

H(p, q) = −
∑
x

p(x) log q(x). (1)

Cross entropy cannot be defined if q(x) = 0 for any x, where p(x) > 0.
The distributions in question are ngram frequencies, and thus contain many
zero values. We solve this by adding 0.5 to every possible ngram combination’s
count in both distributions.

In ’training’ phase of this method, we computed ngram statistics on the full
Webcorpus after the replacement of digraphs. First, we compute word begin-
ning, ending and morpheme beginning and ending unigram, bigram and trigram
distribution. Then for every ngram we compute the frequency distributions of
its preceding and succeeding ngrams, where n varies from 1 to 3. So for each
ngram, we get 6 frequency distributions: its preceding unigrams, bigrams and
trigrams and its succeeding unigrams, bigrams and trigrams. Then, we com-
pute the cross entropy of each distribution with word and morpheme beginning
and ending ngram distributions. The result is a table where each row corre-
sponds to an ngram. For these experiments, we only used the succeeding ngram
distributions. An example of the relevant fields is depicted in Table 1.

Table 1: An example of the relevant fields stored for the ngram meg

P Q Cross entropy

succeeding unigram morpheme begin unigram 0.4994
succeeding bigram morpheme begin bigram 1.7627
succeeding trigram morpheme begin trigram 3.0214

Using a predefined threshold, we select all ngrams from the table if their
succeeding ngram distribution’s cross entropy with morpheme begin distribution
is lower than the threshold, i.e. the two distributions are similar. The selected
ngrams will be the segmentation boundaries, so in every word, we segment after
an ngram if it appears in the table. Each segmentation experiment has three
fixed parameters:

Nleft the size of ngrams to split after (in the example in Table 1 this would be
3). 1, 2 and 3 were tested.

Nright the size of ngrams which the cross entropy was computed on,

threshold cross entropy threshold.



Judit Ács and Géza Velkey

A character boundary is classified as a morpheme boundary if its preceding
ngram’s right ngram distribution is sufficiently similar to the morpheme begin
ngram distribution.

3.4 Neural network segmentation

Our last method uses a neural network with a single hidden layer (more hidden
layers actually decrease the performance). The network is trained to identify
morpheme boundaries in unsegmented words, and morpheme boundaries are
denoted with the plus symbol in target words. Each character of the word is
mapped to a V dimensional one-hot vector, where V is the size of the alphabet,
then the vectors are concatenated into a single NV dimensional vector, where
N is the length limit of words. We set N to twenty, which includes more than
95% of unique word types. Words shorter than 20 letters are padded with spaces
from their beginning. After preprocessing the size of the alphabet, V is 48, and
thus a single word vector is 960 dimensional.

Segmentation is currently limited to words with exactly one morpheme
boundary. We generate every possible segmentation as candidates, for example,
the word színtér has the following candidates:

s+z í nt é r
sz+í nt é r
sz í+nt é r
sz í n+t é r
sz í nt+é r
sz í nt é+r

and encode them using the aforementioned one-hot coding. Then we prop-
agate the unsegmented word through the network, and compare it to the can-
didate vectors using Euclidean distance. The closest candidate is selected as
segmentation.

4 Data and preprocessing

The input word samples were obtained from MNSZ21 [13] and the Hungarian
Webcorpus [14]. For supervised settings, we used the e-magyar system [15] to
segment words into morphemes.

l e v á l t á sa l e vá l t á s a
e l őadá sokon e l ő ad á s ok on
sz á r a z f ö ld ön sz á r a z f ö ld ön
hasonlatomat hason la t om at
sz í nt é r sz í n t é r

1Hungarian Gigaword Corpus [Magyar Nemzeti Szövegtár]



Judit Ács and Géza Velkey

Since our input data is a web crawl and thus quite noisy, we discard words
that contain characters outside the Hungarian alphabet, digits, dashes and full
stops. We also discard words that do not contain at least one letter from the
Hungarian alphabet and we lowercase all text. The corpora contain a few En-
glish words that we consider noise in this experiment, so we extract the 10,000
most frequent words from UMBC WebBase [16] and filter English words from
the Hungarian frequency list.

Hungarian orthography employs digraphs – combinations of two letters rep-
resenting one sound – for certain phonemes which can safely be converted into
a single letter. We perform this by replacing digraphs with single letters that
otherwise do not appear in the alphabet such as uppercase letters as everything
had already been lowercased. This method introduces a small number of false
positives on compound and morpheme boundaries such as község, where zs are
in fact two separate phonemes and we replace them with a single Z. An example
of the corpora after preprocessing is illustrated below.

hatá s s a l hat á s s a l
f e l S í nre f e l S í n re
rohanva rohan va
ra jong ó jak é nt ra jong ó ja ké nt
r é S l e t e k e t r é S l e t ek et
boSSantó boSSant ó

Since our goal is morphological segmentation, we disregard word frequency
in favor of having more unique word types for training, therefore more morpho-
logical phenomena to discover.

5 Results
Morphological segmentation assigns a binary label for each character boundary:
is it a segment boundary or not. We use the standard evaluation metrics for
binary classification, as well as the word accuracy of each method, which is the
ratio of correctly segmented words. Each method is trained on as many word
types as we could fit into memory and the individual numbers are listed at each
experiment.

5.1 Morfessor
Morfessor was trained using its default parameters, we only varied the amount
of training data it received. Table 2 presents the results for varying training
sizes.

5.2 Character pair segmentation
Character pair segmentation has two parameters: N , the number of frequent
bigrams to collect in each iteration and I, the number of iterations to run. The



Judit Ács and Géza Velkey

Table 2: Morfessor results for different training sizes

train precision recall F-score word_accuracy

100 0.2207 0.9536 0.3584 0.0070
1000 0.3487 0.8683 0.4976 0.0973
10000 0.5157 0.7201 0.6010 0.2292
100000 0.6290 0.6349 0.6320 0.2552
200000 0.6372 0.6035 0.6199 0.2432
400000 0.6358 0.5754 0.6041 0.2314
500000 0.6410 0.5632 0.5996 0.2432

resulting segment list is at most NI long. We trained on 1,000,000 samples. We
tested these parameters in a wide range (see Table 3), running 1000 experiments
in total. Table 4 lists the the 5 best configurations, where goodness is measured
using the F-score.

Table 3: Character pair segmentation parameter range

Parameter Range

top N 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
iterations 10, 25, 50, 75, 100, 150, 200, 250, 300, 500

Table 4: Character pair segmentation results. 5 best configurations are listed.

iter topn precision recall F-score word_accuracy

75 10 0.3795 0.7646 0.5073 0.0822
200 10 0.4125 0.6585 0.5072 0.1151
150 10 0.4010 0.6864 0.5062 0.1041
75 40 0.4271 0.6187 0.5053 0.1115
25 30 0.3750 0.7681 0.5039 0.0599

5.3 Entropy-based segmentation

Entropy-based segmentation has three parameters: Nleft, Nright and the cross
entropy threshold. Both Nleft and Nright varied from 1 to 3, and the threshold
was tested from 0 to 10 using 0.1 as the step size. Statistics were extracted
from the full Webcorpus (600M words). Table 5 illustrates the highest scoring
threshold values for each Nleft and Nright combinations.



Judit Ács and Géza Velkey

Table 5: Best threshold value and highest F-score for each Nleft and Nright
combination

nleft nright threshold precision recall F-score word_accuracy

1 1 1.1 0.3046 0.7404 0.4316 0.2728
1 2 3.8 0.3010 0.7903 0.4359 0.2609
1 3 6.6 0.3234 0.7173 0.4458 0.2903
2 1 1.6 0.3621 0.6852 0.4739 0.3361
2 2 4.2 0.4426 0.7295 0.5509 0.4067
2 3 8.1 0.3777 0.7578 0.5042 0.3454
3 1 2.5 0.2849 0.8032 0.4206 0.2188
3 2 4.2 0.5804 0.6071 0.5934 0.5049
3 3 7.6 0.4186 0.6220 0.5004 0.4220

The highest scoring combination is Nleft = 3 and Nright = 2, but its perfor-
mance depends heavily on the chosen threshold as Figure 1 attests.

0 2 4 6 8 10
threshold

0.0

0.2

0.4

0.6

0.8

1.0

precision
recall
F-score

Figure 1: Performance of the Nleft = 3 and Nright = 2 segmenter at different
threshold values

5.4 Neural network segmentation

The neural network was trained on 400000 words. The only parameter in this
experiment is the number of neurons in the hidden layer. Figure 2 show the F-
score for different layer sizes. Since in this experiment, every word has exactly
one segment boundary, precision always equals recall, and therefore F-score.
The highest F-score, 0.7287, was observed at 550 dimensions, which comes close
to what Morfessor achieves (0.7356) on the same dataset.



Judit Ács and Géza Velkey

300 400 500 600 700 800
hidden layer size

0.50

0.55

0.60

0.65

0.70

F-
sc
or
e

Figure 2: Neural network segmenter performance at different hidden layer sizes

5.5 Summary
All four methods easily achieve F-scores over 0.5, but stay below 0.75, suggesting
there is room for improvement. Table 6 summarizes the best results with the
amount of supervision used by each method. Although the last method is clearly
the winner of the four, it is important to note that currently it is limited to
words consisting of two morphemes. Among the general solutions, Morfessor
scores the highest, but the entropy-based segmentation comes close too, while
using a much simpler algorithm and minimal supervision.

Table 6: Summary of the results

Method Supervision F-score

Morfessor unsupervised 0.6320
Character pair unsupervised 0.5073
Entropy-based uses morpheme start ngram distribution 0.5934

Neural supervised 0.7287

6 Conclusion
We compared four algorithms for the morphological segmentation of natural
language. The algorithms vary greatly in complexity and the amount of su-
pervision they use. We tested all algorithms on Hungarian web corpora and
found that simple entropy-based solutions potentially rival the state-of-the-art
open source segmenter, Morfessor. The last group used neural networks and
the results are very promising. We would like to extend this solution to words
with more than two morphemes as well as try other network architectures such
as sequence-to-sequence neural networks.



Judit Ács and Géza Velkey

Hungarian inflectional morphology exhibits regular assimilation at the bound-
aries of morphemes which results in frequent allomorphs, i.e. different surface
forms of the same underlying abstract morpheme. In the future we plan to cover
assimilation effects and allomorphy.

Acknowledgement

Research supported by Hungarian Scientific Research Found (OTKA), contract
number 120145.

References

[1] B. Snyder and R. Barzilay, “Unsupervised multilingual learning for morpho-
logical segmentation,” in Proceedings of ACL-08: HLT, (Columbus, Ohio),
pp. 737–745, 2008.

[2] Z. S. Harris, “From phoneme to morpheme,” Language, vol. 31, no. 2,
pp. 190–222, 1955.

[3] Z. S. Harris, “Morpheme boundaries within words: Report on a computer
test,” in Papers in Structural and Transformational Linguistics, pp. 68–77,
Springer, 1970.

[4] M. A. Hafer and S. F. Weiss, “Word segmentation by letter successor va-
rieties,” Information storage and retrieval, vol. 10, no. 11-12, pp. 371–385,
1974.

[5] J. A. Goldsmith, “Unsupervised learning of the morphology of a natural
language,” Computational Linguistics, vol. 27, no. 2, pp. 153–198, 2001.

[6] M. Creutz and K. Lagus, “Unsupervised discovery of morphemes,” in Proc.
6th SIGPHON, pp. 21––30, 2002.

[7] M. Kurimo, S. Virpioja, and V. T. Turunen, “Proceedings of the morpho
challenge 2010 workshop,” in Proceedings of the Morpho Challenge 2010
Workshop, (Espoo, Finland), Aalto University School of Science and Tech-
nology, 2010.

[8] R. Cotterell, C. Kirov, J. Sylak-Glassman, D. Yarowsky, J. Eisner, and
M. Hulden, “The sigmorphon 2016 shared task—morphological reinflec-
tion,” in Proceedings of the 2016 Meeting of SIGMORPHON, (Berlin, Ger-
many), Association for Computational Linguistics, August 2016.

[9] K. Kann and H. Schütze, “Med: The lmu system for the sigmorphon 2016
shared task on morphological reinflection,” ACL 2016, p. 62, 2016.



Judit Ács and Géza Velkey

[10] O. Kohonen, S. Virpioja, and K. Lagus, “Semi-supervised learning of con-
catenative morphology,” in Proceedings of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology and Phonology, pp. 78–
86, Association for Computational Linguistics, 2010.

[11] S. Virpioja, P. Smit, S.-A. Grönroos, M. Kurimo, et al., “Morfessor 2.0:
Python implementation and extensions for morfessor baseline,” 2013.

[12] P. Gage, “A new algorithm for data compression,” The C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[13] Cs. Oravecz, T. Váradi, and B. Sass, “The Hungarian Gigaword Corpus,”
in Proceedings of LREC 2014, 2014.

[14] P. Halácsy, A. Kornai, L. Németh, A. Rung, I. Szakadát, and V. Trón,
“Creating open language resources for Hungarian,” in Proceedings of the
Fourth International Conference on Language Resources and Evaluation
(LREC 2004), pp. 203–210, ELRA, 2004.

[15] B. Sass, M. Miháltz, and P. Kundráth, “Az e-magyar rendszer gate
környezetbe integrált magyar szövegfeldolgozó eszközlánca,” in XIII. Mag-
yar Számítógépes Nyelvészeti Konferencia (MSZNY2017), (Szeged), p. (this
volume), 2017.

[16] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese,
“Umbc_ebiquity-core: Semantic textual similarity systems,” in Second
Joint Conference on Lexical and Computational Semantics (*SEM), (At-
lanta, Georgia, USA), pp. 44–52, Association for Computational Linguis-
tics, 2013.


