
Natural Language Processing Methods for
Language Modeling

Dávid Márk Nemeskey

Ph.D. Dissertation

Doctoral School of Informatics
Faculty of Informatics

Eötvös Loránd University

Budapest, Hungary
2020

This page is needed because Google Scholar misparses the format of the cover page proper. It is not
part of the print version.

Eötvös Loránd University
Faculty of Informatics

Ph.D. Dissertation

Dávid Márk Nemeskey

Natural Language Processing Methods for
Language Modeling

Doctoral School of Informatics
Dr. Csuhaj Varjú Erzsébet D.Sc.

Foundation and Methodology of Informatics Doctoral Programme
Zoltán Horváth Ph.D.

Supervisors:
András Benczúr Ph.D.
András Kornai D.Sc.

Budapest, 2020

Eötvös Loránd Tudományegyetem
Informatikai Kar

Doktori Értekezés

Nemeskey Dávid Márk

Természetes nyelvfeldolgozási módszerek a
nyelvmodellezésben

Informatika Doktori Iskola
Dr. Csuhaj Varjú Erzsébet D.Sc.

Az informatika alapjai és módszertana Doktori Program
Horváth Zoltán Ph.D.

Témavezetők:
ifj. Benczúr András Ph.D.

Kornai András D.Sc.

Budapest, 2020

Acknowledgements
I would like to thank my advisors András Kornai and András Benczúr for their ongoing
support, for providing a motivating work environment and particularly for their infinite
patience.

The thesis benefited immensely from the insightful remarks of the two reviewers, And-
rás Lukács and András Micsik.

I would also like to thank all my current and former colleagues at the SZTAKI HLT
Research Group: Judit Ács, Gábor Borbély, Dániel Lévai, Márton Makrai, Katalin Paj-
kossy, Gábor Recski, Eszter Simon and Attila Zséder, as well as those in the wider NLP
“family”. I feel honored to be part of such an inspiring community.

Last, but definitely not least, I would like to thank my family for their love and
understanding, especially in the hectic final weeks. This thesis would have never been
finished without their support.

∗ ∗ ∗

Research partially supported by National Research, Development and Innovation Office
(NKFIH) grants #115288: “Algebra and algorithms” and #120145: “Deep Learning of
Morphological Structure”, as well as by National Excellence Programme 2018-1.2.1-NKP-
00008: “Exploring the Mathematical Foundations of Artificial Intelligence”.

Experiments in Chapter 2 were made possible by a hardware grant from NVIDIA Cor-
poration; huBERT in Chapter 4 was trained on TPUs provided by the Tensorflow Research
Cloud program. Their support is gratefully acknowledged.

1

Contents

Introduction 6
Theses . 7
Contributions . 8
Resources . 8

1 Language Modeling 10
1.1 Natural language processing . 10

1.1.1 NLP tasks . 11
1.1.2 Machine learning . 12

1.2 Statistical language modeling . 13
1.2.1 Motivation . 14
1.2.2 Mathematical formulation . 15
1.2.3 Training . 16
1.2.4 Evaluation . 17
1.2.5 Discrete and continuous methods 18

1.3 n-grams . 19
1.3.1 Training . 21
1.3.2 Smoothing . 21
1.3.3 Class-based models . 22
1.3.4 Outlook . 23

1.4 The first neural models . 24
1.4.1 Neural networks . 25
1.4.2 Training . 26
1.4.3 Bengio’s model . 28
1.4.4 Performance . 30

1.5 Recurrent neural network language models 31
1.5.1 Recurrent neural networks . 32
1.5.2 Gated architectures . 33

2

1.5.3 Language modeling advances . 35
1.6 Transformer-based language models . 41

1.6.1 Neural machine translation . 41
1.6.2 The Transformer . 43
1.6.3 Transformers in language modeling 44
1.6.4 Performance considerations . 46

1.7 Embeddings . 48
1.7.1 Vector space semantics . 48
1.7.2 Static embeddings . 50
1.7.3 Multi-sense embeddings . 51
1.7.4 Contextual word embeddings . 51
1.7.5 Embeddings in NLP . 53

1.8 Language modeling and NLP . 54

2 emLam – a Hungarian Language Modeling baseline 56
2.1 Introduction . 56
2.2 The Hungarian Datasets . 58

2.2.1 Preprocessing . 59
2.2.2 Corpus Statistics . 60
2.2.3 The Benchmark Corpus . 61

2.3 Language model evaluation . 61
2.4 Results . 63

2.4.1 n-grams . 63
2.4.2 Class-based n-grams . 64
2.4.3 Cross-evaluation . 65
2.4.4 RNN language models . 65
2.4.5 Pseudo-Hungarian . 66
2.4.6 Into the Unknown . 68

2.5 Conclusion . 69
2.5.1 Future work . 69

3 Evaluating multi-sense embeddings for semantic resolution 71
3.1 Introduction . 71
3.2 Comparing lexical headwords to multiple sense vectors 72

3.2.1 Resources to be evaluated . 72
3.2.2 Lexical resources . 73
3.2.3 Evaluation . 74

3

3.3 Parts of speech and word frequency . 75
3.4 Cross-linguistic treatment of concepts . 77
3.5 Conclusions . 77

4 Habeas Corpus 79
4.1 Goals and design considerations . 80

4.1.1 Goals and constraints . 80
4.1.2 Design considerations . 80

4.2 Related work . 83
4.2.1 Preexisting corpora . 83
4.2.2 Common Crawl . 84
4.2.3 As a training corpus . 85

4.3 Architecture . 85
4.3.1 Computing environment . 85
4.3.2 The pipeline . 86

4.4 Running the pipeline . 87
4.4.1 Download . 87
4.4.2 Boilerplate removal . 87
4.4.3 Content-based filtering . 88
4.4.4 Deduplication . 88
4.4.5 Linguistic analysis . 92
4.4.6 Final statistics . 92

4.5 Wikipedia . 94
4.5.1 Wikihopping . 94
4.5.2 Processing . 95

4.6 huBERT . 96
4.6.1 Pretraining . 96
4.6.2 Evaluation . 98

4.7 Conclusion and future work . 99

5 emBERT: language modeling for NLP 101
5.1 Deep learning in NLP . 101
5.2 BERT . 102

5.2.1 Why BERT? . 102
5.2.2 Does multi-BERT speak Hungarian? 103

5.3 The emBERT module . 105
5.4 Experiments . 106

4

5.5 Results . 107
5.5.1 Chunking . 107
5.5.2 Named entity recognition . 107

5.6 Future work . 108
5.7 Conclusion . 109

6 Conclusions 110

Appendices 112

A Abbreviations used in the thesis 113

B Sample texts generated by Transformer models 114

5

Introduction

The field of natural language processing (NLP) is contemporaneous with computers. Ma-
chine translation systems were developed as early as the 1950s, and the widespread use
of personal computers and digitalization of business processes led to an overabundance
of textual data that had to be processed, organized, and even understood to a certain
degree. NLP systems arose to meet these challenges, so that today millions of computer
users routinely use spell and syntax checkers and translation services in their daily work
and speech-to-text interfaces when interacting with their devices. Behind the scenes, NLP
modules such as lemmatizers, named entity recognizers and parsers are cornerstones in
many information processing systems.

Compared to this ubiquity, language modeling has been, until recently, an obscure field
even among NLP practitioners. This was in spite of the fact that language models played
an integral role in some of the tasks mentioned above, particularly machine translation and
speech recognition. Only in recent times, with the advent of deep, neural language models
has the situation changed. Word embeddings revolutionized computational semantics,
and unsupervised representations supplanted linguistic features in NLP systems. Today,
language modeling has become pervasive in all fields of NLP.

In this thesis, we study the interaction between language modeling and NLP, with
special focus on two aspects. First, most of the work done for language modeling, surely all
success stories, concentrated on English. In this work, we examine how language modeling
techniques developed for English perform on Hungarian, and what modifications might
be needed to adapt them to a different language. Second, historically the inclusion of
language modeling advanced natural language processing systems; here we are concerned
with the opposite direction and study how linguistics or NLP can help in training or
evaluating language models.

The thesis is structured as follows. Chapter 1 presents an overview of the field of
language modeling, with particular focus on its connection to natural language processing.
The main discrete and continuous techniques for autoregressive language modeling are
introduced, as well as word embeddings, a staple in modern NLP.

6

In Chapter 2, we evaluate some of the state-of-the-art language modeling methods on
Hungarian. To standardize language model assessment in the future, a benchmark corpus
is introduced. We also present a morphological method for alleviating the vocabulary
problem, which is much more pronounced in Hungarian than it is in English. Continuing
with the evaluation theme, Chapter 3 proposes a novel method for assessing multi-sense
embeddings based on sense distinctions made in monolingual dictionaries.

Work on Hungarian contextualized embeddings is presented in the next two chapters.
Chapter 4 details our work of compiling Webcorpus 2.0, a new Hungarian gigaword cor-
pus, from the Common Crawl and the Hungarian Wikipedia. Its main purpose being a
training set for contextual embeddings, it is the largest Hungarian corpus yet by a fac-
tor of 3.5. Results on huBERT, a preliminary Hungarian BERT model, are also reported
here. Chapter 5 describes emBERT, a module of the e-magyar text processing system, that
allows integration of contextualized embedding-based token classifiers into the pipeline.
The NP chunker model is the current state-of-the-art for Hungarian. Chapter 6 wraps up
the thesis.

Theses
The main theses of the dissertation are the following:

(T1) An exhaustive evaluation of discrete and continuous language modeling methods for
Hungarian and the associated benchmark corpus

(T2) The “gluten-free” format, a morphological method of alleviating the vocabulary
problem in Hungarian language modeling

(T3) A novel intrinsic evaluation method for multi-sense embeddings based on sense dis-
tinctions made in monolingual dictionaries

(T4) Webcorpus 2.0, the largest Hungarian corpus to date by a factor of 3.5, compiled
from the Common Crawl web archive and the Hungarian Wikipedia

(T5) huBERT, a preliminary Hungarian BERT model based on Wikipedia, which outper-
forms the multi-language BERT on four Hungarian benchmark tasks

(T6) The emBERT module that allows integration of contextualized embedding-based clas-
sifiers into the e-magyar pipeline, thereby improving the state of the art in NP
chunking

7

Contributions
All work presented in the thesis is the contribution of the author. While Chapter 3 is based
on joint research with Gábor Borbély, Márton Makrai and András Kornai, and Chapter 4
benefits from prior work by Balázs Indig, the parts detailed in the text constitute the
author’s own.

The research described in the thesis has been partly presented in the following papers,
listed in the order of the corresponding chapters:

(T1, T2) Results of Chapter 2 were published in Nemeskey (2017);

(T3) The evaluation method described in Chapter 3 constitutes the first half of
Borbély; Makrai, et al. (2016);

(T4, T5) Chapter 4 will be published later; Webcorpus 2.0 and huBERT, introduced in
the chapter, will be uploaded to the SZTAKI HLT repository;

(T6) The emBERT module appeared in Nemeskey (2020), which has won Special
Award at the XVI. Conference on Hungarian Computational Linguistics.

Resources
Various resources have been created during our research, all of which are publicly available
for download under permissive or public domain licenses. Table 1 lists the two corpora
presented in Chapters 2 and 4.

Name Description Introduced in

emLam Language modeling benchmark corpus for Hungarian Chapter 2
Webcorpus 2.0 Our 9 billion token corpus built from Common Crawl and Wikipedia Chapter 4

Table 1: Corpora introduced in this dissertation

huBERT (T5) and the models trained by the emBERT module (T6) are listed in Table 2.

Name Description

huBERT Hungarian BERT model trained on Wikipedia

szeged_ner_bioes NER model trained on the Szeged NER corpus
szeged_basenp_bioes State-of-the-art base NP chunker model
szeged_maxnp_bioes State-of-the-art maximal NP chunker model

Table 2: huBERT and the emBERT models discussed in Chapter 5

8

https://hlt.bme.hu/en/resources
https://hlt.bme.hu/en/resources/emLam
https://hlt.bme.hu/en/resources/webcorpus2
https://hlt.bme.hu/en/resources/hubert
https://github.com/dlt-rilmta/emBERT-models/tree/master/szeged_ner_bioes
https://github.com/dlt-rilmta/emBERT-models/tree/master/szeged_basenp_bioes
https://github.com/dlt-rilmta/emBERT-models/tree/master/szeged_maxnp_bioes

All software used to create the corpora and models described here are available for down-
load under permissive open source licenses. Table 3 enumerates all packages and the
GitHub repositories they are preserved in.

Package Description Introduced in

emLam Preprocessing and training scripts for Hungarian language modeling Chapter 2
cc_corpus Tools for compiling corpora from Common Crawl Chapter 4
zim_to_corpus Scripts to extract Wikipedia pages from .zim archives. Chapter 4
emBERT emtsv module for pre-trained Transformer-based models Chapter 5

Table 3: Software libraries presented in the thesis

The hyperlinks given in blue above take readers of the pdf version directly to the right
webpage. For the convenience of readers of the paper version we note that the SZTAKI
HLT repository that hosts the corpora and models is accessible at https://hlt.bme.hu/
en/resources; the emLam software is accessible from the e-magyar GitHub organization
at https://github.com/dlt-rilmta; and the rest of the software is hosted under the
author’s GitHub account at https://github.com/DavidNemeskey.

9

https://github.com/dlt-rilmta/emLam
https://github.com/DavidNemeskey/cc_corpus
https://github.com/DavidNemeskey/zim_to_corpus
https://github.com/DavidNemeskey/emBERT
https://hlt.bme.hu/en/resources
https://hlt.bme.hu/en/resources
https://github.com/dlt-rilmta
https://github.com/DavidNemeskey

Chapter 1

Language Modeling

This work studies the interaction between natural language processing and language mod-
eling. In this chapter, we define the task of language modeling and survey the mainstream
techniques used in the last three decades to address it.

To put the main question into context however, in Section 1.1 we begin with a brief
overview of the field of natural language processing and the tasks it deals with. Section 1.2
gives the mathematical and historical background behind language modeling. Section 1.3
presents the main language modeling method prior to the advance of deep learning: n-
grams. Neural network language models are introduced in Section 1.4, and the most
popular neural architectures, LSTM and transformers, are discussed in Sections 1.5 and
1.6, respectively. An overview of “the crown jewels of NLP”, word embeddings1, is given
in Section 1.7. Finally, in Section 1.8, we examine the role natural language processing
and language modeling had in each other’s development.

1.1 Natural language processing
The field Natural language processing (NLP) is concerned with creating computer algo-
rithms and systems to process and analyze natural language data. In this thesis we assume
a passing familiarity on part of the reader both with NLP and with (high-school level)
linguistics. What follows is a short summary of the main tasks in NLP. We also review the
basics of machine learning, which underlies most modern NLP systems. For those wishing
to know more, the go-to book is Jurafsky and Martin (2009)3.

1http://bit.ly/1ipv72M2, cited as bad example of early overenthusiasm about embeddings in Baroni
et al. (2014).

2All URLs in the thesis were retrieved on May 16, 2020.
3The draft of the 3rd edition is available at https://web.stanford.edu/~jurafsky/slp3/.

10

http://bit.ly/1ipv72M
https://web.stanford.edu/~jurafsky/slp3/

1.1.1 NLP tasks

The workhorses of NLP are the text processing pipelines that perform routine linguistic
analysis on large amounts of text. For English, the most well-known software libraries are
Stanford CoreNLP4 and spaCy5. The tasks they address have well-established formalisms
and efficient algorithms to solve them. Table 1.1 and Figure 1.1 illustrate how the sentence
“Mary had a little lamb.” is analyzed by Stanford CoreNLP.

Tokenization is the task of breaking the input text into tokens, typically words and
punctuation marks (which are split from words).

Lemmatization is performed to determine the lemma (dictionary form) of a word.

Part-of-speech (POS) tagging decides the part-of-speech category (noun, verb, etc.)
of words. In languages with richer morphological structure, full morphological anal-
ysis is performed instead, which assigns a tag to each morpheme (e.g. Hungarian
láthatjátok ‘you can see’, may be analyzed as lát[/V]hat[_Mod/V]játok[Prs.Def.2Pl]).

Named Entity Recognition (NER) is the task of finding named entities in the text
and determining their type (people, organizations, locations, etc.).

Syntactic parsing is performed to build a parse tree of the sentence that represents the
relations between its words. The two most popular formalisms are Phrase Structure
Grammar (PSG) (Chomsky, 1957) and Dependency Grammar (Tesniére, 1959); see
Figure 1.1 for an example for both.

Sentence Mary had a little lamb.
Tokens Mary had a little lamb .
Lemmas Mary have a little lamb .
Part-of-speech NNP VBD DT JJ NN .
Named entities PERSON

Table 1.1: Analysis of an example sentence.

There are tasks that are usually tackled by stand-alone systems, though some pipelines
(like CoreNLP) do include them:

Coreference resolution finds expressions that refer to the same entity. For instance, if
the sentence following the example starts with “It ...”, it presumably refers to the
lamb, not Mary.

4https://stanfordnlp.github.io/CoreNLP/
5https://spacy.io/

11

https://stanfordnlp.github.io/CoreNLP/
https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/
https://spacy.io/

S

.

.

VP

NP

NN

lamb

JJ

little

DT

a

VBD

had

NP

NNP

Mary Mary had a little lamb .

ROOT

nsubj

punct
dobj

amod

dep

Figure 1.1: Constituency (left) and dependency (right) parse of the example sentence.

Sentiment analysis identifies the sentiment expressed in text (usually ‘positive’ or ‘neg-
ative’).

Finally, NLP also features high-level natural language understanding (NLU) tasks.
These are hard problems which are far from being solved. As such, they are always
addressed by standalone (mostly research) systems. These include but are not limited to
question answering; machine translation; text summarization and textual entailment, in
which the system has to decide whether a statement can be inferred from a piece of text.

1.1.2 Machine learning

With the exception of tokenization and morphological analysis, all tasks mentioned in the
previous section are tackled by machine learning (also: statistical) models. Here we briefly
introduce the basic machine learning concepts used in the rest of the thesis.

The goal of machine learning is to discover patterns in data. There are two basic
paradigms for agentless machine learning: supervised and unsupervised learning. In the
former, models learn a mapping between inputs and known (typically human-supplied)
outputs; an example is sentiment analysis, where the inputs are a sentence and its lin-
guistic features, and the output is the sentiment judgement (+/−) made by a human.
Unsupervised learning, on the other hand, looks for patterns in unlabeled data; an ex-
ample is clustering, which tries to group similar objects together based solely on their
properties.

Supervised learning can be further divided into classification, when there is a predefined
set of output labels (POS tags, sentiments) and regression, where the output can take
any real value. NLP tasks, such as POS tagging and NER, belong to a special case of
classification called sequence labeling. As with regular classification, the task is to tag
each item in the sequence with the correct label; however, the items are not independent

12

(words in a sentence rarely are), and only algorithms that exploit the dependencies in the
sequence can hope to perform well6.

Supervised models are trained on training data that consists of manually labeled train-
ing examples; i.e. input–output pairs. It is a well-established practice to split this data
into training, validation and tests sets. The model is trained on the training set, and
its performance is evaluated on the test set. The validation set can be used to fine-tune
hyperparameters of the model.

For NLP tasks, the training data is typically a labeled corpus; syntactic parsers are
trained on treebanks, where each training example consists of a sentence and its parse tree.
One example is the Penn TreeBank (PTB) (Marcus et al., 1993), which has served as the
gold standard dataset for various NLP tasks, such as POS and NER taggers, syntactic
parsers, etc. Higher-level tasks have their own set of benchmarks: for question answering,
the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016, 2018) is the
most popular, while GLUE (Wang et al., 2018), with its 9 tasks, provides a rich testbed
for various NLU systems.

Annotated datasets tend to be small (50–100 thousand sentences) due to the financial
costs associated with the linguistic expertise required to create them.

1.2 Statistical language modeling
Statistical language modeling (LM), at its most generic, is the task of capturing regularities
of natural language in a probabilistic model (Rosenfeld, 2000). In almost all cases however,
language modeling is understood to be the task of estimating the probability of a sequence
of words. The history of LM can be traced back to Markov (1913) and Shannon (1948), who
used n-grams to predict the next character or word, respectively, in natural language text.
Language modeling, however, got its real start when it began to be included in automatic
speech recognition (ASR) systems to improve their performance (Bahl et al., 1983; Baker,
1975; Jelinek et al., 1975). Other NLP fields soon followed suit and before long, language
models were incorporated into systems addressing a variety of tasks, including optical
character recognition (OCR) (Breuel, 1994; Kornai, 1994); machine translation (MT)
(Brown et al., 1990); and information retrieval (IR) (Berger and Lafferty, 1999; Ponte and
Croft, 1998). Lately, the deep learning revolution has made language models ubiquitous
in all areas of NLP by supplanting (or at least complementing) manual features with word
embeddings (see Section 1.7.5).

6For instance, there is no way to tell whether the word ‘saw’ in a sentence is a noun or the past form
of the verb ‘see’ without looking at the rest of the words.

13

Capturing regularities in language is traditionally the domain of linguistic theories of
grammar (and morphology, pragmatics, etc). These approaches are based on explicit lin-
guistic knowledge, and are typically top-down in the sense that word order and placement
are governed by higher-level linguistic relations and structures such as phrases7.

In contrast, language models are mostly built from the bottom up, from corpus statis-
tics and the word sequence itself. They do not aim to explain linguistic phenomena and
any linguistic regularities learned by the models are implicit. This is not to say that
such regularities are not captured, however. Even n-grams are able to find idiomatic
phrases, and continuous models are able to represent more. As we shall see, the geometry
of embeddings is strongly influenced by the semantic and syntactic properties of words
(Mikolov; Sutskever, et al., 2013), while contextual models are able to realize syntactic
and dependency relations (Hewitt and Manning, 2019).

We return to the interaction between language models and NLP in Section 1.8.

1.2.1 Motivation

Language models naturally arise from the application of the noisy channel model (Shannon,
1948) to “recognition” tasks such as ASR, OCR or machine translation (Jurafsky and
Martin, 2009, p.287, 875). Following Brown et al. (1990), here we derive language modeling
from the latter. The derivation is analogous in the other tasks as well.

Let us take a French-English machine translation system, which takes French sentences,
such as “les enfants et les femmes enceintes” and translates them into English. In this
particular example, we hope to see “children and pregnant women” instead of “pregnant
children and women”, although the latter mistranslation was actually generated by an
early MT system (Hutchins, 1995).

The intuition behind the noisy channel model is that all communication happens in
English; that the words we see are French is the result of the “noise” introduced by the
communications channel. The task of machine translation is then to recover the source
language text S whose distortion most likely resulted in the target language sentence T .
More formally, if we have several (source-language) candidate translations, we are looking
for Ŝ that maximizes P (S|T):

Ŝ = arg max
S

P (S|T). (1.1)

Using Bayes’ theorem, we can rewrite this as
7This is irrespective of whether the algorithm used to compute the phrases is itself top-down or not.

The CYK algorithm (Younger, 1967), for instance, is bottom-up.

14

Ŝ = arg max
S

P (T |S)P (S)
P (T)

. (1.2)

Since P (T) does not depend on S, we arrive at the final form by omitting it:

Ŝ = arg max
S

P (T |S)P (S). (1.3)

Here P (S), the prior probability, is the language model. The likelihood P (T |S) is
called the translation probability in MT, the acoustic model in ASR, etc; it represents the
transformation affected by the noisy channel on S.

As we can see, the language model is an integral part of “recognition” tasks. Its
main purpose is to ensure that the text we arrive at is indeed a sentence in the source
language. It is easy to see that while the likelihood is task-specific, the language modeling
component is universal, and the same model used in an MT system can be easily plugged
into a speech or optical character recognizer. This is also the reason why we can study
language modeling as a separate task.

1.2.2 Mathematical formulation

In this section, we take a closer look at P (S) and present a simple mathematical formu-
lation for language modeling. Let us assume that we wish to model a sentence S, which
consists of N words S = w1w2...wN . Then, our goal is to estimate the probability

P (S) = P (w1w2...wN). (1.4)

While the formulation in Equation 1.4 is still too generic to be of practical use, it can
be rewritten using the chain rule of probability as

P (w1w2...wN) = P (w1)P (w2|w1)...P (wN |w1...wN−1)

=
N∏

i=1
P (wi|w1...wi−1)

=
N∏

i=1
P (wi|hi),

(1.5)

where hi = w1...wi−1 is called the history of word wi. Equation 1.5 essentially rephrases
the problem of estimating the probability of a whole sentence into guessing the probability
of the next word, given all the words that precede it. For instance, given the sentence
“Language modeling is ”, a good language model will estimate a high probability

15

to continuations like “hard” and “fun”, and close to zero to unrelated tokens such as “sit”
and “!”.

While this formulation is mathematically motivated, it also fits well with the linearity
and sequentiality of human language. Since computation follows the left-to-right (or right-
to-left, depending on language) direction of writing, it can be used for text generation.
Starting from a predefined (possibly empty) history, the distribution P (wi|hi) is sampled,
and the chosen word is appended to the history. The process is continued until a certain
number of iterations pass, or until a special end-of-document token is generated. Mathe-
matically speaking, generation is a random process where the output only depends on its
previous values, and models that support it are called autoregressive language models.

For early language models, such as n-grams, generation was more of a theoretical pos-
sibility, as the resulting text was of very low quality. However, recent Transformer-based
LMs (see Section 1.6) are able to produce texts of close to human-level grammaticality.
A few examples are given in Appendix B.

The unidirectional language model, while both intuitive and useful, is not the only
way the probability of a word sequence can be computed. A more generic decomposition
exists:

P (w1w2...wN) =
N∏

i=1
P (wi|ci), (1.6)

where ci is the context of wi. The history is one possible context, but not the only one:

1. In bidirectional models such as BERT (Devlin et al., 2019), the context includes the
whole sentence, except the target word;

2. In skip-gram models, such as w2v (Mikolov; Chen, et al., 2013), the context includes
a number of randomly selected words in a window around the target word;

3. The syntactic properties of a word, such as dependency relations, can also serve as
context (Dyer et al., 2016).

1.2.3 Training

Language modeling is a machine learning task, though it seems to fall between the two
main paradigms. On the one hand, it does not require labeled training data, and it is often
termed ‘unsupervised’. On the other hand, it is essentially a sequence labeling problem,
where the ground truth comes from the data itself. Because of this, a more appropriate
term would be self-supervised.

16

In order to build a language model, the P (wi|ci) probabilities must be established. Like
all statistical models, the predictions a language model makes are data-driven, and so the
probabilities are learned from data during a training procedure. For language models,
data is natural language text, which is acquired from a training corpus. Once the model
is trained, it can be used for inference: i.e. computing text probabilities.

Equation 1.6 serves as the theoretical basis for language model training. Broadly
speaking, we maintain a P (wi|ci) table for all word – context pairs. The training process
visits every word in the corpus, records its history (or context) and updates the condi-
tional probabilities accordingly. The exact details are different for each LM technique.
n-gram models maintain the conditional probability table in memory, and compute the
probabilities from global statistics. Most other models encode the estimates implicitly in
their parameter space and update it iteratively based on the local context of each word in
the corpus.

In practice, the naive process outlined above is intractable. The main culprit is the
unbounded memory: the prediction of the ith word is conditioned on all preceding words,
from the beginning of a potentially very long sentence or document8. Under this condition,
almost all word occurrences will have a unique context. This is problematic for two reasons.
First, storing very long, unique histories would grow the size of the P (wi|ci) table beyond
any measure. Second, it leads to the issue of data sparsity: during inference, most words
will have previously unseen histories, and so all probability estimates will be zero.

Because of this, all language modeling techniques impose a limit on the history taken
into account for a particular word. n-grams and attention-based neural models restrict
the number of context tokens; recurrent models have a set memory capacity, and only
remember the – relatively – recent part of the history.

1.2.4 Evaluation

The quality of a language model is assessed on new or held-out data, typically the dedicated
test set of the training corpus. Performance is most commonly reported in terms of
perplexity (PPL) (Jelinek et al., 1977). Given a held-out data of w1w2...wN , perplexity is
defined as:

Perplexity(M) = 2H(P,M) = 2−
∑N

i=1 P (wi) log M(wi), (1.7)

where P is the real data distribution, M is the model distribution and H(P, M) is the cross
8Proust’s À la recherche du temps perdu starts and ends with the same word. For a language model to

give a good prediction for the last word, it might have to include in its history all seven volumes of the
book. Needless to say, such extremes are rare, but it showcases the problems of unbounded history.

17

entropy of the test data given the model. The lower the perplexity is, the closer M is to
the “true” data distribution. Unfortunately, the latter is not known, so it is approximated
with a degenerate distribution centered on wi:

P (wj) =

1, if wj = wi

0, otherwise.
(1.8)

With this, the cross entropy can be replaced with the average log likelihood of the held-out
data. This leads to the formula used to compute perplexity for LMs:

Perplexity(M) = 2
∑N

i=1 log M(wi). (1.9)

We note that most language modeling libraries use base e instead of base 2 (nats instead of
bits as standard in information theory), and the widely used SRILM system (Stolcke et al.,
2011) uses base 10. Luckily, this choice does not affect perplexity, as the exponentiation
and the logarithm cancel out.

Perplexity also has an intuitive meaning. If a model assigns equal probability to 40
words, the perplexity will be exactly 40. Consequently, it can be seen as the average
“branching factor” of a language model; the average number of words it considers at
any given context. Interestingly, for character-level language models, entropy is usually
reported instead of perplexity; perhaps because the data compression aspect of LMs is
more important there.

Yet for all its intuitiveness and ubiquity, there are signs indicating that perplexity
might not be the most accurate measure of LM quality. It has been shown to not correlate
very well with downstream (e.g. translation) performance (Goodman, 2001); and while
there are no exact measurements, it was found that it might take a perplexity reduction of
up to 30% to translate into improvements in speech recognition (Rosenfeld, 2000). Because
of this, papers that study language modeling in relation to speech recognition routinely
report the word error rate (WER) to assess how the language model benefits the system
as a whole (Chen et al., 1998). However, for evaluating language models in separation,
perplexity remains the preferred metric.

1.2.5 Discrete and continuous methods

Language modeling techniques can be divided into two groups: discrete and continuous
space methods. The two differ fundamentally in how words are represented: discrete
models treat words as isolated entities, while continuous models embed them into a vector
space, typically Rd.

18

The two approaches utilize radically different branches of mathematics. Continuous
models employ linear operations, whereas discrete methods depend on set operations,
Markov processes and on populating (database) tables. Another crucial difference is that
continuous models can impose a distance metric between words, while in discrete space,
we can only check for identity.

Historically, discrete methods predate continuous ones. In the next sections, we take
a survey of the most important language modeling techniques, in the order of their ap-
pearance.

1.3 n-grams
Before the advent of neural net language models, n-grams were the language modeling
technique of choice for three decades. Nowadays, they are only used as baselines for more
advanced methods. Due to the simplicity of the idea, however, n-grams are still taught at
universities9 as an introduction to language modeling (Jurafsky and Martin, n.d., ch. 3).

n-gram models are a direct approximation of Equation 1.5. Instead of computing the
probability of a word given its entire history, an n-gram model truncates the history to
the last n − 1 words:

P (wi|w1w2...wi−1) ≈ P (wi|wi−n+1wi−n+2...wi−1) =: P (wi|wi−1
i−n+1) (1.10)

In other words, wi is assumed to be conditionally independent of the rest of the se-
quence, given its immediate predecessors. This is called the n − 1-order Markov assump-
tion, and it helps to make the estimation problem tractable. The choice of n depends on
the size of the corpus and of available memory; for a corpus of about 1B words, 6-grams
already provide diminishing returns. The other end of the spectrum, when n = 1, is called
the unigram model. In unigram models, words are taken to be completely independent of
one another. Since this ignores any text cohesion, unigrams are mainly used for modeling
bag-of-word content, such as queries in a web search engine.

Available memory imposes a strong limit on the n-gram order. For a moderate vo-
cabulary of 30,000 words, there are 30, 0004 = 810 quadrillion possible 4-grams. Luckily,
with finite training data, only a fraction of this number actually manifests: a corpus of 1B
words contains at most one billion different 4-grams. While much more manageable, with
four 16-bit word ids for the history and 32-bit floating point numbers for the probability,
the P (wi|hi) table still occupies up to 12GB – not negligible even by today’s standards.

9https://web.stanford.edu/class/cs124/

19

https://web.stanford.edu/class/cs124/

Given the fact that – as we shall see presently – a full n-gram language model includes
sub-models of all orders from 1 to n, it is evident that high order n-gram language models
can use an inordinate amount of memory. For this reason, trigrams stayed in use until
a few years back (Tarján et al., 2016), even though the performance advantage 5-grams
hold over them had long been proven (Goodman, 2001).

Table 1.2 shows the history taken into account by n-grams of increasing order when
estimating the probability of the last word in the sentence “That Sam-I-Am! That Sam-
I-Am! I do not like that Sam-I-Am!”10. It can be seen how the Markov assumption
prevents the model from utilizing the context necessary to predict the right word. The
history of orders 2 through 6 is very generic and contains only function words. It is only
in the 7-gram model that a content word (incidentally, the one to guess) finally appears.
Unfortunately, as we have seen, the memory requirements of 7-grams make them unusable
in practice.

This loss of context is typical to n-grams and it severely restricts their language mod-
eling performance. It is worth mentioning though that the effect is much less pronounced
with the character-level n-grams used in e.g. OCR. As the character vocabulary is much
smaller11 it is possible to train character n-gram models of much higher orders.

Order Unseen History
1 That Sam-I-Am I do not like that
2 That Sam-I-Am I do not like that
3 That Sam-I-Am I do not like that
4 That Sam-I-Am I do not like that
5 That Sam-I-Am I do not like that
6 That Sam-I-Am I do not like that
7 That Sam-I-Am I do not like that

Table 1.2: The history considered by n-grams of various orders for the last word of the
sentence “That Sam-I-Am! That Sam-I-Am! I do not like that Sam-I-Am!”. Punctuation
marks are omitted for clarity.

10From Green Eggs and Ham by Dr. Seuss. The idea of using this example comes from Jurafsky and
Martin (2009, ch. 4).

11Clearly, this argument does not stand for languages with a logographic writing system, such as Chinese.
In this work, when referring to character-level language models, we always mean small-vocabulary models,
on the order of a few hundred characters at most. This includes all languages with alphabetic, syllabic,
moraic and related scripts.

20

1.3.1 Training

The probabilities of n-grams can be estimated from relative frequency counts. Continuing
with the example above, we count how many times the history (do not like that) occurs
in the training corpus, and how many of these is followed by the word Sam-I-am:

P (Sam-I-am|do not like that) ≈ C(do not like that Sam-I-am)
C(do not like that) . (1.11)

In the general case, 1.11 becomes

P (wi|wi−1
i−n+1) ≈ C(wi−1

i−n+1wi)
C(wi−1

i−n+1)
. (1.12)

Equation 1.12 is called the maximum likelihood estimation (MLE), because a language
model with n-gram probabilities obtained this way is the most likely to reproduce the
counts observed in the training data. Given a large enough training corpus representative
of the language, MLE is expected to approximate the “real” n-gram probabilities.

1.3.2 Smoothing

The maximum likelihood estimation as described above has several problems due to data
sparsity. The most glaring issue is that n-grams not found in the training corpus will have
0 probability. Consequently, these n-grams will never be produced in generation mode,
and will be rejected outright during inference, when the model is used in e.g. machine
translation or speech recognition, hurting downstream performance. Even for n-grams
present in the training corpus, MLE will yield poor estimates when the counts are small.

These issues can be mitigated somewhat with larger training corpora. However, hu-
man language is a creative process, and no corpus can cover all the possible sentences or
utterances the model will have to predict. For this reason, instead of using the maximum
likelihood estimates, n-gram models always employ some form of smoothing. This comes
in three flavors.

Discounting methods aim to flatten the probability distribution following a particular
history by taking some of the probability mass from the most frequent continuations and
redistributing it to the less frequent (or zero-count) words. This ensures that all n-grams
have nonzero probabilities, irrespective of whether they occur in the training corpus or
not.

A related technique to address the zero-count problem is using the n-gram “hierarchy”.
The idea is that lower order n-grams are less sparse, so we can use them to estimate the
probability of missing higher-order n-grams. This can be done in two ways: backoff models

21

recursively fall back to coarser (n−1, n−2...-gram) models when the context of a word was
not seen during training, while interpolated models always incorporate the lower orders
into the probability estimation:

P (wi|wi−1
i−n+1) = λPMLE(wi|wi−1

i−n+1) + (1 − λ)P (wi|wi−1
i−n+2), (1.13)

where P is the smoothed probability.
A variety of smoothing models have been proposed over the years: Laplace (addi-

tive) smoothing (Lidstone, 1920) and Good-Turing discounting (Good, 1953) are not very
efficient by themselves, but the latter is used as a basis for other methods. Katz back-
off (Katz, 1987), Jelinek-Mercer (Jelinek and Mercer, 1980) and Kneser-Ney (Ney et al.,
1994) smoothing were the “workhorses” of n-gram modeling in the 90s. For higher order n-
grams, the most effective method is the modified Kneser-Ney (KN) smoothing introduced
in Chen and Goodman (1999).

Out-of-vocabulary (OOV) words (unigrams), i.e. those not seen during training are
commonly accounted for by introducing a new token, usually written <unk>. In order to
get a good estimate for it, occurrences of low-frequency words in the corpus are replaced
(wholly or partially) with <unk> prior to training. The exact cutoff is corpus- and language
specific; for English, 3 or 5 are common choices (Chelba et al., 2014).

1.3.3 Class-based models

A major disadvantage of discrete methods, n-grams included, is the lack of a similarity
measure between words. This prevents the model to exploit the semantic clustering of
words. For example, if the training corpus contains phrases like “lives in London” or
“lives in Berlin”, we might expect the model to also give a higher probability to the words
“Budapest” or “Tokyo” after “lives in”, even if those phrases have not been observed.
However, this falls beyond the capabilities of regular n-grams.

Class-based models, first proposed in Brown et al. (1992), establish connections between
words by clustering the vocabulary. This enables the model to condition not (just) on the
previous words, but their classes as well. One possible formulation is

P (wi|wi−1
i−n+1) = P (wi|Ci)P (Ci|Ci−1

i−n+1), (1.14)

where Ci is the class of the ith word, and Ci|Ci−1
i−n+1 is a class n-gram.

For the mathematically inclined, this formula provides an interesting parallel to Equa-
tion 1.10 describing n-grams in general. While n-grams can be thought of as n − 1-order
Markov chains, Equation 1.14 clearly defines an n−1-order Hidden Markov model (HMM).

22

Note that while the factorization allows for a compression of the language model (specif-
ically, the class transition probabilities) (Goodman and Gao, 2000), it also introduces a
bottleneck, since the emission probability of a word is conditioned solely on its class.

As the performance of a class-based model depends heavily on the quality of clustering,
a lot of effort has gone into finding the best clusters (Brown et al., 1992; Kneser and Ney,
1993; Ney et al., 1997; Pereira et al., 1993). Automatic clustering was found to work better
than part-of-speech (POS) tags (Niesler et al., 1998). This should come as no surprise, as
POS categories are coarser and have a syntactic, and not semantic, function.

In general, class-based models by themselves usually perform worse than their word-
level counterparts (Martin et al., 1998; Niesler et al., 1998), while interpolating the two
is said to reduce perplexity by 5–20% (Emami and Jelinek, 2005; Kneser and Ney, 1993).
However, it is worth mentioning that the improvements were reported over weak bi- and
trigram baselines. More thorough work reveals that class-based models fail to bring any
advantage over 5-gram (Goodman, 2001).

Lackluster performance notwithstanding, the idea of using semantic relatedness in
language modeling is well grounded, and as we shall see in Sections 1.4.3 and 1.7, it is one
of the major advantages continuous models have over their discrete cousins.

1.3.4 Outlook

In this section, we present a bird’s-eye view on the landscape of discrete language modeling
techniques beyond n-grams. Some of the methods are extensions to n-gram models; others
are based on completely different theoretical foundations. Since these methods are not
central to the thesis, we only touch on them briefly; the interested reader may refer to
the papers cited below for details, or to Goodman (2001) and Rosenfeld (2000) for a more
complete survey.

Skipping (or skip-gram) models are a simple extension to n-grams, which condition on
a discontinuous history (e.g. P (wi|wi−3wi−1)) (Huang et al., 1993; Ney et al., 1994). While
the improvement they provide is negligible (Goodman, 2001), the idea makes a comeback
in Section 1.7.2.

Cache models (Kuhn and De Mori, 1990) aim to rectify the context loss that comes
from the truncated n-gram history by maintaining a cache of recent words. Kuhn and
De Mori (1990) reports up to 60% perplexity improvements, and the idea works well with
any type of language model.

An interesting line of research focused on incorporating linguistic information to lan-
guage models. Moore et al. (1995) supplanted a trigram model with syntactic and se-
mantic features extracted from a lexicon, while Chelba and Jelinek (1998) and Charniak

23

(2001) used a statistical CFG parser as model. All papers reported 10%-25% perplexity
improvements over their respective baselines.

In Factored Language Models (FLMs) (Bilmes and Kirchhoff, 2003; Kirchhoff et al.,
2008), each word is represented by a feature vector comprised of linguistic features, such
as morphological classes, stems, etc. An n-gram model is then trained over these vectors.
The papers also introduce the idea of generalized parallel backoff, in which a feature-n-
gram can fall back to a lower order of any subset of its features. Unfortunately, the
full backoff model was computationally too expensive to train, and GPB-FLM 3-grams
failed to decisively outperform regular word trigrams. On the other hand, the joint LM
of Filimonov and Harper (2009) successfully integrated FLMs and CFG features into a
decision tree, and even outperformed 5-gram KN models by a small margin.

Exponential, or Maximum Entropy (ME) models (Darroch and Ratcliff, 1972) are a
step towards continuous space language modeling. The generic formula is

P (w|h) = 1
Z(h)

exp
(∑

i

λifi(w, h)
)
, (1.15)

where the features fi are arbitrary functions of w and h (n-grams, skip-grams, etc.), Z(h)
is a normalizing term and λi are the parameters to train. The main advantages of ME
models are their ability to incorporate various features into the model (Berger et al., 1996;
Della Pietra et al., 1992; Lau et al., 1993; Rosenfeld, 1994) and their smoothing effect
(Chen and Rosenfeld, 1999). However, at the time they were computationally intensive to
train (this is no longer true, compared to modern neural language models), and did not
outperform KN 5-grams consistently.

1.4 The first neural models
By the beginning of the millenium, discrete language modeling has reached its limits:
no method seemed to provide any improvement over cached Kneser-Ney 5-grams (see
Section 1.3.4). This prompted very cautious or outright pessimistic paper titles such as
“A Bit of Progress in Language Modeling” (Goodman, 2001) or “Two decades of Statistical
Language Modeling: Where Do We Go From Here?” (Rosenfeld, 2000). The solution,
however, came not from the discrete world, but with the introduction of neural (net)
language models (NNLM).

24

1.4.1 Neural networks

Before we delve into the details on NNLMs, a short summary of neural networks is in order.
Readers familiar with the concepts outlined here can safely skip this section. Those who
wish to learn more may find numerous books on the subject; we recommend Goodfellow
et al. (2016)12.

Artifical Neural Networks (ANNs) or Neural Networks (NN) for short, are a family
of machine learning models loosely inspired by biological neural networks. Many neural
network architectures exist, such as convolutional networks (Fukushima, 1980; Le Cun,
1989), Boltzmann machines (Ackley et al., 1985; Smolensky, 1986), or recurrent and at-
tention networks, which we shall introduce later. Figure 1.2 shows the most common
architecture, the Feedforward neural network (FFNN) or Multilayer Perceptron (MLP):

x1

x2

x3

Input
layer

Hidden
layers

Output
layer

y1

y2

Figure 1.2: A feedforward network with two hidden layers13

The network is made up of layers, each of which consists of a number of neurons. The
NN takes its inputs x = [x1x2 · · · xn] through its input layer, and present its outputs
y = [y1y2 · · · ym] in the output layer. Both x and y are real-valued vectors. The neurons
in the hidden layers perform the following transformation:

y = f (w⊺x + b) = f (
∑

i

wixi + b). (1.16)

Here x and y are the inputs and outputs of the neuron, respectively. The input weights
(w), and the bias term (b) are parameters of the model, which must be trained. f is
the activation function that defines the output of the neuron in terms of its inputs. The
activation function is almost always non-linear to allow the network to model non-linear
problems (Minsky and Papert, 1969); hence, it is often called “the nonlinearity”.

12https://www.deeplearningbook.org/
13Figure based on https://github.com/PetarV-/TikZ/tree/master/Multilayer%20perceptron

25

https://www.deeplearningbook.org/
https://github.com/PetarV-/TikZ/tree/master/Multilayer%20perceptron

For efficiency reasons, modern deep learning libraries, such as Pytorch (Paszke et al.,
2017, 2019) or Tensorflow (Abadi et al., 2016a), treat the layer as the basic unit instead
of the neuron. Also, the implementation might split the right side of Equation 1.16 into
two layers: a linear one, which performs the matrix multiplication and a nonlinear layer,
which applies the activation function.

Although the original perceptron (Rosenblatt, 1957) used the Heaviside step function,
differentiable alternatives such as the logistic sigmoid or the hyperbolic tangent functions
soon took its place. Recently, the Rectified Linear Unit (ReLU) (Hahnloser et al., 2000;
Jarrett et al., 2009) has gained popularity. Each of these functions have various pros and
cons: sigmoid functions tend to saturate easily, meaning in most of their domain, they are
very flat and their value does not change much when the input does. For the most part,
ReLUs rectify this problem, but are prone to becoming inactive when x < 0.

In regression (real-valued function approximation) problems, the outputs of the net-
work, (yi in Figure 1.2) can be used as is. For classification tasks, such as language
modeling, a final softmax nonlinearity

σ(yi) = eyi∑
j eyj

(1.17)

is applied to the outputs in order to normalize them into a probability distribution. In
this case, the yis are called logits.

It has been shown that feedforward networks are universal function approximators
(Hornik et al., 1989). In fact, even a single hidden layer is sufficient to model any function
(Cybenko, 1989). However, using multiple hidden layers is preferred to a single one for two
reasons. First, a single layer might require an exponential number of neurons to perform
the same task. Second, stacking several layers allow each layer to “specialize” and extract
different features; later layers typically learn higher level features. This phenomenon is
especially well documented in image classification (LeCun et al., 1998; Zeiler and Fergus,
2014), where convolutional neural networks (CNNs) can be hundreds of layers deep (He
et al., 2016). This gave rise to the current name of the field: deep learning.

1.4.2 Training

Discrete models, such as n-grams, usually employ global optimization strategies using
corpus-level statistics. This is made possible by the fact that their parameter space es-
sentially coincides with these statistics (such as n-gram frequencies). The parameters, or
weights θ of continuous models, on the other hand, are a property of the model itself,
and not derived from the training data. This necessitates a completely different training

26

regime.
The aim of the training process is to tune the weights of the model, so that it can predict

the right output(s) y for each input x. The quality of the prediction is characterized by a
cost function, which we want to minimize:

J(θ) = E(x,y)∼p̂dataL(f(x; θ), ŷ), 14 (1.18)

where x is the input for a training example, ŷ and y := f(x; θ) are the target and the
predicted output, respectively, and L is the per-example loss function. In effect, the cost
function is the averaged loss w.r.t. the empirical distribution p̂data.

The loss function for classification tasks is typically the cross-entropy loss:

L(y, ŷ) = −
∑

i

ŷi log y
.= − log yi. (1.19)

The dotted equation applies when ŷ is a one-hot vector, i.e. it is 1 for the true class ŷi

and 0 otherwise (see also Equation 1.8).
Neural networks are trained via iterative optimization algorithms, such as stochastic

gradient descent (SGD) (Robbins and Monro, 1951) or one of its variants. Such algorithms
try to find a local minimum of J(θ) by iteratively taking steps in the weight space along
the negative gradient of J . Regular gradient descent (Cauchy, 1847) computes the real
gradient on the whole training set. This requires that we store the gradients for each
training example, and is only feasible for very small training sets. Stochastic methods like
SGD visit a (mini)batch of examples at each step instead, and compute an approximate
gradient from the batch. The weights are then updated as follows:

θ := θ − η∇
(1

n

n∑
i=1

L(f(x, θ, ŷi))
)

, (1.20)

where n is the size of the minibatch and η is the learning rate, a hyperparameter. The
update in neural networks is effectuated by the backpropagation (backprop) algorithm
(Rumelhart et al., 1986), which recursively applies the chain rule from last layer to first
using dynamic programming techniques for efficiency.

During training, SGD sweeps through the whole training set; one “sweep” is called an
epoch or iteration. The training lasts either until a specific number of epochs elapse, or
until the cost (measured on the validation set to avoid overfitting our model to the training
set) stops decreasing. The latter strategy is called early stopping.

Neural networks have existed for over six decades; however, they have only become
14Formulation from Goodfellow et al. (2016, ch.8)

27

mainstream in the last ten years. The reason for this is that, efficient as backpropagation
is, they are very slow to train. It is the availability of powerful GPUs, actually driven
by the gaming industry, that finally made deep learning possible. Nowadays, the largest
models run on specialized architectures, such as clusters of data center GPUs15 or Google’s
tensor processing units (TPUs)16.

The outline above is but a very brief summary of how neural networks are trained.
In practice, the process is somewhat brittle; specifically, there are no guarantees that it
finds a good local minimum. This is because there are many free variables and hyperpa-
rameters, which all interact in unpredictable ways (Greff et al., 2015). What architecture
to choose and how big should the model be? What learning rate should to use, what
optimizer? Should the learning rate be fixed or changed according to a schedule? Even
seemingly innocuous choices, such as the batch size, can affect performance (author’s own
experiments, or e.g. Liu et al. (2019)). Because of this, it is considered good practice to
try to find the best settings through a hyperparameter search; unfortunately, it is not an
option for those on a constrained budget. Regularization techniques may also alleviate
some of the issues; nevertheless, training a neural network still remains an art to some
degree.

1.4.3 Bengio’s model

We can now return to neural language modeling. While a proof-of-concept neural LM had
existed before (Xu and Rudnicky, 2000), the first mature model, one that also serves as a
basis for today’s architectures, was published in Bengio et al. (2003).

The model itself is the neural equivalent of n-gram models. When predicting the ith

word, the model takes the previous n − 1 words as input. At this point, the words are
represented with their index in the vocabulary V . These word ids are then converted into
word feature vectors (real valued vectors in Rd) via a table lookup in the V × d matrix C.
The vectors are concatenated and passed through the hidden FF layer. Finally, a softmax
layer is applied to produce the output distribution. The model architecture is depicted in
Figure 1.3.

At its heart, the model is a regular neural classification architecture. The main contri-
bution of the paper is the look-up table matrix C, which converts words to vectors in Rd.
This component is not fixed, but trained together with the rest of the network. Its main
use is to embed discrete entities (words) into continuous space; this gives it the name it is
known today: embedding. Such a component is a must for all neural language models to

15https://www.nvidia.com/en-us/data-center/
16https://en.wikipedia.org/wiki/Tensor_processing_unit

28

https://en.wikipedia.org/wiki/Tensor_processing_unit
https://www.nvidia.com/en-us/data-center/
https://en.wikipedia.org/wiki/Tensor_processing_unit

· · · · · · · · ·

· · · · · ·

· · · · · ·
softmax

most computation here

tanh

Matrix C

shared parameters
across words

index for wt−1index for wt−2

C(wt−2) C(wt−1)C(wt−n+1)

Table
look-up
in C

index for wt−n+1

i-th output = P (wt = i | context)

Figure 1.3: Architecture of a neural feed forward language model

bridge the gap between the discrete nature of the task and the continuous representation
of the model.

Yet the embedding matrix is also what gives the model most of its power. Because its
weights are trained along with the rest of the architecture, it can potentially learn to map
words that occur frequently in the same context to similar vectors. Bengio et al. (2003)
quotes the two sentences “The cat is walking in the bedroom” and “A dog was running in
a room”, which gives good examples for words with similar semantic and/or grammatical
role at every word position (a and the, cat and dog, etc). Embeddings allow the model the
generalize better to previously unseen sentences, as “the presence of only one of the above
sentences in the training data will increase the probability, not only of that sentence, but
also of its combinatorial number of “neighbors” in sentence space” (Bengio et al., 2003).

Exploiting word similarity is not a new idea; Section 1.3.3 already introduced class-
based n-grams, an early attempt. However, utilization of word similarity through embed-
dings is an innate property of all neural LMs, and is exempt from the disadvantages of
class-based n-grams such as the emission bottleneck in HMM-style models.

A 4-gram version of the model was evaluated on the Brown corpus (1.2M tokens) and
the AP News corpus (14M tokens). Compared to the best performing n-grams (3-gram
on Brown, KN 5-gram on AP), the neural model achieved 20% (312 to 252) and 7% (117
to 109) perplexity reduction, respectively.

29

1.4.4 Performance

n-grams and neural language models have widely different performance characteristics.
n-grams can be trained relatively quickly, but due to the curse of dimensionality marring
discrete methods, the models may take up a large amount of memory, potentially on the
order of |V |n (see Section 1.3). Neural LMs, on the other hand, can be very economic with
their parameter space. Since the embedding matrix is shared among word positions, and
the size of hidden layer increases only linearly with n, the model introduced above could
easily accommodate a longer history than what is possible with n-grams.

The power and economy in memory space comes at a price, however. Neural LMs are
infamously slow to train. The model above, with very small embedding and hidden layer
sizes (30 and 50, respectively), was trained for 3 weeks on 40 CPUs. While this particular
network could be trained today in a few minutes on modern GPUs or TPUs, since recent
models use more complex and larger architectures, training times of days or weeks are still
common.

As Figure 1.3 indicates, the main offender is the final softmax layer. The total com-
putational cost of processing a single training example in the n-gram setup is (in order of
layers) O(n × d + (n × d) × h + h × |V |), where d is the embedding dimension and h the
size of the hidden layer. Since in language modeling, |V | ≫ d (in Bengio et al. (2003),
|V | is around 16-18,000, while d is 30 or 60), the final softmax term h × |V | dominates
the sum. Taking the best performing system in Bengio et al. (2003), where |V | = 16000,
d = 30, n = 5 and h = 50, softmax is responsible for 99% of the total computation and
memory cost.

Much research has been devoted to develop computationally favorable alternatives to
softmax. Both Noise Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2010;
Mnih and Teh, 2012) and Importance Sampling (Bengio and Senécal, 2003, 2008) sample
k random “noise” words for each training example and try to model softmax as a classi-
fication between true and noise words (Jozefowicz et al., 2016), thereby bringing the cost
down from |V | × h to k × h. Hierarchical softmax (Morin and Bengio, 2005) builds a
decision tree based on a hierarchical clustering of V , where each leaf node stores the prob-
ability of a single word, while inner nodes keep track of the probability mass associated
with their children. The tree can compute the probability of a word with a single lookup,
changing the complexity to log2 |V |. Differentiated Softmax (Chen et al., 2016) is based
on the intuition that we know less about rare words and assigns fewer parameters to them
than to their frequent siblings. Implementation-wise, the dense softmax layer is replaced
with a sparse diagonal block matrix, each block corresponding to a bucket of words with
similar counts. Finally, CNN-Softmax (Jozefowicz et al., 2016) does away with the matrix

30

completely, and computes the output embedding with a character-based convolutional
network.

The methods described above have all been used more or less successfully to train
neural language models. Several experiments prove that models equipped with importance
sampling, differentiated and hierarchical softmax attain perplexity scores similar to the
full softmax case; NCE and CNN-Softmax, on the other hand, generally perform much
worse and are not recommended for language modeling (Chen et al., 2016; Jozefowicz
et al., 2016). The speed-up for the sampling methods and hierarchical softmax can fall
anywhere between 19 (Bengio and Senécal, 2003) and 258 (Morin and Bengio, 2005); in
reasonably sized recurrent LMs, it is much closer to the former. With differentiated and
CNN-Softmax, the speed-up is negligible; however, these are the only methods that also
decrease the memory usage of the softmax layer.

Another line of study attempted to compute the exact loss efficiently instead of ap-
proximating it (Brébisson and Vincent, 2015; Vincent et al., 2015). While a 3,000-fold
speed-up was reported on the spherical softmax loss family, the results could not be applied
to regular softmax.

An early approach meant to circumvent the performance problem by relegating the
neural LM to augment a main n-gram model (Schwenk and Gauvain, 2005; Schwenk, 2007).
In such systems, the n-gram would be used for high-frequency words, with the neural model
as the backoff. Alternatively, the neural LM can be used to rescore the top words predicted
by the n-gram model. The approximate methods described above, together with advances
in GPU technology have made such hybrid systems mostly outdated. n-grams and neural
models were still routinely interpolated for a time, but strictly for the perplexity reduction
achievable in this way.

1.5 Recurrent neural network language models
While Bengio et al. (2003) showed the potential of continuous space language modeling, it
was not until the emergence of recurrent neural network (RNN) language models that such
methods became widespread. The first system, based on “vanilla” RNN, was presented by
(Mikolov, 2010), who continued to develop the concept and related techniques in Mikolov;
Kombrink, et al. (2011), Mikolov; Deoras, et al. (2011), and Mikolov (2012). The first
model based on the more advanced LSTM cell was proposed in (Sundermeyer et al., 2012).

RNN LMs have dominated the language modeling landscape ever since their introduc-
tion. Only in the last two years have attention-based models (see Section 1.6.1) become
mature enough to compete with them. While attention-based models will probably emerge

31

victorious, RNN LMs can be regarded as being the first widely successful family of neural
language models.

1.5.1 Recurrent neural networks

The modern notion of recurrent neural networks and their name was probably17 established
in (Jordan, 1986; Rumelhart et al., 1985). The idea of recurrence, however, had been
around much longer, at least since Minsky and Papert (1969).

Neural networks can be thought of as directed graphs, where each node is a neuron
and activation spreads along the directed edges (see Figure 1.2). In general, a network
can be called recurrent, if this graph has cycles in it. In modern RNNs, however, units
have recurrent connections only to units in their own layer. The left side of Figure 1.4
illustrates the idea with a single recurrent unit with input x, output y and inner state h18.
Note that in the simplest case, y = h.

x

h

y

xt−1

ht−1

yt−1

xt

ht

yt

xt+1

ht+1

yt+1

... ...

Figure 1.4: Left: a recurrent unit; right: the same unit unrolled for three timesteps

The recurrent connection can be thought of as memory, as it allows the layer to retain
information from previous inputs. Because of this, RNNs lend themselves naturally to
temporal or, more generally, sequence modeling. In these tasks, the inputs are part of a
sequence, and the network has to predict the next item in the sequence based on the items
seen thus far. This is in stark contrast to non-recurrent networks that processes training
examples in isolation. Accordingly, RNNs have been used for tasks such as music com-
position (Mozer, 1992), speech recognition (Graves et al., 2013), handwriting recognition
(Graves and Schmidhuber, 2009), sequence transduction (Graves, 2012), text generation
(Sutskever et al., 2011) – or indeed, language modeling.

In the mathematic formulation, x, h and y are indexed with the time step t ∈ 1...T to
17It is hard to find definitive evidence as to the origins of RNNs. Even high-profile papers, such as

Hochreiter and Schmidhuber (1997), weasel out of the question by omitting citations altogether when
introducing the concept.

18Based on https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

32

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

account for the temporal dimension. The formulae below are the recurrent counterpart to
Equation 1.16 that describes the feedforward neuron:

ht = f (w⊺
xhxt + w⊺

hhht−1 + bh)

yt = w⊺
hyht + by

(1.21)

As before, f is the activation function; wxh, whh and why are weights on the various
connections; bh and by are bias terms, to be trained along with the weight vectors.

RNNs are trained with the Backpropagation Through Time (BPTT) algorithm (Wer-
bos, 1988; Williams and Zipser, 1995), which is a more involved version of regular back-
prop. In effect, the algorithm presents the input sequence (x1, ..., xT) to the network
one-by-one. The error gradients for all outputs (y1, ..., yT) are collected, and propagated
back to the weights of the network. The algorithm is based on an observation by Minsky
and Papert (1969) that for every recurrent network, there exists a feedforward network
with identical behavior (if T is finite). The algorithm converts the RNN to a multilayer
feedforward network by unrolling it along the time dimension (as shown on the right
side of Figure 1.4); the resulting network will thus have one layer for each time step.
Backpropagation can then be applied to this network as usual.

As the length of the modeled sequences can be large, the unrolled feedforward network
can be potentially be so deep that it does not fit into (GPU) memory19. To make training
feasible, it is a ubiquitous practice, to split the sequence into T -sized chunks and treat
each as a separate training example. The main drawback of this approach, a naive version
of truncated BPTT (Williams and Peng, 1990), is that temporal dependencies crossing
chunk boundaries are lost to training. One possible strategy to mitigate this issue is to
sample the chunk size from a normal distribution centered on T , which makes sure that
the chunk boundaries vary between epochs (Merity et al., 2018).

1.5.2 Gated architectures

Deep neural networks are difficult to train due to the vanishing gradient problem (Glorot
and Bengio, 2010; Hochreiter, 1991). Since backpropagation uses the chain rule to compute
the gradients for each layer, the error signal diminishes as it is propagated back from the
last toward the first layers. This causes the earlier layers to effectively stop training. The

19For neural networks, it is always the accelerator (GPU or TPU) memory that counts, for two reasons.
First, large networks can only ever be trained efficiently on accelerators; second, it is a more constrained
resource than main memory.

33

opposite problem, that of exploding gradients, also exists: in this case, the gradients get
exponentially large, inducing numerical errors in the weight update process.

The problem is even more pronounced for recurrent networks, where the layers share
weights (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997). It has been shown that
if the norm of the hidden-hidden weigh matrix Whh is less than one, the long term compo-
nents of the gradient will vanish, preventing the network from learning long dependencies
(Pascanu et al., 2013).

The exploding gradient problem can be easily remedied by clipping the norm of the
gradients (Mikolov, 2012; Pascanu et al., 2013). For recurrent networks, the vanishing
gradient problem is addressed by replacing the “vanilla” RNN with a gated architecture.

The Long Short-term Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997) ex-
tends a standard recurrent unit with multiplicative gates to enforce constant error flow
through the recurrent connection. It introduces another internal state variable, ct, in ad-
dition to ht, that is responsible for regulating the error flow. The cell architecture and its
mathematical formulation are depicted in Figure 1.5.

xt

yt

σ σ tanh σ

tanhct−1

ht−1 ht

ctft it c̃t ot

ht

... ...

ft = σ(Wf · [ht−1, xt] + bf])
it = σ(Wi · [ht−1, xt] + bi])
ot = σ(Wo · [ht−1, xt] + bo])
c̃t = tanh(Wc · [ht−1, xt] + bc)
ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct)

(1.22)

Figure 1.5: Structure and equations of the LSTM cell.

it, ot and ft are the input, output and forget gates, respectively. ft might be the most
important one, as it controls how much information should be retained from the previous
state ct−1. Its bias (bf) is often initialized to 1.0 to allow free gradient backflow; in layman’s
terms, the cell starts remembering everything, and it gradually “learns to forget” (Gers
et al., 2000).

The main reason why LSTM is less affected by vanishing gradients is the way its inner
state is updated. While regular RNNs compute ht by applying a vector product and an
activation function to ht−1 (see Equation 1.21), LSTM computes the state update c̃t from
ct−1. The new value of ct is then a linear combination of ct−1 and c̃t, allowing the gradient
update to flow through the cell unchanged (Jozefowicz et al., 2015).

Owing to its novel structure, the LSTM can “remember” much farther back in time
than regular RNNs. In an artificial task, LSTMs could recall information about an item

34

after 1,000 time steps, while RNNs trained with BPTT failed after 10 (Hochreiter and
Schmidhuber, 1997). LSTMs excel on real tasks as well; most of the RNN examples in
the last section were realized with LSTM networks.

The success of LSTM prompted the appearance of other gated architectures. The GRU
unit (Cho et al., 2014) is a simpler variant of LSTM, which omits the output gate. There
were large-scale experiments to find which components make gated cells effective (Greff
et al., 2015) and to find better architectures with a genetic algorithm (Jozefowicz et al.,
2015) or reinforcement learning (Zoph and Le, 2017). While these experiments yielded
insights into the inner workings of gated cells, no variant was significantly better than
LSTM or GRU. In particular, LSTM was found to outperform all other cells (including
GRU) in language modeling (Jozefowicz et al., 2015; Melis et al., 2018).

1.5.3 Language modeling advances

In this section, we examine how RNN-based, especially LSTM-based, systems pushed the
state-of-the-art in language modeling. Most of the improvements were due to increasingly
advanced machine learning techniques, as well as to our growing familiarity with how
RNNs should be trained. We touch on these ideas very briefly; the interested reader is
referred to the original papers for details.

Most of the research focused on modeling one of three corpora, which have become the
de facto standard benchmarks for RNN LMs. Having standard datasets greatly facilitated
the comparability and evolution of different approaches. Table 1.3 lists the main attributes
of each corpus.

The Penn TreeBank (PTB) is the smallest of the three corpora. While the original
corpus is behind a paywall, Mikolov (2012) has released a preprocessed version into public
domain; it is this corpus we shall refer to as “PTB” henceforth. This is a rather small
dataset at one million tokens, and is heavily preprocessed: numbers and punctuation
marks have been omitted and all words have been lowercased. The vocabulary is capped
at 10,000 word types (i.e. unique tokens).

The WikiText-2 (WT2) corpus (Merity; Xiong, et al., 2017) consists of curated Wikipedia
pages. It is about twice the size of PTB, and its vocabulary consists of 30,000 words.

The One Billion Word Benchmark (1B) is a gigaword corpus released by Chelba et al.
(2014) to measure progress in language modeling; it consists of about 800 million tokens.
Words below 3 occurrences were replaced with <UNK> leaving a vocabulary of 793,471
word types. Due to its size, few papers took up the challenge, and even fewer attempted
to model the whole vocabulary, opting instead to cap it at 10 or 100 thousand. This is
the only corpus where the sentence order is randomized, preventing models from utilizing

35

long-range dependencies.

Dataset Sentences Tokens Vocabulary OOVs Sentence order
PTB 49,199 1,134,978 10,000 53,299 normal
WT-2 – 2,506,962 33,254 81,561 normal
1B 30,607,716 829,250,940 793,471 509,258 shuffled

Table 1.3: Comparison of the three LM benchmark corpora

The PTB and WT2, at 1M and 2.5M tokens respectively, are very small as far as
corpora go; (n-gram) language models were already trained on much larger corpora (365M
in Brown et al. (1992) and 284M in Goodman (2001)). Models trained on the PTB and
WT2 are prone to overfit the training data, making the method of regularization the
deciding factor in LM performance.

Penn TreeBank

Tables 1.4 and 1.520 list the most influential systems developed for the PTB and WT2,
respectively. In what follows, we only survey single model performance. Early papers
often report results for ensemble models, which usually outperform the single model by
5–10 points of perplexity. Later papers omit these, most likely because under a certain
perplexity threshold, ensembles ceased to provide any discernible benefit.

The first two lines in Table 1.4 represent the best discrete baselines on the PTB from
Mikolov (2012); it also illustrates that the real impact of a cache over a state-of-the-art
n-gram model is much less than the 60% reported by Kuhn and De Mori (1990) (see
also Section 1.3.4). The same paper introduced the first RNN language model, which
already outperformed the baseline by a small margin. Based on a vanilla RNN, it could
not utilize the history to its full effect due to the vanishing gradient problem. Mikolov
and Zweig (2012) dealt with the issue by encoding history into a “context vector” using
Latent Dirichlet Allocation (LDA) (Blei et al., 2003). While this approach achieved a
lower perplexity score, future systems would instead follow the example of Sundermeyer
et al. (2012), who was the first apply LSTM to the problem of language modeling.

In experimenting with 2-layer LSTM networks, Zaremba et al. (2014) found that only
small (200 cells per layer) models can be trained without regularization. Dropout (Sri-
vastava et al., 2014), the most successful regularization technique for neural networks,
however, did not work for RNNs at the time. Dropout induces noise in the training pro-
cess by masking a different part of the network in each training batch, which forces the

20Tables 1.4 and 1.5 are slightly modified and extended versions of those in Merity et al. (2018)

36

Model Parameters Perplexity

Mikolov (2012) - KN 5-gram 2M 141.2
Mikolov (2012) - KN 5-gram + cache 2M 125.7

Mikolov (2012) - RNN 6M 124.7
Mikolov and Zweig (2012) - RNN-LDA 7M 113.7
Mikolov and Zweig (2012) - RNN-LDA + KN 5 + cache 9M 92.0
Sundermeyer et al. (2012) - LSTM 4.3M? 118.0

Zaremba et al. (2014) - LSTM (small) 4.6M 114.5
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Dyer et al. (2016) - RNN grammar – 114.5
Gal and Ghahramani (2016) - Variational LSTM (medium) 20M 78.6
Gal and Ghahramani (2016) - Variational LSTM (large) 66M 73.4
Kim et al. (2016) - CharCNN 19M 78.9
Merity; Xiong, et al. (2017) - Pointer Sentinal LSTM 21M 70.9
Grave et al. (2017) - LSTM + continuous cache pointer – 72.1
Inan et al. (2017)† - Variational LSTM (medium) + augmented loss 24M 73.2
Inan et al. (2017)† - Variational LSTM (large) + augmented loss 51M 68.5
Zilly et al. (2017)† - Variation RHN 23M 65.4
Zoph and Le (2017)† - NAS Cell (medium) 25M 64.0
Zoph and Le (2017)† - NAS Cell (large) 54M 62.4
Melis et al. (2018)† - 4-layer skip connection LSTM 24M 58.3

Merity et al. (2018)† - 3-layer AWD-LSTM 24M 57.3
Merity et al. (2018)† - 3-layer AWD-LSTM + continuous cache pointer 24M 52.8
Yang et al. (2018)† - AWD-LSTM + MoS 22M 54.44
Yang et al. (2018)† - AWD-LSTM + MoS + dynamic evaluation 22M 47.69
Gong et al. (2018)† - AWD-LSTM + cache pointer + FRAGE 24M 51.8
Gong et al. (2018)† - AWD-LSTM + MoS + dynamic evaluation + FRAGE 24M 46.54

Table 1.4: Single model perplexity of various neural (mostly RNN) LMs on the PTB.
n-gram models are included for reference; † indicates tied input and output embeddings.

remaining units to learn better representations. Unfortunately, the recurrent connections
in an RNN amplify this noise, which was found to hurt training.

Zaremba et al. (2014) sidestepped this problem by applying dropout on the for-
ward connections between layers only. This allowed them to train LSTM LMs with 650
(medium) and 1,500 (large) cells per layer, outperforming even the interpolated RNN +
n-gram model by 15%. Later, Gal and Ghahramani (2016) successfully applied dropout
to the recurrent connections as well, by using the same mask in each time-step21.

The Zaremba et al. (2014) model was the first to show the power of LSTM LMs, and
has become widely successful. It quickly became the new baseline for language modeling

21Semeniuta et al. (2016) proposed applying dropout on the state update vector c̃t. Sadly, the network
used in the experiments was much smaller than those in Gal and Ghahramani (2016) and Zaremba et al.
(2014), preventing direct comparison.

37

on the PTB; it was also one of the first models to be included in Tensorflow22. Its main
disadvantage (especially in the large configuration) is the number of parameters it uses,
which also negatively affects training times. Different systems came up with different
answers to this issue. Kim et al. (2016) replaced the embedding with character n-gram
features (followed by a highway layer (Srivastava et al., 2015) to transform orthographic
features to semantic vectors), decreasing the number of parameters by 60%. Both Inan
et al. (2017) and Press and Wolf (2017) found that sharing the weight matrix between
the input embedding and the softmax layer (also called “output embedding”) not only
decreases the number of parameters by a wide margin, but also improves performance by
increasing the frequency of updates to the embedding layer. Weight tying has thus become
a common feature in all subsequent systems.

Architectural improvements seemingly also yielded considerable perplexity reductions.
Zilly et al. (2017) developed a new network structure by arranging LSTM cells in a many-
layer deep highway network. Parallelly, Zoph and Le (2017) employed a reinforcement-
learning based architecture search to optimized the cell structure itself. Both claimed su-
periority over the by then traditional 2-layer LSTM setup. However, it was subsequently
proven by an independent reevaluation of several architectures with large-scale hyperpa-
rameter tuning (Melis et al., 2018) that regular LSTM models actually outperform the
more modern contenders.

An orthogonal line of research, which rekindled the idea of the (discrete) word cache,
proved more successful. Following the prior work of Graves et al. (2014), Vinyals et al.
(2015), and Weston et al. (2015) on memory augmented networks, both Pointer Sentinel
(Merity; Xiong, et al., 2017) and continuous cache (Grave et al., 2017) models extend
the base LM with a neural memory component. Using the memory as a model of recent
history, both systems outperform their respective base models by 10–30 perplexity points.
Similar to its discrete counterpart, the continuous cache requires no training and can be
combined with any language model.

LSTM models also benefited from regularization techniques beyond dropout. Inan
et al. (2017) derived an additional loss term, based on a better estimation for the true
data distribution23; the gains were negligible (less than 1 PPL). AWD-LSTM (Merity et
al., 2018), among many other tricks, applied activation regularization (AR) and tempo-
ral activation regularization (TAR) (Merity; McCann, et al., 2017) to the model. Most
regularization methods, such as L2, weight decay or dropout, affect the weights; instead,
AR and TAR penalizes large activation values and large inner state shifts, respectively.

22https://github.com/tensorflow/models/tree/r1.10.0/tutorials/rnn/ptb
23To understand why this is important, refer back to Equation 1.18.

38

https://github.com/tensorflow/models/tree/r1.10.0/tutorials/rnn/ptb

Together, they are responsible for about 3 perplexity points reduction.
Finally, machine learning experts identified weaknesses in the model outside the central

RNN component. Gong et al. (2018) developed FRAGE, an embedding training method
that improves the representation of rare words, achieving a slight perplexity reduction.
Yang et al. (2018) found that the softmax layer presents a bottleneck for a high-rank
problems such as language modeling. Replacing it with a mixture of softmaxes (MoS
in Tables 1.4 and 1.5) yielded substantial improvements. Lastly, Merity et al. (2018)
supplanted regular SGD with NT-AvSGD, a non-monotonically triggered, averaged version
of SGD. According to ablation tests, this change in the optimization strategy alone was
responsible for a 10% perplexity reduction on the PTB.

WikiText-2

Table 1.5 lists results for systems tested on the WikiText-2 corpus. Since its characteristics
are close to the PTB, the same techniques proved effective there. Consequently, models
perform similarly relative to each other, though the exact numbers differ from those in
Table 1.4. An interesting observation can be made here: counting only the systems listed
in both tables, while the perplexity scores start higher in Table 1.5, they also end lower,
resulting in a 55% improvement on Inan et al. (2017), as opposed to the 32% on the PTB.
To our knowledge, this discrepancy has, as of yet, not been addressed by any study.

Model Parameters Perplexity

Inan et al. (2017) - Variation LSTM 28M 87.7
Inan et al. (2017) - Variation LSTM + augmented loss 58M 87.0
Grave et al. (2017) - LSTM + continuous cache pointer – 68.9
Melis et al. (2018) - 1-layer LSTM 24M 65.9

Merity et al. (2018) - 3-layer AWD-LSTM 33M 65.8
Merity et al. (2018) - 3-layer AWD-LSTM + continuous cache pointer 33M 52.0
Yang et al. (2018) - AWD-LSTM + MoS 35M 61.45
Yang et al. (2018) - AWD-LSTM + MoS + dynamic evaluation 35M 40.68
Gong et al. (2018) - AWD-LSTM + cache pointer + FRAGE 33M 49.3
Gong et al. (2018) - AWD-LSTM + MoS + dynamic evaluation + FRAGE 35M 39.14

Table 1.5: Single model perplexity of various LSTM LMs on WikiText-2.

Before turning to the 1B corpus, let us make a final remark about the accuracy of
these results. We have seen that common datasets facilitate comparison; however, naively
sorting systems by the published numbers may lead to invalid observations. Most systems
use different code bases, are implemented with different deep learning libraries, and en-
joy different levels of hyperparameter tuning. Without a thorough reevaluation (such as
performed in Melis et al. (2018)), any survey is inevitably on a best-effort basis.

39

Luckily, most of the development in the field is open source, making such reevaluations
possible. Authors customarily upload the code associated with their paper to GitHub or
other software hosting sites. Reproducibility, however, can still be a problem. For instance,
AWD-LSTM was originally implemented in PyTorch version 0.1.12. When adapted to the
changes in PyTorch 0.4 or later, the reported perplexity numbers could no longer be repli-
cated. As far as we know, no one has yet made the endeavor to run a full hyperparameter
search to ensure that the model reaches its previous performance.

One Billion Word

Model Parameters Perplexity

Chelba et al. (2014) KN 5-gram 1.76B 67.6
Chelba et al. (2014) RNN-1024 + ME 9-gram features 20B 51.3

Jozefowicz et al. (2016) LSTM-1024-512 0.82B 48.2
Jozefowicz et al. (2016) LSTM-2048-512 0.83B 43.7
Jozefowicz et al. (2016) 2-layer LSTM-8192-1024 (Big) 1.8B 30.6
Jozefowicz et al. (2016) Big LSTM + CNN inputs 1.04B 30.0
Jozefowicz et al. (2016) Big LSTM + CNN inputs + CNN Softmax 0.39B 35.8
Jozefowicz et al. (2016) Big LSTM + CNN inputs + char LSTM 0.23B 47.9
Kuchaiev and Ginsburg (2017) Big LSTM G-4 1.75B? 28.17
Kuchaiev and Ginsburg (2017) Big LSTM G-4 (2 weeks) 1.75B? 24.29

Yang et al. (2018)* 2-layer LSTM 119M 42.77
Yang et al. (2018)* 2-layer LSTM + MoS 113M 37.1

Table 1.6: Single model perplexity of RNN LMs on the One Billion Word (1B) benchmark.
The systems marked with an asterisk (*) are limited to the top 100k words.

Language modeling results for the One Billion Word benchmark are presented in Ta-
ble 1.6. As before, the first block represent the best n-gram model and a mixed RNN–
maximum entropy model by (Chelba et al., 2014). The latter shows clearly how the curse
of dimensionality affects discrete models: the number of parameters increased tenfold from
the 5-gram model.

The second block reports results for LSTM LMs that model the whole vocabulary.
Since the corpus is huge, regularization is not such a burning issue as with the other two
datasets. Jozefowicz et al. (2016) essentially experimented with inflated versions of the
original (Zaremba et al., 2014) model; the largest LSTM architecture contains 8192 hidden
units per layer. The models deviate from the Zaremba ones in one respect: a projection
layer (Sak et al., 2014) is added before the softmax layer to keep the number of parameters
in check. (This is the second number in the table: 2048–512 means hidden layer(s) with
2048 cells and a projection layer with 512 outputs.) After a week of training on 32 GPUs,

40

the largest models achieve perplexity scores around 30 – a 42% improvement over the best
discrete model, and 55% over the best n-gram.

The main challenge on 1B is that of scaling: both the corpus and its vocabulary is
huge, so computation and memory cost of the models must be controlled.

Jozefowicz et al. (2016) focused on making the input embedding and the softmax layer
more efficient. Computational cost of the latter was addressed by using importance sam-
pling instead of raw softmax. On the memory front, several techniques were tested. The
model with “CNN inputs” reuses the idea of Kim et al. (2016) and replaces the embedding
with character convolutions. This variant proved to be the best model, outperforming the
raw LSTM model by a small margin. In contrast, CNN Softmax hurts language modeling
performance, albeit at 35.8 PPL it still improves on the 5-gram model by 41%, while using
78% less parameters. Another variant predicted output words with a character LSTM.
Although it needed the fewest parameters, it performed much worse than CNN Softmax.

Another way of attacking the performance problem is to make the LSTM network
faster. Kuchaiev and Ginsburg (2017) developed a method to factor the weight matrix
of an LSTM layer into smaller matrices, and the state and input vectors into 4 groups,
decreasing the number of parameters and increasing parallelism. The resulting speed-up
allowed the model to train faster, thereby achieving 2 points lower perplexity in the same
timeframe as the previous best model.

The last two lines in the table show that the Mixture of Softmaxes approach is beneficial
on 1B as well. However, the results are not comparable with the others, as only a fraction
of the vocabulary was modeled.

1.6 Transformer-based language models
While RNNs had the language modeling stage to themselves for a good 6 years, they
have recently been overshadowed by Transformer-based LMs. This section reviews what
Transformers are, where they came from and how they are used in language modeling.

1.6.1 Neural machine translation

The origins of the Transformer can be traced back to the field of neural machine trans-
lation (NMT). The history of MT starts shortly after the invention of the (electronic)
computer (Dostert, 1955). By the end of the noughties, commercial grade systems, such
as Google Translate, were widely in use, and research was carried out in both rule-based
and statistical (classical machine learning) directions: see Apertium (Corbı́-Bellot et al.,

41

2005; Forcada et al., 2011) for the former, and Moses (Koehn et al., 2007) for the latter.
The first end-to-end NMT system was only introduced in 2014.

In his seminal paper, Sutskever et al. (2014) introduced the sequence to sequence
(seq2seq) model, which is a generic framework for sequence learning. It consists of two
components: an encoder and a decoder, both of which are LSTM networks; for machine
translation in particular, both are LSTM language models. The encoder consumes the
input sequence and maps it to a vector of fixed length. The decoder’s hidden state is
initialized from this vector, and it is run in generation mode to predict the output24. The
system achieved close to state-of-the-art results. Figure 1.6 illustrates its application in
English–French translation25.

Figure 1.6: Sequence to sequence architecture at work

The main drawback of the seq2seq architecture is the bottleneck presented by the fixed
length vector output by the encoder. In most cases, its capacity is not enough to represent
all necessary information in the source sequence. The attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015b) alleviates this issue by allowing the decoder to access
the hidden states of the encoder at each time step. This enables the decoder to find which
source words are most relevant for predicting a particular output word. In effect, the
model learns a (soft) alignment between the input and output sequences.

(Hard) word- (Brown et al., 1993) and phrase-based (Och et al., 1999) alignment has
been an important part of the classical MT toolbox since IBM System 1. It is basically a
bipartite graph, in which source and target-language words (phrases) are the nodes and
an edge between two means that they are (part of the) translations of each other. Soft
alignment is based on the same principles, but the alignments an output word participates
in are represented by a probability distribution on the whole input sentence. In other
words, an output word may attend to any number of input words to different degrees.
Figure 1.7 illustrates the idea with a per-row heat map. Brighter squares indicate a higher
level of attention26.

24We do not go into details in this section, as it is only tangentially related to our main topic.
25Image taken from https://d2l.ai/chapter_recurrent-modern/seq2seq.html
26Heat map generated with https://git.io/JfITo

42

https://d2l.ai/chapter_recurrent-modern/seq2seq.html
https://git.io/JfITo

Figure 1.7: Soft attention plot for an English–Spanish sentence pair

Attention proved very effective in machine translation; the first system already out-
performed Moses when <unk> tokens were disallowed (Bahdanau et al., 2015) and Luong
et al. (2015a) established state-of-the-art results on several MT benchmarks.

1.6.2 The Transformer

The Transformer is a machine translation model that was introduced in the seminal paper
“Attention is all you need” (Vaswani et al., 2017). It is an encoder-decoder architecture
that does away with the RNN components and rely solely on the attention mechanism to
model the input and output sequences, as well as their relation to each other.

Figure 1.8: A single-layer Transformer, encoder on the left.

Both the encoder and the decoder consist of identical layers stacked on one another. An

43

encoder layer contains two sublayers: a FF component and a self-attention layer in which
a position (word) attends to all positions in the output of the previous layer. The decoder
layer is similar in structure, with two differences. First, it contains an encoder-decoder
attention sublayer; this corresponds to the regular attention component in Bahdanau et al.
(2015). Second, in the self-attention layer, words can only attend on positions on their
left to make output generation possible. The original model had 6 encoder and decoder
layers, but this number is not set in stone; Figure 1.8 portrays a single-layer model.

Two details of the architecture are worth mentioning. One is that Transformer uses
multi-head attention in all layers. The multi-head attention mechanism builds several (one
per “head”) attention distribution for each word position, potentially drawing information
from different representation subspaces (Vaswani et al., 2017). It can provide a richer
representation than regular attention, though it was later found that many of the heads
in the encoder can be pruned (Voita et al., 2019). The other detail is the augmentation
of the regular embeddings with positional encodings. Since the architecture contains no
recurrence, the temporal information necessary to model sequences is injected by adding
to the embedding of each word the value of a sinusoid function of the word position.

The Transformer, at the very beginning, outperformed all previous single models on
the two MT datasets it was tested on, even including all ensembles of earlier models on
one.

1.6.3 Transformers in language modeling

We have seen how LSTM language models inspired neural machine translation, which in
turn gave birth to the Transformer. It was only a matter of time until things went full
circle and the first Transformer-based language models appeared.

Transformer LMs come in two forms, depending on the layer type used. Regular left-to-
right language models are built on a variant of the decoder, which has the encoder-decoder
attention sublayer removed (Liu et al., 2018). Bidirectional models use the encoder. Here
we review the most successful autoregressive LMs; bidirectional models are described in
Section 1.7.4.

Sadly, it is impossible to give a similarly detailed overview of Transformer language
models as we did for RNNs in Section 1.5.3. As we shall see, the models are very large, and
require huge amounts of data to train. The lack of large, openly available preprocessed
corpora, however, prompted every research group to assemble its own corpus. This pre-
cludes meaningful comparison between the models, and the fact that their creators refrain
from publishing their datasets or results on standard corpora makes attempts at repro-
ducibility more or less futile and Table 1.7, which lists the most important Transformer

44

LMs, grievously incomplete.
The purpose of language modeling has changed as well. Previously, quantitative evalu-

ation based on perplexity was the norm. Qualitatively, text generated by the models often
left a lot to be desired. Transformer models, on the other hand, can generate much more
consistent and syntactically (though not semantically) flawless texts. While this makes
quantitative evaluation less relevant, it is not clear yet how these close-to-human-level
models should be assessed.

Early decoder-based Transformer LMs were used for various tasks, such as document
summarization (Liu et al., 2018) and generative pretraining for high-level NLP tasks (Rad-
ford et al., 2018). For these early systems, language modeling was but a tool, and not the
goal; yet they laid the foundation for others to build on.

The first language model that showed the power of the Transformer approach was
GPT-2 (Radford et al., 2019). It was trained on 40GB of web text, and made available
in four configurations, with parameter budgets from 117M to 1.5B. The generated texts,
especially for the large model, are qualitatively barely distinguishable from those written
by humans27. The model achieves state-of-the-art performance on several LM benchmarks,
with 1B being the notable exception (see Table 1.7). This may be justified by the fact that
Transformer language models are typically trained with full documents in order to take
advantage of long-term dependencies – something which the sentence-shuffled 1B lacks.

The CTRL model (Keskar et al., 2019) is similar to GPT-2, but it conditions the
language model on control codes that can be used to dictate the style, topic and task-
specific behavior (e.g. question answering) of the generated text. The mechanism works
well for the most part, but abrupt style shifts do happen, and the control codes are
haphazard, obviously based on what datasets were at hand (Wikipedia, MT tasks, etc.).

Model Corpus Parameters PTB WT2 1B

GPT (Radford et al., 2018) Books (1B words) 110M – – –

GPT-2 (Radford et al., 2019) Web scrape (40GB)

117M 65.85 29.41 75.20
345M 47.33 22.76 55.72
762M 40.31 19.93 44.58
1.5B 35.76 18.34 42.16

CTRL Web scrape (140GB) 1.63B – – –
Transformer XL (Dai et al., 2019) Same as evaluation 24M–0.8B 54.52 – 21.8

Table 1.7: Performance of Transformer language models on standard corpora.

Both RNN and Transformer language models are trained by chunking the corpus into
27So much so, that OpenAI only published the smallest model at first “due to concerns about large

language models being used to generate deceptive, biased, or abusive language at scale” (Radford et al.,
n.d.). Only when other large models became available did they decide on releasing the rest of the models.

45

segments and processing a single segment in a training step. However, the recurrent hidden
states of RNNs are preserved between segments, allowing them to retain information from
previous steps as much as their capacity permits. Since Transformers have no recurrent
state, they cannot learn dependencies that span segments. Transformer XL (Dai et al.,
2019) overcomes this issue by allowing the model to look back (but not backpropagate to)
the latest preceding segment, introducing a limited form of recurrence.

Transformer-XL is unique among the rest of the models in that it was trained and
evaluated on the benchmark datasets instead of a proprietary corpus, allowing a direct
comparison with RNN methods. Notably, it achieved state-of-the-art performance on all
datasets.

1.6.4 Performance considerations

The Transformer architecture promised performance improvements over RNNs, at least
as far as training speed is concerned. The speed-up comes from the lack of recurrent
connections and the fact that all words are processed in parallel. The increased efficiency,
however, is offset by the sheer size of modern Transformer models.

There is one aspect in which RNNs actually outperform Transformers: evaluation or
text generation. At each time step, the RNN reads a single input word and predicts the
next word (see e.g. the right side of Figure 1.6). This is possible because the RNN can
“remember” the input history via its recurrent state. The Transformer, which lacks such
a recurrent state, has to re-read the whole history sequence at each time step.

Yet the main bottleneck for attention-based models is memory. While RNNs run in
memory linear in the sequence size n, attention uses O(n2). When training a Transformer
model on the same GPU as an RNN with the same parameter budget, either the sequence
size or the batch size (or both) must be decreased to fit into memory. The first choice
sacrifices model performance; the second leads to longer training times. Most models
above or in Section 1.7.4 have many times the parameters of a standard LSTM model and
are also trained on much larger corpora (see Table 1.7). These factors all add up, and as
a result, training a modern Transformer model takes days or weeks on hundreds of GPUs
or TPUs.

The hardware requirements and the length of the training cycle have left their mark
on research culture as well. The financial costs incurred by such a training regimen are
prohibitive for smaller laboratories, preventing them from participating in state-of-the-
art research. To counter this ‘big science’ effect, it has become customary to release
the models along with the paper introducing them, allowing less well endowed research
groups to use or experiment with them. However, this does not change the fact that the

46

leaderboards of shared tasks are dominated by huge Transformer models created by large
organizations (usually companies) (Rogers, 2019), and that the unequal playing field raises
various ethical issues (Parra Escartı́n et al., 2017).

It is important to note that there already exist solutions to the technical issues raised
above. The limited recurrence introduced by Transformer XL puts it on par with RNNs
for evaluation speed, achieving a huge (uup to 1,800x) speed-up compared to regular
Transformer models (Dai et al., 2019). The quadratic memory usage of the attention
mechanism has also been addressed recently. The Reformer architecture uses locality-
sensitive hashing to bring the memory footprint down to O(n log n) (Kitaev et al., 2020).
These solutions are not yet widespread, and it will be interesting to see how they affect
the Transformer landscape.

There is one area where Transformer models improve on memory usage and compu-
tation cost compared to RNNs: their handling of the embedding and softmax layers. In
RNN language models, the computational cost was addressed by approximate methods
(see Section 1.4.4). Transformers mitigate the problem using a linguistically motivated
approach. Since the size of the softmax layer is proportional to that of the vocabulary,
decreasing the latter will keep the former small as well. An obvious solution would be to
switch to character-based language modeling, where the vocabulary consists of a few hun-
dred characters at most; however, their performance leaves a lot to be desired (Radford
et al., 2019).

Subword- or wordpiece-level vocabularies, generated by algorithms such as WordPiece-
Model (Schuster and Nakajima, 2012), Byte Pair Encoding (BPE) (Sennrich et al., 2016)
or the confusingly named unigram language model (Kudo, 2018), represent a reasonable
compromise between character- and word-level approaches. They include the most fre-
quent character sequences in the training data, from individual characters to the most
common words. Inputs to the language model are segmented into subword tokens accord-
ing to the vocabulary; prediction is also done at the subword level, although perplexity
scores are always normalized with the word count. Most models have a vocabulary of
about 30,000 subwords.

Of course, subword vocabularies are not Transformer-specific, and can be used with
any language modeling technique. However, it was Transformer LMs that made them
ubiquitous. Yet their effect on the modeling performance has not been studied in much
detail: the author is not aware of any work that evaluates word- against subword-level
vocabulary with the same Transformer (or RNN) model.

47

1.7 Embeddings
We have seen how embeddings are an integral (and mandatory) part of neural language
models (see Section 1.4.3. Much of the performance of a model depends on the quality
of vector representations learned by the embedding. In this section, we explore why
embeddings work and how they became a household term in NLP.

1.7.1 Vector space semantics

In the seminal paper dedicated to this topic, Mikolov; Yih, et al. (2013) discovered that
embedding vectors encode meaningful syntactic and semantic information about words.
The language model uses this information to make its predictions.

Embeddings map words to vectors in Rd, which is an inner product space. It defines
three vector operations: addition, scalar multiplication and dot product. It is not at all
obvious that this should be the case, but all three operations have a linguistic interpreta-
tion:

Similarity Embeddings assign similar words to similar vectors (Bengio et al., 2003).
Normalized dot product (i.e. the cosine of the angle between two vectors) is therefore
a good measure of word similarity.

Relatedness Syntactic and semantic relationships seem to be encoded as approximately
constant vector offsets between word pairs sharing a relation (Mikolov; Yih, et al.,
2013). Figure 1.9 illustrates a semantic (gender) and a syntactic (plural) relation28.

Frequency Since the length of a vector seems proportional to the logarithm of the word
frequency (Arora et al., 2016), scalar multiplication or normalization of a vector does
not change its semantics. This property ensures that similarity and relatedness can
be computed as described above.

The properties above make it possible to treat more advanced concepts, such as analogy,
in terms of vector operations as well. The question “What is to king as woman is to man?”
can be formalized as vking − vman + vwoman, which (given a large enough training corpus)
yields a vector close to vqueen. Syntactic analogies (e.g. vapple : vorange ≈ vapples : voranges)
work similarly. Later studies showed that embeddings capture all kinds of linguistic in-
formation about words from POS category (Borbély; Kornai, et al., 2016) to sentiment or
concreteness (Rothe et al., 2016).

28Figure reproduced from Mikolov; Yih, et al. (2013).

48

MAN

WOMAN

UNCLE

KING

QUEEN

AUNT

KINGS

QUEENS

KING

QUEEN

Figure 1.9: Left panel shows vector offsets for the “gender” relation. Right panel shows
two relations: “gender” and (the grammatical) “number”.

As embeddings use real vectors for word representation, they belong to the vector space
models of semantics. Another name for this field is distributional semantics, because it
is based on the distributional hypothesis (Firth, 1957; Harris, 1954), which asserts that
similar words occur in similar contexts. Since language models use the context to predict
the next word, the quality of representations learnt this way is a strong argument in favor
of the hypothesis.

Distributional semantics is not a new concept. Word frequency count-based methods,
such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990) or Pointwise Mutual
Information (PMI) (Church and Hanks, 1990) have been around for decades. There are
conflicting assessments about whether embeddings clearly outperform (Baroni et al., 2014),
or are mostly on par with (Levy et al., 2015), count-based models; there is some evidence
that both optimize the same objective (Levy and Goldberg, 2014b). However, embeddings
clearly improve on earlier methods in two regards. First, they capture syntactic and mor-
phological regularities in addition to semantics. Second, they are much lower-dimensional,
typically d =300–1000, as opposed to O(|V |) in the count-based case, allowing them to be
used outside of research environments.

Embeddings can be evaluated in two ways. Intrinsic evaluation assesses the learned
representations on similarity (such as SimLex-999 (Hill et al., 2014)) or analogy (see e.g.
WS-353 (Finkelstein et al., 2002) or the Google analogy dataset (Mikolov; Yih, et al.,
2013)) tasks. Extrinsic evaluation measures what performance improvements an embed-
ding brings to downstream tasks (see Section 1.7.5). Unfortunately, there seems to be
little correlation between the two approaches (Faruqui et al., 2016). While earlier work
concentrated on intrinsic benchmarks, the focus has recently shifted to extrinsic evalua-
tion.

The vector space properties were first demonstrated for embeddings of RNN language

49

models. However, their performance is usually substandard, due to the lack of a right-
hand side context and the generic LM objective (Mikolov; Chen, et al., 2013). Stand-alone
embeddings algorithms, better suited to representation learning, soon appeared. They
belong to two main groups: static embeddings assign a single vector to a word type; i.e. all
occurrences of a word are mapped to the same vector; dynamic (contextualized) embeddings
compute a different vector for each occurrence based on its immediate context.

1.7.2 Static embeddings

The first general purpose embedding, word2vec (w2v) was published in the seminal Mikolov;
Chen, et al. (2013), although a similar method has already been described in Collobert and
Weston (2008). Word2vec is trained with one of two language modeling objectives based
on skip-grams. Four words are selected in a local context window of k positions around
the current word, and either the current word has to be predicted based on the other four,
or conversely. The architecture is based on the feedforward NNLM in Section 1.4.3, but
without the hidden layer. Word2vec significantly outperforms embeddings extracted from
early RNN models, and it is very fast to train (Mikolov; Chen, et al., 2013). It has become
the first deep learning success story in NLP, even though its NN architecture is anything
but deep.

Word2vec was followed by other embedding algorithms, all of which tried to improve on
it in various ways. GloVe (Pennington et al., 2014) mixes local context window methods
with global corpus statistics; Levy and Goldberg (2014a) eschews linear context in favor
of a syntactic one based on dependency parse-trees. FastText (Bojanowski et al., 2017)
represents words as a bag of character n-grams. Yet performance-wise, neither method
is superior to the others: some of them are better at syntactic, others at semantic tasks;
some at word similarity, others at relatedness (Levy et al., 2015). Nowadays, FastText is
usually preferred, because of its ability to model out-of-vocabulary words.

Besides OOVs, embeddings algorithms have problems learning good representations
for rare words as well. The neighbors of infrequent words tend to be other, unrelated
rare words, with actual semantic neighbors placed far away (Gong et al., 2018); their
neighborhoods are also less stable across different training runs (Wendlandt et al., 2018).
There are attempts to address this issue directly, such as FRAGE (Gong et al., 2018), but
due to this instability, hyperparameter choice is as important as ever (Levy et al., 2015;
Mimno and Thompson, 2017).

50

1.7.3 Multi-sense embeddings

The embeddings discussed thus far represent each word with a single vector. This is
problematic for words with multiple meanings, such as bank ‘financial institute’ and ‘river
bank’. Bank is a homonym, i.e. its senses are unconnected, and it is only a coincidence
that they share the same word form – evidenced by the fact that other languages do
not partition these meanings to the same character sequence (Youn et al., 2016). The
algorithm, however, tries to consolidate the senses into one, ending up with a vector that
is a blend of the different meanings. Polysemes such as head (‘body part’, ‘top part’,
‘leader’), where the senses are closely related, are perhaps less affected, as we expect their
vectors to be close as well. Yet there is a continuum of words between homonymy and
polysemy, and for most, the meanings (or usage patterns) are separate enough to warrant
distinct vectors.

Multi-sense embeddings (MSEs), proposed by Reisinger and Mooney (2010), model
different meanings of word forms with different vectors. Several algorithms have been
proposed over the years using techniques such as spherical clustering (Huang et al., 2012),
stochastic modeling (Li and Jurafsky, 2015), or multi-sense extensions to w2v (Bartunov
et al., 2016; Neelakantan et al., 2014). Some of these are simpler, assigning a fix number
of senses for lexically ambiguous words, others try to find the optimal number statisti-
cally. All of them report improvements over single-sense embeddings, though the gains
seem surprisingly small even on datasets created specifically to test MSEs, such Stanford
Contextual Word Similarities (Huang et al., 2012).

Assessing MSE performance is a complex matter; we return to in Chapter 3.

1.7.4 Contextual word embeddings

The main drawback of static embeddings is that a word is represented by the same vector
regardless of context. Even current MSEs have to choose between a number of precom-
puted sense vectors for each occurrence of the word. As such, when encountering a word in
a specific sentence, static embeddings cannot accurately reflect the syntactic or semantic
role it plays in its current context.

In contextual embeddings, such as ELMo (Peters et al., 2018) or BERT (Devlin et al.,
2019), the vector of a word depends on its immediate surroundings as well. Accordingly,
each occurrence of a word is assigned a different vector, which is then able to implicitly
encode the function of the word in the sentence.

We have seen how static embeddings came to be by “shedding” their language modeling
skin and keeping only the embedding matrix. Contextual embeddings mark the return of

51

the full language modeling machinery; in effect, a contextual embedding is nothing more
than a (usually bidirectional) language model, where the word representation is taken from
the output of the network (or specific hidden layers). The input is usually a full sentence.
This allows the model to adapt the word representations to the context; hence the name.
This is in contrast to static embeddings, where the vector is the output of the embedding
layer, which operates on a per-word basis.

Contextual embeddings are pretrained on very large corpora upwards of 1B (One Billion
Word (Chelba et al., 2014)) or 2,5B (English Wikipedia29) tokens all the way up to 2.5TB
of filtered Common Crawl data (Conneau and Lample, 2019). They are evaluated on
high-level downstream tasks, such as question answering, textual entailment or named
entity recognition; for contextual embeddings, the idea of intrinsic evaluation has been
completely abandoned.

The first contextual embedding, ELMo (Embeddings from Language Models, Peters
et al. (2018)) employs a single-layer bidirectional LSTM (i.e. a left-to-right and a right-to-
left sublayer); the word representation is the outputs of the two sublayers concatenated.
ELMo can be used as a drop-in replacement for static embeddings in NLP systems; such
systems attained state-of-the-art results on SQuAD and four other high-level tasks.

Besides English, ELMo models have been released for another 43 languages (Che et al.,
2018). However, the training data for each language was limited (20M words apiece), so
the models are not expected to perform as well as ‘regular’ ELMo.

Keeping with the Sesame Street30 theme, ELMo was soon followed by BERT (Bidi-
rectional Encoder Representations from Transformers, Devlin et al. (2019)). As its name
implies, it repurposes the Transformer encoder as a generic language representation model.
It is pretrained on two tasks. In masked language modeling, the system is presented with
a single sentence in which some words are masked. The model has to guess these words31.
This is analogous to the traditional LM objective of guessing the next word; however,
the parallel processing of words in the Transformer encoder makes standard left-to-right
conditioning impossible. In the next sentence prediction task, BERT is presented with two
sentences, and has to decide whether the second sentence follows the first in the training
corpus.

The model can be adapted to downstream tasks by adding a classifier on top. Even
with a simple feed-forward network as the classifier, BERT was able to achieve state-of-
the-art performance on several high-level benchmarks, such as SQuAD or GLUE (Devlin
et al., 2019). The model is fine-tuned separately for each task. While pretraining BERT is

29https://en.wikipedia.org/wiki/Main_Page
30https://en.wikipedia.org/wiki/Sesame_Street
31In linguistics, masked LM is known as a cloze test (Taylor, 1953)

52

https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Sesame_Street
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Sesame_Street

very costly, fine-tuning is relatively inexpensive, and (depending on the size of the training
data) takes only a few hours on a modern GPU.

The English BERT models are available in two sizes: the Base model has 110 million
parameters, BERT Large 340 million; each with a cca. 30 thousand wordpiece vocabulary.
There is also a multi-language model that was pretrained jointly on 104 languages, with
a vocabulary of approximately 120 thousand wordpieces.

BERT begat a whole family of models. One line of research kept the architecture
and sought improvements by finetuning its details: XLNet (Yang et al., 2019) enhanced
handling of masked tokens; SpanBERT (Joshi et al., 2020) extended the masking scheme
to word spans and added a span boundary detection pretraining task. ALBERT (Lan et
al., 2019) replaced the next sentence prediction task with the more general sentence order
prediction, while RoBERTa (Liu et al., 2019) abandoned the next sentence prediction task
altogether. It also used larger batches and trained with a dynamically changing masking
pattern.

Other systems, such as BART (Lewis et al., 2019) and UniLM (Dong et al., 2019),
opted to use the full Transformer architecture instead of just the encoder and introduced
sequence-to-sequence training objectives. Finally, the XLM family of models (Conneau and
Lample, 2019) focused on improving multi-language performance, and XLM-RoBERTa is
even competitive with monolingual models (Conneau et al., 2019). All models reported
state-of-the-art results on various downstream tasks and benchmarks.

Pretraining a BERT (or derived) model is no easier or cheaper than training an au-
toregressive Transformer LM (see Section 1.6.4). DistilBERT (Sanh et al., 2019) aims to
alleviate the impact on end users by training a leaner BERT model via knowledge dis-
tillation (Hinton et al., 2015); i.e. with the objective to reproduce the original model’s
behavior. ALBERT incorporates cross-layer parameter sharing, making the model not
only cheaper to use, but faster to train as well. Yet pretraining a state-of-the-art contex-
tual embedding is still out of the reach of most research groups.

1.7.5 Embeddings in NLP

In NLP systems, most sequence- or token classification tasks (POS tagging, NER, senti-
ment analysis, etc.) are solved by machine learning. These systems typically consist of
two parts: a featurizer that creates features for each token of its input (generally, a word)
and a classifier, that takes these features as its input and, depending on the task, emits
a token or sequence label. In the traditional paradigm, features are created manually,
based on the linguistic and orthographic properties of words. The features are then fed
into a usually off-the-shelf classifier, such as a logistic regression or conditional random

53

field (CRF) model.
The idea that word embeddings can supplant manual features goes back to (Collobert

and Weston, 2008; Turian et al., 2010). Collobert et al. (2011) trained a neural tagging
system jointly for several NLP tasks (POS, chunking, NER and semantic role labeling).
The results with purely automatic features were already competitive with the state-of-the-
art, and adding manual features allowed the system to slightly improve on them.

The first public NLP pipeline to adopt word embeddings was Stanford CoreNLP, where
they were used to augment manual features in the parser (Socher et al., 2013). Today,
word vectors can be found in most NLP software packages (spaCy, UDPipe32, etc.). To
our knowledge, however, the only NLP library to fully eschew manual features in favor of
pretrained vectors is Flair33; in fact, the core idea of Flair is to make “mixing and match-
ing” various embeddings as simple as possible (Akbik; Bergmann; Blythe, et al., 2019).
At the time of writing, Flair represents the state-of-the-art in POS tagging, chunking and
NER (Akbik et al., 2018; Akbik; Bergmann, and Vollgraf, 2019).

Deep contextualized embeddings have not yet reached this level of penetration. While
there exist libraries that allow their integration into NLP pipelines (such as spacy-
transformers34), most of the models are published as-is, with only the scripts required
to reproduce results in the associated papers. Also, BERT and its lineage excel in higher
level tasks, such as question answering and the various language understanding tasks in
GLUE, which are not regularly part of a text processing pipeline. However, if the ubiquity
of static embeddings is any indication, this is bound to change in the near future.

1.8 Language modeling and NLP
Reading the previous sections, an attentive reader might have noticed how little role
linguistics, or NLP, played in the evolution of language modeling techniques. Even though
language modeling has its origins in two NLP tasks: speech recognition and machine
translation, there seems to be little influx of ideas from linguistics to the new field. The
basic axioms (i.e. languages have vocabularies that consist of words; (written) words
are composed of characters, etc.) are exceptions, but those can hardly be considered
revolutionary.

There are linguistically inspired techniques, such as subwords, vocabulary clustering in
class-based n-grams and hierarchical softmax, or the idea of training bidirectional Trans-

32https://ufal.mff.cuni.cz/udpipe
33https://github.com/zalandoresearch/flair
34https://github.com/explosion/spacy-transformers

54

https://ufal.mff.cuni.cz/udpipe
https://github.com/zalandoresearch/flair
https://github.com/explosion/spacy-transformers
https://github.com/explosion/spacy-transformers
https://ufal.mff.cuni.cz/udpipe
https://github.com/zalandoresearch/flair
https://github.com/explosion/spacy-transformers

former LMs with the Cloze task. But only a handful of systems (such as the joint LM of
Filimonov and Harper (2009), the RNN grammar of Dyer et al. (2016) and the dependency-
based embedding of (Levy and Goldberg, 2014a)) used actual NLP techniques (CFG fea-
tures in the former and dependency parsing in the latter two) to address issues in language
modeling. Even then, these systems are regularly outperformed by models built without
any (deep) linguistic thought; see Section 1.5.3.

Yet the opposite direction seems exceptionally fruitful: modern LMs generate texts of
human-level local consistency, while embeddings have revolutionized how NLP systems are
built. The difference is especially palpable on high-level natural language understanding
tasks, which suddenly seem doable. While the AlphaGo (Silver et al., 2016) moment of
NLP has not yet come, it certainly seems closer than ever before.

In a way, these developments are not surprising. Linguists have long struggled to
explain the workings of language; and given the number of competing theories, it may
safely be said that they have not yet succeeded. Yet humans have no issues using language,
irrespective of the level of grammar education they might have had. There is one crucial
difference between LM training and first language acquisition: modern language models
need orders of magnitude more text to reach the performance reported in the papers than
humans do to learn their mother tongue. There is still room for improvement.

As there might also be room for NLP in language modeling. We might observe that the
results presented in this chapter were all achieved by English-language models on English
benchmarks. Due to it being an analytic language, English lends itself well to word-level
language modeling. Agglutinative languages, such as Hungarian, might pose problems for
the language modeling techniques presented above. In this thesis, we explore some of the
ways in which language models and linguistic methods interact, with a major focus on
Hungarian.

55

Chapter 2

emLam – a Hungarian Language
Modeling baseline

2.1 Introduction
We saw in Chapter 1 how language modeling is an integral part of several NLP applica-
tions, such as speech recognition, optical character recognition and machine translation.
It has been shown that the quality of the LM has a significant effect on the performance of
these systems (Brants et al., 2007; Chelba et al., 2012). Accordingly, evaluating language
modeling techniques is a crucial part of research. For English, a thorough benchmark of
discrete techniques was carried out by Goodman (2001); and Section 1.5.3 demonstrated
how the availability of standard benchmark corpora facilitated progress in neural lan-
guage modeling. All three corpora mentioned there, the preprocessed version of the Penn
TreeBank (PTB), WikiText-2 (WT2) and the One Billion Word Benchmark (1B), were
published for the sole reason of measuring advances in statistical language modeling.

Chapter 1 has also shown the dramatic advances the last decade saw in language
modeling. Training corpora grew from a few million words (e.g. the Brown corpus) to
gigaword and beyond, while vocabulary size increased from a few 10k to several hundred
thousands (as in the 1B). Neural networks overtook n-grams as the language model of
choice. State-of-the-art LSTM and Transformer models achieve up to 63–67% reductions
in perplexity compared to 5-gram models (see Tables 1.4, 1.6 and 1.7).

Surprisingly, these developments left few traces in the Hungarian NLP literature. Aside
from an interesting line of work on morphological modeling for speech recognition (Mihajlik
et al., 2010; Németh et al., 2007), no study is known to the author that addresses issues of
Hungarian language modeling. While quality works have been published in related fields,
language model performance is often not reported, or is not competitive: e.g. in their

56

otherwise state-of-the-art system, Tarján et al. (2016) use a 3-gram model that achieves
a perplexity of 4001 on the test set — a far cry from the numbers reported in Chapter 1
and here.

Hungarian poses a challenge to word-level LM because of its agglutinative nature.
While verb conjugation is mostly fusional (i.e. person, number and tense are fused into a
single inflectional suffix, such as in “lát·tuk” ‘we saw’), verbs still have about 40 surface
forms, as opposed to the maximum four2 in English. The nominal paradigm, on the other
hand, is fully agglutinative, so nouns, adjectives and numbers may have as many as 700
different inflected forms.

The proliferation of word forms inflates the vocabulary, which has various adverse
effects. Firstly, it increases the memory usage of all language models and increases the
computational cost associated with the softmax layer (see Section 1.4.4). Secondly, and
more importantly, it decreases the number of contexts a word form is seen during training
(and conversely: the number of word forms seen after a specific context), making the data
sparsity problem much more pronounced than it is for English. The results are worse
probability estimates and ultimately, lower performance. Lastly, even frequent words will
have forms not present in the training corpus, increasing the number of OOVs in open-
vocabulary language modeling.

In this chapter, we intend to decrease the gap between English and Hungarian language
modeling in two ways. First, we report baselines for various language modeling methods
on three publicly available Hungarian corpora. In light of the issues mentioned above, it
will be especially interesting to see how the performance of the tested methods translate
to Hungarian.

Second, we present a version of the Hungarian Webcorpus (Halácsy et al., 2004) that
can be used as a benchmark for language models. Our motivation was to create the
Hungarian equivalent of the One Billion Word Benchmark corpus for English: a freely
available data set that is large enough to enable the building of high-quality LMs, yet
small enough not to pose a serious barrier to entry for researchers. We hope that the
availability of the corpus will facilitate research into newer and better LM techniques for
Hungarian.

The software components required to reproduce this work, as well as the benchmark
corpus, comprise the emLam module3 of e-magyar4 (Váradi et al., 2017). The scripts have
been released as free software under the MIT license, and can be downloaded from the

1Personal communication with the author.
2Namely present, past simple, past participle and gerund.
3http://e-magyar.hu/hu/textmodules/emlam
4http://e-magyar.hu

57

http://e-magyar.hu/hu/textmodules/emlam
http://e-magyar.hu
http://e-magyar.hu/hu/textmodules/emlam
http://e-magyar.hu

emLam repository5.
The rest of the chapter is organized as follows. The benchmark corpora, as well as

our solution to the data sparsity problem is described in Section 2.2. In Section 2.3, we
introduce the LM methods to be evaluated. Results are presented in Section 2.4. Finally,
Section 2.5 contains our conclusions and ideas left for future work.

2.2 The Hungarian Datasets
We selected three publicly available Hungarian corpora for benchmarking. The corpora
are of various sizes and domains, which enabled us to evaluate both small- and large-
vocabulary LM configurations. The corpus sizes roughly correspond to those of the En-
glish corpora commonly used for LM benchmarks, making a comparison between the two
languages easier.

The Szeged Treebank (Csendes et al., 2003; Vincze et al., 2014) is the largest manually
annotated corpus of Hungarian. The treebank consists of CoNLL-style tsv files; we used
a version in which the morphological features had been converted to KR codes to keep in
line with the automatic toolchain described below. At around 1.5 million tokens, it falls
between PTB and WT2 in size, allowing us a direct comparison of small-vocabulary LM
techniques.

The filtered version of the Hungarian Webcorpus (Halácsy et al., 2004) is a semi-
gigaword corpus at 589M tokens. It consists of webpages downloaded from the .hu domain
that contain no more than 4% word tokens unrecognized by HunSpell; i.e. “fewer typos
than average printed materials” (Halácsy et al., 2004). The downloadable corpus is already
tokenized; we further processed it by performing lemmatization, morphological analysis
and disambiguation with Hunmorph (Trón et al., 2005): ocamorph for the former two and
hunlex for the latter.

The Hungarian Gigaword Corpus (Oravecz et al., 2014) is the largest public Hungarian
corpus. It is based on the Hungarian National Corpus6 (Váradi, 2002), a 187M word
corpus with newswire, literature, scientific and legal texts supplemented with material
downloaded from online forums. This core was gradually expanded to 1.5 billion tokens
with additional data crawled from the web. In this paper, we used an in-progress version,
denoted MNSZ2. At around one billion tokens, it is comparable in size to the English 1B
corpus. The raw text was preprocessed with the same tools as above.

We decided to use the ‘old’ hun* tools because at the time of writing, the e-magyar
5https://github.com/dlt-rilmta/emLam
6Magyar Nemzeti Szövegtár

58

https://github.com/dlt-rilmta/emLam
https://github.com/dlt-rilmta/emLam

toolchain was not yet production ready, and the version of the Szeged corpus that uses the
new universal POS tags still contained conversion errors. Therefore, the results published
here might be slightly different from what one can attain by running the scripts in the
emLam repository, should the issues above be addressed. However, any such differences will
most likely be inconsequential.

2.2.1 Preprocessing

As mentioned before, the main challenge of modeling an agglutinative language is the
number of distinct word forms. The solution that works well for English — putting all
word forms into the vocabulary — is not reasonable: on one hand, the vocabulary size
would explode (see Table 2.1); on the other, there is a good chance the training set does
not contain all possible word forms in the language.

The most common solution in the literature is to break up the words into smaller
segments (Afify et al., 2006; Botha and Blunsom, 2014; Hirsimäki et al., 2005). The two
main directions are statistical and morphological word segmentation. In this chapter, we
study the latter. Not only is it linguistically more motivated, it also ensures that the
tokens we end up with are meaningful, making the LM easier to debug.

We ran the pipeline described above on all words in the corpus, and split all inflectional
suffixes (as well as some derivational ones, such as <COMPAR>, the tag for the comparative
marker ‘-bb’ and <SUPERLAT>, the tag for the superlative marker ‘leg-’) into separate tokens.
Only inflections marked by the KR code are included; the default zero morphemes (the
nominative case marker and the present-tense third person singular for verbs) are not. A
few examples:

jelmondatával → jelmondat <POSS> <CAS<INS>>
akartak → akar <PAST> <PLUR>

otthonainkba → otthon <PLUR> <POSS<1> <PLUR>> <CAS<ILL>>

One could say that by normalizing agglutinative forms like this, we “deglutenized” it;
therefore, the resulting variants of the corpora shall be referred to as gluten-free (GLF)
from now on. The full preprocessing pipeline is as follows:

1. Tokenization and normalization. The text was lowercased, converted to utf-8 and
deglutenized

2. (Webcorpus only) Duplicate sentences were removed, resulting in a 32.5% reduction
in corpus size.

59

3. Tokens below a certain frequency count were converted into <unk> tokens. The
word distribution proved different from English: with the same threshold as in the
1B corpus (3), much more distinct types remained. To be able to test LMs with a
vocabulary size comparable to 1B, we worked with different thresholds for the two
gigaword corpora: Webcorpus was cut at 5 words, MNSZ2 at 10. An additional
thresholding level was introduced at 30 (50) tokens to make RNN training tractable.

4. Sentence order was randomized. For the Szeged corpus, we also created a version
without sentence shuffling. The two are differentiated with subscripts: S marks the
shuffled version, while O the corpus with the original sentence order.

5. The data was divided into train, development and test sets; 90%–5%–5% respec-
tively. For shuffled datasets, this is a simple matter of random sampling. With
SzegedO, the situation is not so straightforward: from the 15 files of the corpus we
could not single out a single one as test, as they all represent different genres or
domains; nor could we randomly pick 5% of all documents, as the boundaries are
unmarked. In the end, we set apart the last 10% of each file for the validation and
test sets.

2.2.2 Corpus Statistics

Table 2.1 lists the main attributes of the datasets created from the three corpora. Where
not explicitly marked, the default count threshold (3) is used. It is clear from comparing
the raw and GLF datasets that deglutenization indeed decreases the size of the vocabulary
and the number of OOVs by about 50%. Although not shown in the table, this reduction
ratio remains consistent among the various thresholding levels.

Also apparent is that, compared to the English corpora in Table 1.3, the number of
unique tokens is much bigger even in the default Hungarian GLF datasets. Preliminary
inquiry into the data revealed that three phenomena account for the majority of the token
types between the 3 and 30 (50) count marks: compound nouns, productive derivations and
named entities (with mistyped words coming in at fourth place). Since neither the Szeged
corpus, nor (consequently) the available morphological disambiguators take compounding
and derivation into account, no immediate solution was available for tackling these issues.
Therefore, we decided to circumvent the problem by introducing the higher frequency
thresholds and concentrating on the problem of inflections in this study.

The preprocessing scripts are available in the emLam repository.

60

Dataset Sentences Tokens Vocabulary OOVs Analysis
Szeged 81,967 1,504,801 38,218 125,642 manualSzeged GLF 2,016,972 23,776 55,067
Webcorpus

26,235,007

481,392,824 1,971,322 5,750,742

automaticWebcorpus GLF 683,643,265 960,588 3,519,326
Webcorpus GLF-5 id. 625,283 4,647,706
Webcorpus GLF-30 id. 185,338 9,393,015
MNSZ2

44,329,309

624,830,138 2,988,629 11,614,583

automaticMNSZ2 GLF 852,232,675 1,714,844 5,729,509
MNSZ2 GLF-10 id. 630,863 10,845,301
MNSZ2 GLF-50 id. 197,542 19,547,859

Table 2.1: Comparison of the three Hungarian corpora

2.2.3 The Benchmark Corpus

Of the three corpora above, the Hungarian Webcorpus is the only one that is freely down-
loadable and available under a share-alike license (Open Content7). Therefore, we decided
to make not only the scripts, but the preprocessed corpus as well, similarly available for
researchers.

The corpus can be downloaded as a list of tab-separated files. The three columns
are the word, lemma and disambiguated morphological features. A unigram (word and
lemma) frequency dictionary is also attached, to help create count-thresholded versions.
The corpus is available under the Creative Commons ShareAlike (CC SA) license.

Such a corpus could facilitate language modeling research in two ways. First, any
result published using the corpus is easily reproducible. Second, the fact that it has been
preprocessed similarly to the English 1B corpus, makes comparisons such as those in this
paper possible and meaningful.

2.3 Language model evaluation
We had neither the time, nor the means to evaluate all (or even most) of the language
modeling methods described in Chapter 1. We opted instead to test the ones that were suf-
ficiently state-of-the-art and either had an implementation available or could be recreated
with reasonable effort.

We chose a 5-gram model with modified Kneser-Ney (KN) smoothing as our discrete
baseline, since it is simple, and it reportedly outperforms all other n-gram models (Good-

7http://www.opencontent.org/definition/

61

http://www.opencontent.org/definition/
http://www.opencontent.org/definition/

man, 2001). We used the implementation in the SRILM (Stolcke et al., 2011) library,
and tested two configurations: a pruned backoff (the default)8 and, similar to Chelba
et al. (2014), an unpruned interpolated model9. All datasets described in Table 2.1 were
evaluated; in addition, we also tested POS models (both full-KR and GLF, where the
inflectional tags are split from the main category), where lemmas were replaced with their
respective part-of-speech tags. These test the model’s ability to learn basic syntax and
morphotactics (as encoded by POS sequences) and it also serves as the state transition
table for class-based n-grams (see below). Due to the considerably reduced vocabulary
(less than two thousand for full KR and two hundred for GLF), this task is much easier
than word-level language modeling.

It is worth mentioning that the GLF format (and subwords in general) is not optimal
for n-gram modeling. As words are broken up into multiple tokens, they use up more of
the n-gram’s history, which is already a very limited resource. In the extreme case, such as
the last example under Section 2.2.1, the whole history could be taken up by inflectional
tokens, preventing the model from accessing relevant context. RNN LMs are less affected
by this issue as they can retain information from their history much longer.

We also evaluate a class-based n-gram setup to see if they can improve on regular 5-
grams. Our working hypothesis, based on Section 1.3.3, was that they cannot. Out of the
various clustering options available, we elected to use part-of-speech categories as clusters,
since a full morphological analysis was already available as a by-product of deglutenization.

We ran three RNN baselines:

1. the Medium regularized LSTM setup in Zaremba et al. (2014). We used the imple-
mentation10 in Tensorflow (Abadi et al., 2016b)

2. AWD-LSTM (Merity et al., 2018) with the hyperparameter settings tuned to WT2,
as the size of its vocabulary matches Szeged’s better than PTB’s does.

3. LSTM-512-512, the smallest configuration described in Jozefowicz et al. (2016). The
model was reimplemented in Tensorflow, and is available from the emLam repository.

Due to time and resource constraints, the first two baselines were only run on the
Szeged corpus, and the last one only on the smallest, GLF-30 (50) variants of the gigaword
corpora.

8-kndiscount
9-kndiscount -gt1min 1 -gt2min 1 -gt3min 1 -gt4min 1 -gt5min 1 -interpolate1

-interpolate2 -interpolate3 -interpolate4 -interpolate5
10https://github.com/tensorflow/models/tree/r1.10.0/tutorials/rnn/ptb

62

https://github.com/tensorflow/models/tree/r1.10.0/tutorials/rnn/ptb

Language models typically perform worse when tested on a different corpus, due to the
differences in vocabulary, word distribution, style, etc. To see how significant this effect
is, the models trained on the two gigaword corpora were evaluated not only on the test
set of their training corpus, but on the other corpus as well.

2.4 Results

2.4.1 n-grams

The results achieved by the n-gram models are reported in Table 2.2–2.5. Table 2.2 lists
the perplexities achieved by KN 5-grams of various kinds; the odd one out is POS GLF,
where the limited vocabulary enabled us to create up to 9-gram models. For MNSZ2, the
reported score is from the 7-gram model, which outperformed 8- and 9-grams. Results of
English models on the PTB and 1B are included for comparison.

A glance at the table reveals how the vocabulary problem affects language modeling
performance: the perplexities attained by word-level 5-grams are anywhere between 85%–
265% higher than the results of the corresponding English models. GLF 5-grams performed
even worse than word-level models, confirming our suspicion that subword-level n-grams
are suboptimal.

Several interesting observations can be made. First, with the exception of the first
Webcorpus word model, models trained on larger corpora attain lower perplexity scores,
underlying the importance of training data size. Second, it seems that as the size of the
vocabulary decreases (with larger frequency thresholds on one hand, and with the POS
models on the other), so does the perplexity – POS n-grams are probably at their limit
at 10–12 points.

Finally, an interesting trend emerges when comparing the results of the two gigaword
corpora: the perplexities of both word and GLF models are about 50% higher on Web-
corpus than on MNSZ2. Finding the cause of this discrepancy requires further research.
Two possible candidates are data sparsity (at the same vocabulary size, Webcorpus is 25%
smaller) and a difference in the distribution of inflection configurations.

For n-gram models, SzegedS and SzegedO are almost equivalent, as they cannot benefit
from long-term dependencies. Here we only report results for the former.

Table 2.3 shows the best n-gram perplexities achieved by GLF models. It can be seen
that interpolated, unpruned models perform much better than backoff models.

63

Corpus Threshold Word GLF Full POS POS GLF
SzegedS 3 262.77 637.29 35.20 66.48

Webcorpus
1 N/A N/A 10.21 12.89
5 328.22 399.49 N/A N/A

30 259.79 362.74 N/A N/A

MNSZ2
1 N/A N/A 11.88 12.47

10 233.52 277.94 N/A N/A
50 174.65 239.57 N/A N/A

PTB (Mikolov and Zweig, 2012) N/A 141.2
1B (Chelba et al., 2014) 3 90

Table 2.2: 5-gram (9 for POS GLF) KN test results (PPL)

Model Pruned backoff Unpruned interpolated
SzegedS GLF 637.29 587.11
Webcorpus GLF-5 399.49 324.24
Webcorpus GLF-30 362.74 291.75
MNSZ2 GLF-10 277.94 214.57
MNSZ2 GLF-50 239.57 186.63
PTB (Mikolov and Zweig, 2012) 141.2 N/A
1B (Chelba et al., 2014) 90 67.6

Table 2.3: The best KN 5-gram results

2.4.2 Class-based n-grams

Our class-based experiments confirmed our working hypothesis regarding clustered models.
Contrary to the general consensus, our findings (Table 2.4) show that interpolating class-
and token-level (in this case, GLF) LMs do not lead to any improvement over the latter.
The class-based model could only improve on the unigram model, and failed to do so for
the higher orders.

Why the discrepancy? The most likely explanation is that as the size of the vocabulary
grows larger, the emission entropy increases, which is mirrored by the perplexity. This
would explain why class-based n-grams seem to work on small corpora, such as the PTB,
but not on MNSZ2. Part of the blame also lies with us for using POS-based clusters, which
reportedly underperform automatic methods (Niesler et al., 1998). Our results confirm
that POS-based clusters simply do not work.

Another point of interest is the diminishing returns of PPL reductions as the n-gram
orders grow. While we have not experimented with 6-grams or higher orders, it seems

64

probable that performance of GLF models would peak at 6- or 7-grams on MNSZ2 (and
Webcorpus). For word-level models, this saturation point arrives much earlier: while not
reported here, the perplexity difference between 4- and 5-gram models is only 1-2 point.
This implies that GLF models are less affected by data sparsity.

Model GLF-10 POS → GLF-10 GLF-50 POS → GLF-50
1-gram 34,208 6,918 35,654 5,719
2-gram 741.76 2,698 649.57 2,238
3-gram 426.87 2,329 349.93 1,932
4-gram 303.59 2,121 262.69 1,760
5-gram 277.94 1,986 239.57 1,649

Table 2.4: Comparison of GLF and class-based model performance on the MNSZ2. POS
→ GLF-n denotes a HMM model with POS as class and GLF-n as the surface model.

2.4.3 Cross-evaluation

It is a well-known fact that the performance of LMs degrade substantially when they are
not evaluated on the corpus they were trained on. This effect is clearly visible in Table 2.5,
which shows how word-level and GLF n-gram models trained on one of the two gigaword
corpora perform on the other.

Again, the two corpora display wildly different characteristics. Webcorpus word models
exhibit the smallest perplexity increase of 12-15%, followed by the GLF models, whose
score grows by three times as much. Models trained on the MNSZ2 are affected the most;
interestingly, both the word and GLF models see their perplexity increased by about 120–
140%. Contrasting this result with how the models perform on their own training corpus
see the Evaluated on self) seems to suggest that there exists a trade-off between predictive
power and universality.

As POS models capture syntactic regularities, they are affected to a much lesser extent
than token-level models (with the exception of the Webcorpus word model). Curiously,
the Webcorpus GLF model seems to be more stable than the full POS one; a pattern not
replicated in the MNSZ2 case. This, and the fact that there is performance degradation in
POS models at all again hints at a different distribution of inflections in the two corpora.

2.4.4 RNN language models

Table 2.6 reports the perplexities achieved by the RNN models. Disregarding the last
column for a moment, three clear conclusions can be drawn from the numbers. First, in

65

Trained on Threshold Evaluated on
self other Increase

Webcorpus word 5 328.22 377.88 15%
30 259.79 291.98 12%

MNSZ2 word 10 233.52 566.60 142%
50 174.65 397.13 127%

Webcorpus GLF 5 399.49 606.43 52%
30 362.74 495.38 37%

MNSZ2 GLF 10 277.94 619.81 123%
50 239.57 548.76 129%

Webcorpus full POS 1 10.21 16.14 58%
MNSZ2 full POS 1 11.88 16.49 39%
Webcorpus POS GLF 1 12.89 18.08 40%
MNSZ2 POS GLF 1 12.47 18.25 46%

Table 2.5: Performance of word and GLF LMs when evaluated on their own training
dataset and on the other gigaword corpus. Perplexities in the Evaluated on self column
are copied over from Table 2.2.

line with what has been reported for English by many authors, RNNs clearly outperform
even the best n-gram models. Second, the performance of GLF models is much closer to
the word-level ones than it was for n-grams (about 30% increase on Szeged as opposed to
the 140% in Table 2.2), proving that the technique is a much better fit for neural LMs.
Finally, models that preserve the overall text sequence order perform better than shuffled
datasets, if not by much. However, keeping the text structure intact allows the application
of neural cache or pointer sentinel extensions, which further improve results by 7%–9%.

It is important to note that while the GLF format makes neural modeling of large-
vocabulary corpora (such as Webcorpus and MNSZ2) possible, the results are not quite
comparable to what Jozefowicz et al. (2016) reported for 1B; especially considering that
these GLF models used very high frequency thresholds, and the GLF or GLF-10 config-
urations might have fared slightly worse (as in Table 2.2). The odd one out is Szeged,
where the performance of both the word and GLF models are reasonably close to their
PTB equivalents. This gives us hope that the “curse of agglutination” can be dealt with
in future work.

2.4.5 Pseudo-Hungarian

Attentive readers might have noticed that the perplexity scores reported here are different
from those in the original paper. The reason for this is that in Nemeskey (2017), we

66

Model Dataset Perplexity Per-token PPL
Medium regularized SzegedS 101.74
Medium regularized SzegedO 98.88
AWD-LSTM SzegedS 71.70
AWD-LSTM SzegedO 68.30
AWD-LSTM + pointer SzegedO 62.08
Medium regularized SzegedS GLF 131.39 38.07
Medium regularized SzegedO GLF 126.78 37.07
AWD-LSTM SzegedS GLF 94.19 29.70
AWD-LSTM SzegedO GLF 89.17 28.51
AWD-LSTM + pointer SzegedO GLF 81.13 26.57
LSTM-512-512 Webcorpus GLF-30 191.51 40.46
LSTM-512-512 MNSZ2 GLF-50 146.82 38.78
Medium regularized PTB 82.07
AWD-LSTM PTB 57.3
AWD-LSTM + pointer PTB 52.8
LSTM-512-512 1B 54.1

Table 2.6: LSTM model performance

published per-token perplexity, which gave incorrect results for the GLF datasets, where a
word may consist of multiple tokens. In this chapter, all perplexity values are normalized
for the word count. While this results in 34%–42% higher perplexity scores (depending on
the corpus), all findings of the original paper still stand; in particular, GLF models still
achieve lower perplexity than word-level ones.

This mistake, however, was not entirely without merit. It allowed us to inadvertently
perform a language modeling experiment on a fully analytic version of Hungarian. In
English, many of the inflectional tokens in the GLF format are actually separate words:
most case markings are expressed with prepositions, such as <DAT> with ‘for’; and for
most adjectives, the <COMPAR>ative and <SUPERLAT>ive forms are marked with the words
‘more’ and ‘most’, respectively. Other GLF tokens, such as the plural marker <PLUR>
and those related to the verb conjugation are either part of the word in English, or are
missing altogether; yet we find examples for them in other languages (Japanese 達 ‘tachi’
for the plural and e.g. なさい ‘nasai’ for imperative). This goes to show how arbitrary
the realization of grammatical functions is across languages – and that our “analytic
Hungarian” could well be a real language. For this reason, we also record the per-token
perplexity values in Table 2.6 as a curiosity.

67

2.4.6 Into the Unknown

As we have seen previously, the GLF format has various advantages: it reduces the size
of the vocabulary and the number of OOVs, which benefits neural language modeling.
However, GLF models have a higher perplexity than the corresponding word models.

In this section, we argue that the practice of replacing low-frequency words with <unk>
tokens and using “vanilla” perplexity as the metric does not accurately represent the
uncertainty present in the model. While the model learns when to predict a “generic
infrequent word”, it cannot make an informed guess as to its identity. Yet frequency
thresholding is merely a technical necessity rather than proper modeling of the language.
This is especially evident in text generation, where the presence of <unk> tokens in the
output is undesirable. In order to generate valid text, we need to replace them with actual
words.

In order to evaluate the performance of a model that is not allowed to generate <unk>s,
we propose a new metric: rectified perplexity. It augments the “vanilla” perplexity score
with the perplexity of the model that predicts valid words for each <unk> token:

PPLcorr = exp
(|C| log(PPLraw) + |OOVs| log(PPLunk)

|C|

)
(2.1)

where PPLraw is the uncorrected perplexity, PPLunk is the perplexity of the sublanguage
covered by the <unk> token, and |OOV s| and |C| are the number of <unk> tokens and the
total number of tokens in the corpus, respectively.

This rectified metric is equivalent with the perplexity of a class-based model where
words in the vocabulary are singleton classes and <unk> emits out-of-vocabulary words.
There are several options to estimate the emission probabilities; one example would be a
character-level model, such as the character LSTM in Jozefowicz et al. (2016). Since we
operate in a closed vocabulary setting, we use the MLE of the token distribution under
the frequency threshold.

Table 2.7 shows the performance of the main models under the new metric. It is
apparent at first sight that GLF models are much less affected by the perplexity correction
coming from OOVs; a natural consequence of them having about half the number of OOVs
compared to word models. While the Szeged and Webcorpus word n-gram models still
perform better than their GLF counterparts, the tables are already turned on MNSZ2. In
the RNN case, the GLF version attain about 33% lower perplexity than the word model,
showing its superiority in fully specified language modeling.

68

Model Word GLF
SzegedS 5-gram 262.77 → 655.92 (149%) 637.29 → 848.50 (33%)
Webcorpus 5-gram (5) 328.22 → 389.11 (19%) 399.49 → 426.38 (7%)
Webcorpus 5-gram (30) 259.79 → 398.73 (53%) 362.74 → 416.35 (15%)
MNSZ2 5-gram (10) 233.52 → 362.24 (55%) 277.94 → 337.33 (21%)
MNSZ2 5-gram (30) 174.65 → 401.20 (130%) 239.57 → 336.52 (40%)
SzegedO medium regularized 98.88 → 258.66 (162%) 126.78 → 169.65 (34%)
SzegedO AWD-LSTM 68.30 → 178.67 (162%) 89.17 → 119.32 (34%)
SzegedO AWD-LSTM + pointer 62.08 → 162.40 (162%) 81.13 → 108.56 (34%)

Table 2.7: Perplexity correction for OOV tokens

2.5 Conclusion
The work presented in this chapter contributes to Hungarian language modeling in two
ways. First, we reported state-of-the-art LM baselines for three Hungarian corpora, from
million to gigaword size. We found that word-level LMs performed worse than they do
for English, not in the least because of the increased vocabulary size and number of OOV
tokens. The vocabulary problem could be alleviated with splitting words into lemmas
and inflectional affixes (the ”gluten-free” format). GLF models had a higher “vanilla”
perplexity than word models, but outperformed them when no <unk> tokens were allowed
in the output.

Second, we introduced a benchmark corpus for language modeling. To our knowl-
edge, this is the first such dataset for Hungarian. This specially prepared version of the
Hungarian Webcorpus is freely available, allowing researchers to easily and reproducibly
experiment with new language modeling techniques. It is comparable in size to the One
Billion Word Benchmark corpus of English, making comparisons between the two lan-
guages easier.

2.5.1 Future work

While the methods reported here can be called state-of-the-art, many similarly effective
modeling approaches are missing. Evaluating them could provide additional insight into
how Hungarian “works” or how Hungarian and English should be modeled differently.
Understanding the unusual behavior of word models on Webcorpus also calls for further
inquiry into language and corpus structure.

The performance of the models here was measured in isolation. Putting them into use
(maybe with some adaptation) in NLP applications such as ASR or MT could answer the

69

question of whether the reduction in perplexity translates to similar reductions in WER
or BLEU.

The most glaring problem touched upon, but not addressed, in this paper, is the effect
of compounding and derivation on vocabulary size. A way to reduce the number of words
could be a more thorough deglutenization algorithm, which would split compound words
into their parts and strip productive derivational suffixes, while leaving frozen ones such
as ház·as·ság untouched. This could indeed be a case when a gluten free diet does make
one slimmer.

70

Chapter 3

Evaluating multi-sense embeddings
for semantic resolution

As promised in Section 1.7.3, in this chapter we return to the problem of evaluating
multi-sense embeddings. We propose a method that evaluates MSEs intrinsically, based
on a comparison with monolingual dictionaries. The content of this chapter is a result
of joint work presented in Borbély; Makrai, et al. (2016). The parts included here are
all contributions of the author, with the exception of Section 3.4, which gives a short
summary of the rest of the paper for context.

3.1 Introduction
Gladkova and Drozd (2016) calls polysemy “the elephant in the room” as far as evalu-
ating embeddings are concerned. Here we attack this problem head on, by proposing a
method for evaluating multi-sense word embeddings (MSEs), where allegedly polysemous
or homonymous words have multiple vectors, ideally one per sense.

Work on the evaluation of MSEs (for lexical relatedness) goes back to the seminal
Reisinger and Mooney (2010), who note that usage splits words more finely (with synonyms
and near-synonyms ending up in distant clusters) than semantics. The differentiation of
word senses is fraught with difficulties, especially when we wish to distinguish homonymy,
using the same written or spoken form to express different concepts, such as Russian
mir ‘world’ and mir ‘peace’ from polysemy, where speakers feel that the two senses are
very strongly connected, such as in Hungarian nap ‘day’ and nap ‘sun’. To quote Zgusta
(1971): “Of course it is a pity that we have to rely on the subjective interpretations of the
speakers, but we have hardly anything else on hand”. Etymology makes clear that different
languages make different lump/split decisions in the conceptual space, so much so that

71

translational relatedness can, to a remarkable extent, be used to recover the universal
clustering (Youn et al., 2016).

Another confounding factor is part-of-speech. Very often, the entire distinction is
lodged in the POS, as in divorce (Noun) and divorce (Verb). In this case, both words
relate to the same concept, so a fully semantic MSE would map them to the same vector.
However, at other times the connection is less clear: compare the verbal to bank ‘rely on a
financial institution’ and to bank ‘tilt’. Clearly the former is strongly related to the nominal
bank ‘financial institution’ while the semantic relation ‘sloping sideways’ that connects the
tilting of the airplane to the side of the river is somewhat less direct, and not always
perceived by the speakers. This ambiguity makes the evaluation of such word pairs in
MSEs all the more difficult.

In this chapter, we propose an MSE evaluation method based on sense distinctions
made in traditional monolingual dictionaries. We investigate the correlation between
the number of senses of each word-form in the embedding and in the manually created
inventory as a proxy measure of how well embedding vectors correspond to concepts in
speakers’ (or at least, the lexicographers’) mind. The details and results are discussed in
Section 3.2. Section 3.3 investigates what linguistic factors other than polysemy might
affect the training of MSEs and to what extent. Section 3.4 briefly summarizes the other
evaluation method proposed in Borbély; Makrai, et al. (2016). Interested readers are
referred to the original paper for details. Finally, some very preliminary conclusions are
offered in Section 3.5, more in regards to the feasibility of the evaluation method we
propose than about the merits of the systems we evaluated.

3.2 Comparing lexical headwords to multiple sense
vectors

We present a preliminary evaluation of four MSE algorithms on two languages, English
and Hungarian.

3.2.1 Resources to be evaluated

The four implementations include the released result of the spherical context clustering
method huang (Huang et al., 2012) (English only); the learning process of Neelakantan
et al. (2014) with adaptive sense numbers (we report results using their release MSEs and
their tool itself, calling both neela); the parametrized Bayesian learner of Bartunov et al.
(2016) where the number of senses is controlled by a parameter α for semantic resolution,

72

here referred to as AdaGram; and jiweil (Li and Jurafsky, 2015).
MSEs with multiple instances are suffixed with their most important parameters, i.e.

the learning rate for AdaGram (a = 0.5); the number of multi-prototype words and
whether the model is adaptive (NP) for release neela; and the number of induced word
senses (s = 4) for our non-adaptive neela runs.

Where applicable, MSEs were trained on UMBC Webbase (Han et al., 2013) for English
and Webkorpusz (Halácsy et al., 2004) for Hungarian.

3.2.2 Lexical resources

Two dictionaries per language serve as ground truth. For English, we use the Collins-
COBUILD (CED, Sinclair (1987)) dictionary and the Longman Dictionary of contempo-
rary English (LDOCE, Boguraev and Briscoe (1989)). For Hungarian, we had access to
the Explanatory Dictionary of Hungarian1 (EKSZ, Pusztai (2003)) and a subsample (the
letter ‘b’) of the Comprehensive Dictionary of Hungarian2 (NSZ, Ittzés (2011)). For the
Hungarian dictionaries, we relied on the versions created in Miháltz (2010) and Recski
et al. (2016).

Our lexicographic sources take different positions as to whether semantic concepts or
POS categories should be the main organizational factor. CED starts with the semantic
distinctions and subordinates POS distinctions to these, while LDOCE starts with a POS-
level split and puts the semantic split below. Of the Hungarian dictionaries, NSZ is closer
to CED, while EKSZ is closer to LDOCE in this regard. Since we expect MSEs to exhibit
semantic properties, we consider CED as our primary ground truth.

In addition to the machine-readable versions of paper-based dictionaries, we include
a lexical database that was purportedly designed for program control from the get-go:
WordNet (Miller, 1995). In terms of size, the English database is on par with the more
traditional dictionaries; in fact, it is the largest resource for English. The Hungarian
edition (Miháltz et al., 2008) is less developed, and also contains spurious entries that
we had to filter before the experiments. In WordNet, synsets are differentiated by both
semantic and syntactic roles, which introduces a high variance in sense numbers: the
English WordNet contains a word with as many as 75 different meanings. The quality of
the entries is also questionable. For the word guard, five out of the ten noun synsets are
about the same position in various team sports. Additionally, the entries include very fine
differentiation of concepts, such as “a position on a basketball team” and “the person who
plays the position of guard on a basketball team”; a distinction entirely missing for other

1Magyar értelmező kéziszótár
2A magyar nyelv nagyszótára III-IV

73

professions, such as CEO, colonel or engineer. For these reasons, we do not recommend
WordNet as ground truth.

We simulate the case of languages without a machine-readable monolingual dictionary
with OSub, a dictionary extracted from the OpenSubtitles parallel corpus (Tiedemann,
2012) automatically: the number of the senses of a word in a source language is the
number of words it translates to, averaged among many languages. More precisely, we use
the unigram perplexity of the translations instead of their count to reduce the considerable
noise present in automatically created dictionaries.

3.2.3 Evaluation

Table 3.1 summarizes the distribution of word senses (how many words with 1,…,6+ senses)
and the major statistics (size, mean, and variance) both for our lexicographic sources and
for the automatically generated MSEs.

Resource Size 1 2 3 4 5 6+ Mean Std

CED 82,024 80,003 1,695 242 69 13 2 1.030 0.206
LDOCE 30,265 26,585 3,289 323 56 11 1 1.137 0.394
OSub 75,718 58,043 14,849 2,259 431 111 25 1.354 0.492
WordNet 149,400 122,993 15,571 5,048 2,178 1,166 2,444 1.387 1.447

AdaGram 476,827 122,594 330,218 11,341 5,048 7,626 0 1.836 0.663
huang 100,232 94,070 0 0 0 0 6,162 1.553 2.161
neela.30k 99,156 69,156 0 30,000 0 0 0 1.605 0.919
neela.NP.6k 99,156 94,165 2,967 1,012 383 202 427 1.101 0.601
neela.NP.30k 99,156 71,833 20,175 4,844 1,031 439 834 1.411 0.924
neela.s4 578,405 574,405 0 0 4,000 0 0 1.021 0.249

EKSZ 121,578 66,849 628 57 11 1 0 1.012 0.119
NSZ (b) 5,594 5,225 122 13 3 0 0 1.029 0.191
OSub 169,244 159,843 9,169 229 3 0 0 1.144 0.199
WordNet 47,767 41,248 4,493 1,153 440 204 229 1.220 0.739

AdaGram 238,462 135,052 76,096 15,353 5,448 6,513 0 1.626 0.910
jiweil 285,856 57,109 92,263 75,710 39,624 15,153 5,997 2.483 1.181
neela.s2 771,870 767,870 4,000 0 0 0 0 1.005 0.072
neela.s4 771,870 767,870 0 0 4,000 0 0 1.016 0.215

Table 3.1: Size (in words), sense distribution, mean, and standard deviation of the number
of senses in English and Hungarian lexicographic and automatically generated resources

While the lexicographic sources all show roughly exponential decay of the number of
senses, only some of the automatically generated MSEs replicate this pattern, and only at
well-chosen hyperparameter settings. huang has a hard switch between single-sense (94%

74

of the words) and 10 senses (for the remaining 6%), and the same behavior is shown by
the released Neela.300D.30k (70% one sense, 30% three senses). The English AdaGram
and the Hungarian jiweil have the mode shifted to two senses, which makes no sense in
light of the dictionary data. Altogether, we are left with only two English candidates, the
adaptive (NP) neelas; and one Hungarian, AdaGram, that replicate the basic exponential
decay.

The figure of merit we propose is the correlation between the number of senses obtained
by the automatic method and by the manual (lexicographic) method. We experimented
both with Spearman ρ and Pearson r values, the entropy-based measures Jensen-Shannon
and KL divergence, and cosine similarity and Cohen’s κ. The entropy-based measures
failed to meaningfully distinguish between the various resource pairs. The cosine similari-
ties and κ values would also have to be taken with a grain of salt: the former does not take
the exact number of senses into account, while the latter penalizes all disagreements the
same, regardless of how far the guesses are. On the other hand, the Spearman and Pearson
values are so highly correlated that Table 3.2 shows only ρ of sense numbers attributed to
each word by different resources, comparing lexicographic resources to one another (top
panel); automated to lexicographic (mid panel); and different forms of automated English
(bottom panel). The top two values in each column are highlighted in the last two panels,
n is the number of headwords shared between the two resources.

The dictionaries themselves are quite well correlated with each other. The Hungarian
values are considerably larger both because we only used a subsample of NSZ (the letter
b) so there are only 5,363 words to compare, and because NSZ and EKSZ come from the
same Hungarian lexicographic tradition, while CED and LDOCE never shared personnel
or editorial outlook. The Hungarian WordNet does not correlate well with the traditional
lexical resources, and the English edition more with LDOCE, casting further doubts on
the validity of WordNet as ground truth data.

Two English MSEs neela and huang, show perceptible correlation with a lexical re-
source, LDOCE, and only two systems, AdaGram and neela, correlate well with each
other (ignoring different parametrizations of the same system, which of course are often
well correlated to one another).

3.3 Parts of speech and word frequency
Since no gold dataset exists, against which the results could be evaluated and the errors
analyzed, we had to consider if there exist factors that might have affected the results. In
particular, the better correlation of the adaptive methods with LDOCE than with CED

75

Resources compared n ρ

LDOCE vs CED 23,702 0.266
CED vs WordNet 41,076 0.195
LDOCE vs WordNet 26,376 0.477
EKSZ vs NSZ (b) 3,484 0.648
EKSZ vs WordNet 16,786 0.103
NSZ (b) vs WordNet 966 0.052
neela.30k vs CED 23,508 0.089
neela.NP.6k vs CED 23,508 0.084
neela.NP.30k vs CED 23,508 0.112
neela.30k vs LDOCE 21,715 0.226
neela.NP.6k vs LDOCE 21,715 0.292
neela.NP.30k vs LDOCE 21,715 0.278
huang vs CED 23,706 0.078
huang vs LDOCE 21,763 0.280
neela.s4 vs EKSZ 45,401 0.067
jiweil vs EKSZ 32,007 0.023
AdaGram vs EKSZ 26,739 0.086
AdaGram.a05 vs EKSZ 26,739 0.088
neela.30k vs huang 99,156 0.349
neela.NP.6k vs huang 99,156 0.901
neela.NP.30k vs huang 99,156 0.413
neela.s4 vs jiweil 283,083 0.123
AdaGram vs neela.s4 199,370 0.389
AdaGram vs jiweil 201,291 0.140

Table 3.2: Word sense distribution simi-
larity between various resources

Resources compared n ρ

CED vs POS 42,532 0.052
LDOCE vs POS 28,549 0.206
WordNet vs POS 46,802 0.052
OSub vs POS 48,587 0.141
EKSZ vs POS 52,158 0.080
NSZ vs POS 3,532 0.046
huang vs POS 98,405 0.026
CED vs freq 36,709 0.124
LDOCE vs freq 27,859 0.317
WordNet vs freq 52,042 0.432
AdaGram vs freq 399,985 0.343
huang vs freq 94,770 0.376
neela.s4 vs freq 94,044 0.649
neela.NP.30k vs freq 94,044 0.368
neela.NP.6k vs freq 94,044 0.635
UMBC POS vs freq 136,040 -0.054

Table 3.3: Word sense distribution sim-
ilarity with POS tag perplexity (top
panel) and word frequency (bottom
panel)

raises suspicions. The former groups entries by part of speech, the latter by meaning,
implying that the methods in question might be counting POS tags instead of meanings.

Another possible bias that might have influenced the results is word frequency (Manin,
2008). This is quite apparent in the release version of the non-adaptive methods huang and
neela: the former expressly states in the README that the 6,162 words with multiple
meanings “roughly correspond to the most frequent words”.

To examine the effect of these factors, we measured their correlation with the number
of meanings reported by the methods above. For each word, the frequency and the POS
perplexity was taken from the same corpora we ran the MSEs on: UMBC for English and
Webkorpusz for Hungarian. Table 3.3 shows the results for both English and Hungarian.
The correlation of automatically generated resources with POS tags is negligible: all other

76

embeddings correlate even weaker than huang, the only one shown. From the English
dictionaries, LDOCE produces the highest correlation, followed by OSub; the correlation
with CED, as expected, is very low. The Hungarian dictionaries are around the level of
CED.

In comparison, the correlation between sense numbers and word frequency is much
more evident. Almost all English resources correlate with the word frequency by at least
0.3 (the notable exception being CED which is the closest to a gold standard we have);
furthermore, the highest correlation we measured are between two versions of neela and
the word frequency. Adding to this the low correlation of the gold CED against the
other resources (see Table 3.2), it appears the multi-prototype embeddings included in the
study were trained to assign more vectors to frequent words instead of trying this for truly
polysemous ones.

To disentangle these factors further, we performed partial correlation analysis with the
effect of frequency (or its log) or POS perplexity removed. Recall that LDOCE and CED
originally correlated only to ρ = 0.266. After removing POS, we obtain 0.545, removing
frequency yields 0.546, and removing log frequency brings this up to 0.599. On select
embeddings such as neela.NP.6k correlations with CED improve from a negligible 0.093
to a respectable 0.397 if POS, and an impressive 0.696 if log frequency is factored out.

3.4 Cross-linguistic treatment of concepts
Since monolingual dictionaries are an expensive resource, Borbély; Makrai, et al. (2016)
also proposes an automatic evaluation of MSEs based on the discovery of Mikolov; Le, et al.
(2013) that embeddings of different languages are so similar that a linear transformation
can map vectors of the source language words to the vectors of their translations. The
linear mapping is trained on a seed of 5,000 thousand word pairs, and evaluated on 1,000.

The proposed quality measure is the ratio of correctly translated words between the
multi-sense and the single-sense cases. Of the two MSEs that could be trained for Hungar-
ian, Adagram clearly improved the translation with a ratio around 2; while jiweil with
a ratio of 0.25, had a highly detrimental effect.

3.5 Conclusions
To summarize, we have proposed a monolingual method that evaluates word embeddings in
terms of their semantic resolution (ability to distinguish multiple senses). Our monolingual

77

task, match with the sense-distribution of a dictionary, yields an intrinsic measure in the
sense of Chiu et al. (2016).

The original paper proposes an extrinsic bilingual evaluation metric based on word
translation. For now, the two measures are not particularly well correlated, though the
low/negative result of jiweil in Table 3.1 could be taken as advance warning for its low
performance in MT. The reason, we feel, is that both kinds of performance are very far
from expected levels, so little correlation can be expected between them: only if the MSE
distribution of senses replicates the exponential decay seen in dictionaries (both profes-
sional lexicographic and crowdsourced products) is there any hope for further progress.

The central linguistic/semantic/psychological property we wish to capture is that of
a concept, the underlying word sense unit. To the extent standard lexicographic practice
offers a reasonably robust notion (this is of course debatable, but we consider a straight
correlation of 0.27 and and a frequency-effect-removed correlation of 0.60 over a large
vocabulary a strong indication of consistency), this is something that MSEs should aim at
capturing. We leave the matter of aligning word senses in different dictionaries for future
work, but we expect that it can improve the inter-dictionary (inter-annotator) agreement
considerably, to provide a more robust gold standard.

Since no manual steps are involved, other researchers can accurately reproduce these
kinds of evaluations. Some glue code for this project can be found at https://github.
com/hlt-bme-hu/multiwsi.

78

https://github.com/hlt-bme-hu/multiwsi
https://github.com/hlt-bme-hu/multiwsi

Chapter 4

Habeas Corpus

This chapter describes the new Hungarian Webcorpus 2.0, built from the Hungarian sub-
set of the Common Crawl. On the one hand, our work is the spiritual successor of the
Hungarian Webcorpus (see Section 2.2): a freely downloadable, cleaned crawl of the Hun-
garian web. On the other, it is a continuation of the effort described in Indig (2018). The
author of the paper generously provided us with their corpus, which we used to bootstrap
ours. The software published along with the paper1 also served as a basis for our code.
The main contributions of our work are

• an incremental, continuous expansion of the corpus;

• greatly improving the corpus quality by language identification, various deduplica-
tion steps, lemmatization and POS tagging;

• including a snapshot of the Hungarian Wikipedia;

• a full software stack used to perform the tasks mentioned above;

• preliminary work on pretraining a Hungarian BERT model on the corpus.

The rest of the chapter is structured as follows. Section 4.1 discusses the goals and
design considerations behind the new corpus. In Section 4.2, we survey already existing
Hungarian corpora and introduce the Common Crawl briefly. Our work is presented in
the next four sections. The software architecture is outlined in Section 4.3; the corpus
building procedure and its individual subtasks are elucidated in Section 4.4. Section 4.5
describes how the Hungarian Wikipedia was incorporated into the corpus. Section 4.6
presents initial work the Hungarian BERT trained on Webcorpus 2.0. Finally, we draw
our conclusions and outline our plans for future improvements in Section 4.7.

1https://github.com/ppke-nlpg/commoncrawl-downloader

79

https://github.com/ppke-nlpg/commoncrawl-downloader

4.1 Goals and design considerations
We set out with the aim of creating the largest Hungarian corpus to date that can be
used to train modern Transformer language models and contextual embeddings. Here we
review the requirements of such a corpus and the design choices implied by them.

4.1.1 Goals and constraints

To expand on the motivation above, the corpus should

• be in the gigaword range, at least as large as the English Wikipedia (2.5B tokens);

• consist of high quality pages based on some criteria that can be enforced at said
magnitude;

• be expandable with new data and it should be easy to regenerate from raw data if
the processing pipeline changes;

• be, most importantly, freely available for NLP practitioners.

4.1.2 Design considerations

Representativeness

Traditionally, corpus compilation is preceded by careful consideration of various factors in
order to ensure representativeness of the final product (Biber, 1993). These include the
amount and type of texts to include, a (possible hierarchical) categorization of the text
into genres and subcorpora, and well-defined population boundaries, such British English
texts from 19612 for the Lancaster–Oslo/Bergen (LOB) corpus (Johansson et al., 1978).
With well defined population(s), it possible to select sampling rates to ensure that the
resulting corpus represents the targeted language well.

While not a trivial undertaking, such a rigorous text selection process is feasible on the
scale of the LOB or the Brown corpus (Francis and Kucera, 1979) (cca. 1M words). As
corpora got bigger and the web became the main source of text, representativity proved
unattainable and the focus moved on to the much more laxly defined balancedness (Váradi,
2002). Finally, if we fast-forward to the last 1–2 years, we can see state-of-the-art Trans-
former LMs trained on web crawl data blithely ignoring any attempt at representativity
or balancedness.

2https://www1.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/
list/private/LOB/lob.html

80

https://www1.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/LOB/lob.html
https://www1.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/LOB/lob.html

In this work we follow the latter practice, and leave the compilation of a balanced
subcorpus for future work.

Text organization

Modern, contextual language models are able to learn long-distance dependencies in text.
However, many of these dependencies, such as topics and coreferences, are inter-sentential
in nature. As a result, training contextual language models necessitates that the document
structure remains intact.

The main goal of our corpus is to serve as training data for statistical NLP models. This
significantly decreases the importance of document metadata, which would be essential
for corpus linguistic research. In keeping with the main goal, we include only the basic
properties: URL, domain, date of acquisition, etc.

Quality

Even if we do not aim for representativeness, document quality remains an important
factor. Transformer LMs try to ensure quality by using data sources with at least some
editorial control: BERT was trained on Wikipedia and e-books (Devlin et al., 2018), and
RoBERTa’s sources include newswire texts (Liu et al., 2019). Since such corpora are
generally hard to come by, especially on web scale, they are usually augmented with data
acquired from noisier sources, which are then cleaned with heuristic methods. Examples
include WebText, used to train GPT-2, which includes web pages linked from Reddit
(Radford et al., 2019); or Stories, pages filtered from Common Crawl that resemble the
structure of Winograd schemas (Trinh and Le, 2018).

For Hungarian, we face the additional issue of not having access to semi-edited corpora
on the same scale. We are including the Hungarian Wikipedia in our corpus, but it is only
about 7% of the English edition, and the situation is similar with other resources, such as
Project Gutenberg3. Indirect quality indicators, like Reddit karma, are also unavailable.
In light of this, we decided to use a threshold on document length as the quality metric.
While far from perfect, this heuristic allows us to filter microblogs, news headers, and
automatically generated content, such as soft error messages (i.e. those unmarked by
HTML error codes).

3https://www.gutenberg.org/

81

https://www.gutenberg.org/
https://www.gutenberg.org/

Uniqueness

For the sake of simplicity, and so as to be able to use the URL as a document ID, we
decided to keep a single copy of each document. In Common Crawl, however, a URL can
be included in any number of the monthly crawls, which raises the question: don’t we
lose valuable data by ignoring later snapshots of the same page? It is hard to say for sure
without a thorough study, but we argue that the pages whose content changes frequently
most likely contain data we are less interested in. An example would be the front pages of
online news outlets, which consist of the headers of the latest news items. Such fragmented
content would not serve the goal of LM training very well, as opposed to the full text of
the individual news items themselves (which are hopefully in the crawl as well).

Future-proofing

Once compiled, regular corpora never change. Our ambition is to keep our corpus up-to-
date, which requires some future-proofing.

First, we do not believe that our current processing pipeline is perfect, and it is possible
that some of its parts (e.g. boilerplate removal, deduplication) might be replaced with
better alternatives in the future. In order to allow the quick (as quick as size permits)
regeneration of the corpus in such cases, Indig (2018) has already argued for the storing
of raw HTML data. Since our pipeline is much longer, we opted for storing the results of
the intermediary operations as well.

Second, we plan to incrementally extend our corpus with each monthly snapshot of
the Common Crawl. In order to do that, not just the corpus, but temporary working files
(URL cache, the LSH database, etc.; see Section 4.4) have to be retained as well.

Licensing

We intend the corpus to be freely available, in the same way its predecessor, Webcorpus,
or the upstream Common Crawl are. Since the crawl data comes from Common Crawl,
we publish them under the same terms of use. Our additions, mainly the morphological
analysis and lemmatization performed on the documents, as well as the Wikipedia part
of the corpus is licensed under the same Creative Commons Attribution-ShareAlike 4.0
Internation (CC BY-SA 4.0)4 license that Wikipedia itself uses.

Unfortunately, the introduction of the General Data Protection Regulation (GDPR)
(Council of European Union, 2016) creates uncertainties as to the legality of web crawls.
No clear guidelines have yet been published that address this very issue, which gives rise to

4https://creativecommons.org/licenses/by-sa/4.0/

82

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

various interpretations. In the worst case, crawlers could be required to request permission
from the copyright owner of each source – an impossible requirement at web scale (it is an
interesting question whether a permissive robots.txt constitutes consent). In any case,
we publish the corpus in good faith and so implement a take down policy that allows
owners of copyrighted material to request removal of their data.

The corpus can be downloaded from https://hlt.bme.hu/en/resources/webcorpus2.

4.2 Related work
Hungarian is in a fortunate situation, as there are several good quality corpora available
for it. In this section, we first review these earlier efforts, then introduce Common Crawl
and the studies that used it as a training corpus for language models.

4.2.1 Preexisting corpora

We have already introduced Szeged Treebank, Webcorpus 1.0 and the Hungarian Gigaword
Corpus (MNSZ2) in Section 2.2. The first two are well below the one billion word mark.
MNSZ2 is a proper gigaword corpus, but at 1.5 billion tokens, it is still smaller than the
English Wikipedia used to train BERT (see Section 1.7.4).

The largest Hungarian corpus to date is the huTenTen corpus (Jakubı́ček et al., 2013;
Suchomel; Pomikálek, et al., 2012). It is part of the TenTen family of corpora5 by Sketch
Engine and comprises of “almost 2.5 billion words” crawled from the web in 20126. While
the corpus is of the right size and it is the type of data we are after, it is unfortunately
behind a paywall.

There are two Hungarian corpora based on Common Crawl. OSCAR (Ortiz Suárez
et al., 2019), created by Inria7, is a multilingual corpus compiled from the November 2018
crawl data. It has 166 language-specific subcorpora of various sizes. The deduplicated
Hungarian subcorpus is 2.3 billion words in size. Unfortunately, OSCAR is shuffled at the
line level, so language models trained on it will not be able to take advantage of long-range
dependencies in real documents.

Preliminary work on a Hungarian Common Crawl corpus was started by Indig (2018).
The work aimed at downloading the whole Hungarian “vertical”, i.e. Hungarian pages from
all monthly snapshots. Due to technical difficulties, deduplication was not performed, and
the end product has not been published. However, the files contain the documents in their

5https://www.sketchengine.eu/documentation/tenten-corpora/
6https://www.sketchengine.eu/hutenten-hungarian-corpus/
7https://www.inria.fr/en

83

https://hlt.bme.hu/en/resources/webcorpus2
https://www.inria.fr/en
https://www.sketchengine.eu/documentation/tenten-corpora/
https://www.sketchengine.eu/hutenten-hungarian-corpus/
https://www.inria.fr/en

entirety and the code that came with the paper is free and open-source; hence, we used
this work as the basis for our own. The author of the paper generously provided us with
their corpus, which we used to bootstrap ours.

4.2.2 Common Crawl

The Common Crawl (CC)8 is a web crawl archive, continually created and maintained by
the Common Crawl Foundation with the aim of “democratizing access to web information
by producing and maintaining an open repository of web crawl data that is universally
accessible and analyzable”9. The data is available on Amazon S310 in (roughly) monthly
digests since November 2013, in the following formats:

• raw HTML in Web ARChive (WARC) format

• metadata in WAT files

• plaintext extracted from HTML in WET files.

It is not trivial to ascertain the size of the Common Crawl corpus. The homepage
does not contain exact numbers. Based on the listing in the Wikipedia page11, in August
2018 the corpus consisted of about 129 billion pages for a total of 8.8 PiB of uncompressed
content. Still, it is not clear whether these numbers include only the WARC archives, or
the WAT and WET files as well.

Aside from the main archive files, monthly snapshots also include a URL index. This
contains the WARC file and offset of each URL in the snapshot, allowing a URL-based
prefiltering of the data prior to downloading. In our case, we only keep URLs in the .hu
domain.

It goes without saying that the sets of Hungarian pages and pages from Hungary
do not overlap completely. On the one hand, foreign-language pages, such as English
versions of organizational webpages are served under .hu. On the other, with about
25% of native speakers living outside Hungary (Balázs, 2013), a significant number of
Hungarian electronic text sources are found under foreign top-level domains. The first
issue can be dealt with language detection; the second we leave for future work.

8http://commoncrawl.org/
9https://commoncrawl.org/about/
10https://aws.amazon.com/s3/
11https://en.wikipedia.org/wiki/Common_Crawl#History_of_Common_Crawl_data

84

http://commoncrawl.org/
https://aws.amazon.com/s3/
http://commoncrawl.org/
https://commoncrawl.org/about/
https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Common_Crawl#History_of_Common_Crawl_data

4.2.3 As a training corpus

There are differing accounts as to the effectiveness of Common Crawl as a training corpus.
It has been used successfully to train various flavors of language models, include n-grams
(Buck et al., 2014), static (Pennington et al., 2014) and contextual embeddings (Baevski
et al., 2019), both in mono and in multi-language setups (Grave et al., 2018). In particular,
both Baevski et al. (2019) and Buck et al. (2014) report better results for their systems
when trained on CC as opposed other corpora news task in WMT 2018 (Bojar et al.,
2018),

Yet there are also concerns about the quality of text in CC. Trinh and Le (2018)
found many documents whose “content are mostly unintelligible”. They arrived at a good
training corpus by keeping only the documents that were similar in structure to their
target task, the Winograd Schema Challenge (Levesque et al., 2011).

Our main takeaway from this section is that Common Crawl is a very useful resource
that can be used to train state-of-the-art systems provided there is some form of quality
assurance in place.

4.3 Architecture
Due to the sheer size of the Common Crawl, processing it for any purpose requires a lot of
compute and storage. Derived corpora are created either by utilizing massive map-reduce
clusters (Panchenko et al., 2018) or from a subset of CC, such as a single monthly snapshot
(Grave et al., 2018; Ortiz Suárez et al., 2019).

As our targeted data (Hungarian pages across all monthly releases) is comparable in
size with a monthly crawl, it is still possible to process it using a small cluster of machines
– with a few caveats.

4.3.1 Computing environment

Our cluster consists of four desktop-grade machines with 4 hyperthreading (HT) cores at
4GHz and 32GB memory, and a single server machine with an 8 HT core Xeon processor
that clocks at 2.4GHz. The latter compensates its slower CPU with 217GB RAM.

All machines are connected to the LAN over a 10Gb connection. Data is kept on a
96TB network file system; the local disks are only used for storing code and execution
environments.

The machines run Linux. We implemented all steps of our pipeline in Python 3.6.

85

Miniconda12 was used to ensure an identical Python environment on all hosts.
Note that our cluster setup has a few peculiarities, which we take advantage of. The

amount of memory on our main machine might not be readily available in homogeneous
clusters. Having a large NFS share is by no means unheard of, but is also not a given.
Since some of our scripts (to be introduced in Section 4.4) depend on these resources, they
might have to be reworked to some extent if the code is to be used in a different cluster
setup.

4.3.2 The pipeline

Instead of putting much engineering effort into building a complex processing pipeline
(that works on a cluster of machines in a distributed fashion), we decided to employ
simple Python scripts for each step. Following the Unix philosophy “do one thing and do
it well”13, each script performs a single task on a single machine. The scripts take their
inputs from the shared file system, process them in parallel and write the results back to
a separate directory. This allows us to snapshot the compilation process, thereby ensuring
reproducibility of successive steps (see Section 4.1.2).

Parallelism is of utmost importance when processing data at web scale. While we do
not employ a map-reduce framework, the basic ideas translate well to our setup. Our
scripts can also be classified into ‘map’ and ‘reduce’ types. The former transform the
data document-by-document; the latter perform aggregations. Examples for ‘map’ tasks
include boilerplate removal and filtering, while document deduplication is a ‘reduce’ oper-
ation. Most reduce tasks are run on the main machine of our cluster where they can take
advantage of the additional memory.

Map tasks are run in parallel on all machines in the cluster. The data is distributed
into per-host directories so that the input/output directory-based logic of the scripts can
remain unchanged. We used Ansible14 to distribute the tasks, which are executed in a
tmux15 multiplexer. Logs are saved to the shared file system. Collecting the per-host
outputs is as simple as copying them to an “aggregate” output directory. However, this is
only necessary if the subsequent task is a reduce operation; a next map task can simply
take the output of the last one as its input.

12https://docs.conda.io/en/latest/miniconda.html
13https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
14https://www.ansible.com/
15https://github.com/tmux/tmux/wiki

86

https://docs.conda.io/en/latest/miniconda.html
https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://www.ansible.com/
https://github.com/tmux/tmux/wiki
https://docs.conda.io/en/latest/miniconda.html
https://en.wikipedia.org/wiki/Unix_philosophy#Do_One_Thing_and_Do_It_Well
https://www.ansible.com/
https://github.com/tmux/tmux/wiki

4.4 Running the pipeline
This section elucidates the various steps in our corpus compilation pipeline. The effect of
each step on the corpus size is listed in Table 4.2 for the bootstrap corpus and Table 4.1
for our additions up to April 2019 at the end of this section. The former starts at the
“Boilerplate removed” step, because that is the dataset we received.

Ideally, the Common Crawl archives should be processed month-by-month to minimize
the amount of new data that needs to be processed at the same time and to maximize the
filtering effect of deduplication steps based on the already downloaded monthly batches.
In practice, we had to deal with much larger data sizes for two reasons. First, we already
had in our possession a bootstrap corpus that we had to process in bulk. Second, we
did not have the benefit of hindsight, and on occasion processed as much as 11 monthly
archives in one batch. While this means that our scripts are proven to work under a much
larger load, it also resulted in a few suboptimal design choices. We return to this issue in
Section 4.7.

4.4.1 Download

The download step is largely identical to the one described in Indig (2018). The one
significant change we decided to make was to move boilerplate removal to a separate
script. Our reason for decoupling the two steps was twofold: first, it allows us to keep
the raw crawl data; second, it leaves the door open for trying other boilerplate removal
methods in the future. For the intricacies of the downloading process, the reader is referred
to Indig (2018).

4.4.2 Boilerplate removal

Web pages (including those downloaded by and from Common Crawl) incorporate not only
textual content, but various forms of boilerplate: scripts, navigation elements, headers and
footers, etc. Most pages are also marred by an overabundance of advertisements.

As is well known, boilerplate causes problems when included in a search index or text
corpora (Kohlschütter et al., 2010). It is, therefore, important to detect and extract only
the main content from the raw HTML. Unfortunately, this is not a trivial task and some
(typically, textual) boilerplate is expected to have made its way into the corpus.

There are several tools available for boilerplate removal. In order to maintain compat-
ibility with the bootstrap corpus, we decided to use Justext (Pomikálek, 2011). Justext
has the additional benefit of splitting the text into paragraphs, a subdivision we maintain

87

going forward.

4.4.3 Content-based filtering

We already emphasized the importance of quality in Section 4.1.2. Two filtering steps
were applied to the downloaded corpus in order to improve its quality.

Language-based filtering To remove non-Hungarian content, language identification
was performed on the corpus. We used the CLD216 and langid.py17 (Lui and Bald-
win, 2012) libraries, the former via the cld2-cffi18) wrapper. Our primary tool
was CLD2, as langid.py proved too slow to consider, given the size of the corpus.
However, it was kept in the toolchain as a backup for texts that CLD2 could not
reliably identify.

Language identification was run on a per-paragraph basis. This allowed us to handle
documents which were mostly in Hungarian, but included foreign-language para-
graphs (quotations, translations, etc.). Had we done the filtering on a document
level, such documents would have been either removed entirely, or left in the corpus
with the foreign text intact; either outcome would have been undesirable.

Length filtering As mentioned in Section 4.1.2, we set up a document length threshold
to catch “low quality” pages. In absence of a theoretically justified value, we heuris-
tically decided on a minimum length of 1500 characters, which roughly corresponds
to three paragraphs of text. Documents below the threshold were dropped from the
corpus.

4.4.4 Deduplication

Web crawl data shows a high degree of duplication on several levels. We already mentioned
in Section 4.1.2 how a URL can appear many times in the data. We assume that each
occurrence of the same URL points to the same document, and discard all but the first
instance.

Even if we only consider pages with different URLs, we are still left with a lot of
matching content. These come from three main sources:

• variations of the same URL with different parameters might point to the same page;
16https://github.com/CLD2Owners/cld2
17https://github.com/saffsd/langid.py
18https://pypi.python.org/pypi/cld2-cffi

88

https://github.com/CLD2Owners/cld2
https://github.com/saffsd/langid.py
https://pypi.python.org/pypi/cld2-cffi
https://github.com/CLD2Owners/cld2
https://github.com/saffsd/langid.py
https://pypi.python.org/pypi/cld2-cffi

• the same content can be replicated under different URLs, such as the news taken
verbatim from MTI, the Hungarian news agency by news websites;

• sometimes duplication only affects certain paragraphs. Examples include site-specific
boilerplate or paragraphs copied from another page.

The first two cases, while different, can be tackled with document-level deduplication.
We do not perform paragraph-level deduplication, as it would disrupt the text flow in docu-
ments. The only exception is site-specific boilerplate paragraphs, such as the introductory
panel in the sidebar on the blog.hu pages, and intra-document paragraph repetition.

The sections below describe these deduplication steps in a little more detail.

URL deduplication

We performed URL deduplication on the monthly URL indices, so as not to download du-
plicate documents needlessly. Given the roughly month-by-month processing of Common
Crawl, there were two separate deduplication (sub-)steps, within-month and across-month.

Filtering URLs from earlier indices. To this end, we created a URL list file that
keeps track of all URLs we have downloaded previously. When a monthly index is
fetched, this file is consulted first, and all URLs in it are removed from the index.
This step can be trivially parallelized.

Deduplicated URLs in the same index. It is not uncommon to see the same URL
more than once even in a single monthly index. Deduplicating a single dataset is
an inherently sequential process. In order to do it in parallel we employ a Redis19

database to keep track of each URL seen in any of the index files. All Python
processes have concurrent access to the database. The first process to see a URL
registers it in Redis, and any further occurrences are dropped from the index. In
the end, all URLs in the database are added to the static URL list mentioned in the
previous paragraph, and hence automatically skipped in future indices as well.

Document deduplication

Deduplication is a much less precise matter for documents than it is for URLs, as usually
we are not looking for exact matches. Even downloading the same webpage from the same
URL twice might results in slightly different documents due to dynamic elements on the
page, such as a simple clock; and a document that plagiarizes another might introduce

19https://redis.io/

89

https://redis.io/
https://redis.io/

more subtle differences. The standard practice of finding such near duplicates is to convert
documents into sets and look for sets with a relatively large intersection (Leskovec et al.,
2014, ch. 3). Due to the size of the corpus, both steps must use approximate methods to
remain feasible.

MinHashing MinHash (Broder et al., 1998) is an algorithm that converts documents
into a set of n-grams. Instead of working with the whole, potentially very large set,
a fingerprint of the document is created from several permutations of the set. We
used 256 permutations computed from character 5-grams.

Compared to e.g. language filtering, MinHash is computationally expensive, but it
can be similarly parallelized (i.e. it is a ‘map’ task).

Locality-sensitive Hashing (LSH) A full deduplication of a corpus with |C| docu-
ments would require O(|C|2) comparisons, already impracticable at much lower
scales than ours. We used Locality-sensitive Hashing (Gionis et al., 1999; Indyk
and Motwani, 1998), an approximate method, to speed up fingerprint matching.
Documents that produce a Jaccard similarity over 0.95 to an already processed doc-
ument are deemed duplicates and are removed from the corpus.

Similarly to URL deduplication, LSH is performed in two steps. First, pages in the
monthly crawl are deduplicated against documents already in the corpus; in order to
do this, a database with the minhashes of all documents is maintained. Second, the
remaining documents in the monthly batch are deduplicated against one another.

Both steps above were implemented with the datasketch20 library.

Site-level deduplication of paragraphs

Some sites contain “boilerplate” paragraphs that occur in many of their documents. This
kind of repetition adversely affects all language models: their presence disrupts text cohe-
sion and makes count-based methods overestimate the importance of words in the duplicate
paragraphs. Their detection and removal is, however, more involved than the document
deduplication case described above. It consists of the following steps.

Indexing In order to detect paragraphs common to pages on a site, the documents first
must be grouped by network domain. To avoid sorting the whole corpus, we create
an index of the documents and sort only the index. It is then partitioned so that
documents in a domain are not separated, and the partitions are distributed to each
machine in the cluster for parallel processing.

20https://github.com/ekzhu/datasketch

90

https://github.com/ekzhu/datasketch
https://github.com/ekzhu/datasketch

Frequent paragraphs The index shards are processed domain-by-domain to find “boil-
erplate” paragraphs in each. Since at this point the HTML structure of the pages
is no longer available, we redefine the task in terms of frequency: a paragraph is
“boilerplate” if it appears in at least 50% of a site’s pages and at least in three.
Once again, we depend on MinHash and LSH for efficient near-duplicate finding.

As a domain may contain an arbitrary large number of paragraphs, keeping the
MinHash of each in memory is infeasible. Instead, we reconceptualize the task as
frequent item search in streams. Each domain can be considered a stream of doc-
uments; the items we count are the paragraphs. We implemented the algorithm in
Leskovec et al. (2014, sec. 4.7.3), which uses a decaying window to limit the number
of paragraphs in memory at any given time. While this is an approximate algo-
rithm, and therefore lossy, it works well in practice, as the number of “boilerplate”
paragraphs on any given site is bound to be small, typically one.

Filtering Once we have the frequent paragraphs for each domain, we collect those that
occur in at least 50% of the site’s pages and filter them from the corpus. Using the
stream analogy again, we keep the first occurrence of each “boilerplate” paragraph
and discard the rest.

As before, the frequent paragraph list is not thrown away after filtering, but is stored
between the monthly expansions of the corpus. We consider domain “streams” continuous
between monthly crawls and always initialize the stream history from the list saved in the
last month.

Document-level deduplication of paragraphs

There is yet another form of paragraph duplication, not addressed above: when paragraphs
are repeated within a document. Occasionally, this repetition may come naturally from
the logic of the text, but most of the time, it is purely an artifact of (bad?) HTML page
design (e.g. including the same content once for static and once for dynamic presentation)
and Justext’s inability to cope with it.

To clean up such pages, we included a script that deletes all repeated paragraphs within
the same document. As opposed to the steps above, the scripts only filters exact duplicates
to minimize the chance of deleting near duplicates included in the text for pragmatical
reasons.

Both paragraph deduplication steps decrease the length of the documents affected,
possibly below the threshold established in Section 4.1.2. Such documents are removed
from the corpus by re-running the length filtering script.

91

4.4.5 Linguistic analysis

As a last step, the corpus is annotated with the emtsv21 (Indig et al., 2019) pipeline. Due to
the computational cost associated with the higher-level components (parsing, NER, etc.),
only tokenization, morphological analysis and lemmatization was performed. We handled
each paragraph separately to the pipeline. At the time of writing, the tokenizer included
in emtsv, quntoken22 (Mittelholcz, 2017), handled short documents very inefficiently, and
it quickly became a bottleneck. We fixed this issue in our own fork23, and also provided
a Python interface to quntoken via the Python C API. As our changes have not yet been
merged into the main line, all scripts use the fork above.

emtsv outputs a tsv file with separate columns for each annotation. Each line contains
the annotations for a single token, with empty lines between sentences. We expanded
this format with CoNLL-U Plus24-style comments to store the document URL and the
raw untokenized text in the file as well, so that the original text-only format can be
reproduced.

Dataset Documents Paragraphs Words Bytes / Characters*

Full index 244,544,787 4,521,082,715,740
Filtered index 181,504,355 2,915,894,695,649
Deduplicated index 68,940,595 1,182,608,541,578

Downloaded 69,065,628 6,147,433,875,452
Boilerplate removed 36,396,615 446,695,117 15,368,435,601 115,037,549,741
Language filtering 35,832,801 429,280,674 15,204,586,348 113,955,430,850
Length filtering 15,063,882 310,009,838 13,240,540,507 99,222,973,992

Document deduplication 9,965,023 189,777,575 8,637,317,522 64,975,071,293
Frequent P filtering 9,062,484 158,772,773 7,194,048,746 53,790,414,086
Same-doc. P dedup. 9,052,140 153,732,983 7,086,763,519 52,986,174,365
Final length filtering 8,326,246 149,945,430 6,989,318,926 52,263,895,796

Table 4.1: Effects of the various filtering steps on corpus size (2018) (*Number of com-
pressed bytes above the middle rule; number of characters below)

4.4.6 Final statistics

The almost valid CoNLL-U Plus format described in the last section is the canonical
format of our corpus. We split up the corpus into files of 2,500 documents each to make
it easier to download and work with the corpus; it also enables prospective users to scale

21https://github.com/dlt-rilmta/emtsv
22https://github.com/dlt-rilmta/quntoken
23https://github.com/DavidNemeskey/quntoken/tree/v1
24https://universaldependencies.org/ext-format.html

92

https://github.com/dlt-rilmta/emtsv
https://github.com/dlt-rilmta/quntoken
https://universaldependencies.org/ext-format.html
https://github.com/dlt-rilmta/emtsv
https://github.com/dlt-rilmta/quntoken
https://github.com/DavidNemeskey/quntoken/tree/v1
https://universaldependencies.org/ext-format.html

Dataset Documents Paragraphs Words Characters

Boilerplate removed 85,744,991 118,0528,666 44,648,104,301 333,609,180,321
Language filtering 84,144,867 951,425,101 43,535,586,773 326,744,152,415
Length filtering 33,231,844 785,179,604 39,053,562,970 292,548,775,478

URL deduplication with 2018 13,917,392 280,518,344 10,414,399,879 76,099,744,178
Document deduplication† 3,587,552 64,064,899 2,408,994,751 17,555,305,848
Document deduplication with 2018† 2,905,457 52,885,668 1,931,680,268 14,092,687,812
Frequent P filtering 2,594,896 47,242,751 2,159,385,560 16,061,541,290
Same-doc. P dedup. 2,591,241 45,718,462 2,126,606,691 15,815,393,328

Final length filtering 2,412,516 44,706,281 2,101,516,357 15,628,819,466

Table 4.2: Effects of the various filtering steps on corpus size (2013–2017) (†A small
number of duplicate URLs remained in this dataset)

the data they wish to work with. The order of the documents is randomized to make the
each minibatch as representative of the whole corpus as possible, which is very important
for stochastic gradient-based learning algorithms (Bengio, 2012).

The size of the final corpus is shown in Table 4.3. With a little over 9 billion tokens,
the corpus is about 3.5 times the size of huTenTen and 4 times the size of the deduplicated
OSCAR corpus. The Wikipedia subcorpus, described in the next section, is also included
in the table for comparison. As can be seen, with about 56 times as many tokens, the
Common Crawl portion of the corpus dwarfs Wikipedia’s contribution. Yet the usefulness
of a clean, semi-edited source should not be overlooked.

Source Documents Paragraphs Words Characters
Common Crawl 10,738,762 194,651,711 9,090,835,283 67,892,715,262
Wikipedia 301,312 7,513,420 163,450,200 1,118,833,863
Sum 11,040,074 202,165,131 9,254,285,483 69,011,549,125

Table 4.3: The size of the current version of Webcorpus 2.0

Table 4.4 lists all domains with at least 0.5% of the total number of documents in
the corpus. As can be seen, the top is dominated by news outlets (8.81%), blog services
(7.23%) and document players (4.17%), which host longer documents such as legal texts
and slides. At a glance, the top domains are of good quality and the content distribution
seems useful for a training corpus. Blogs, news and legal documents will probably be three
pillars of a future balanced corpus as well.

The presence of the e-commerce site arukereso.hu in the list is questionable, and
needs further investigation.

93

Domain Pages Percentage

blog.hu 589,346 5.49%
docplayer.hu 384,136 3.58%
index.hu 199,790 1.86%
24.hu 187,686 1.75%
hvg.hu 131,918 1.23%
blogspot.hu 130,690 1.22%
delmagyar.hu 114,585 1.07%
kisalfold.hu 106,402 0.99%
napi.hu 75,487 0.70%
arukereso.hu 70,789 0.66%
origo.hu 68,465 0.64%
slideplayer.hu 63,701 0.59%
fidelio.hu 61,818 0.58%
xfree.hu 56,068 0.52%
webbeteg.hu 55,510 0.52%

Total 2,296,391 21.4%

Table 4.4: Top domains in terms of the number of documents

4.5 Wikipedia
In order to use as many semi-edited sources as possible, we are including the Hungarian
Wikipedia (WP)25 in Webcorpus 2.0. Wikipedia is not incorporated into Common Crawl,
so it had to be obtained and processed separately. The code that implements the steps
below can be downloaded from GitHub26.

4.5.1 Wikihopping27

Extracting text from Wikipedia proved more challenging than we previously imagined.
On the face of it, the procedure is simple: the Wikimedia Foundation regularly publishes
dumps for each language. These dumps can be downloaded and processed with any of
the third party parsers28 available. As we have learned, however, nothing could be farther
from the truth. We include our whole Odyssey towards a working solution to help readers
who find themselves in the same boat.

As it turns out, while many parsers can extract data from infoboxes on WP pages,
only WikiExtractor29, also endorsed on the BERT GitHub page30, can parse the main
text. Unfortunately, WikiExtractor fails to expand some templates in the text, which

25https://hu.wikipedia.org/wiki/Kezdőlap
26https://github.com/DavidNemeskey/zim_to_corpus
27https://www.urbandictionary.com/define.php?term=wikihopping
28https://www.mediawiki.org/wiki/Alternative_parsers
29https://github.com/attardi/wikiextractor
30https://github.com/google-research/bert

94

https://hu.wikipedia.org/wiki/Kezdőlap
https://hu.wikipedia.org/wiki/Kezdőlap
https://www.urbandictionary.com/define.php?term=wikihopping
https://www.mediawiki.org/wiki/Alternative_parsers
https://github.com/attardi/wikiextractor
https://github.com/google-research/bert
https://hu.wikipedia.org/wiki/Kezdőlap
https://github.com/DavidNemeskey/zim_to_corpus
https://www.urbandictionary.com/define.php?term=wikihopping
https://www.mediawiki.org/wiki/Alternative_parsers
https://github.com/attardi/wikiextractor
https://github.com/google-research/bert

makes certain elements, such as numbers with units (e.g. 40 miles) to disappear from the
output31.

Not wanting to lose sentence cohesion, we turned next to the official MediaWiki soft-
ware. While there is no way to extract text from the dump directly, there are two tools
that can import the dump to a local MediaWiki server, from which the pages can be
queried via a REST API. In practice, the built-in importDump.php is prohibitively slow,
and MWDumper32, while much faster, failed to build a valid local WP mirror.

The final solution came in the form of parsing not the MediaWiki source, but the HTML
pages themselves. Unfortunately, Wikimedia discontinued the distribution of static dumps
in 2008; however, we found another source in the form of the Kiwix ZIM archives33. These
archives are updated less frequently (every 1–2 years), but are freely available and they can
be parsed with the open source libzim34 library. We converted the 2017 Hungarian WP
ZIM archive into a set of files in the JSON Lines35 format. Disambiguation and redirect
pages were purposely omitted from the output, as they contain no coherent text.

4.5.2 Processing

The HTML source of Wikipedia pages is free of advertisements and similar boilerplate,
and extracting the main text is straightforward via CSS selectors. Data duplication is also
nonexistent, as each page corresponds to a different topic, usually a named entity. As a
consequence, we could arrive at a good quality corpus with only two preprocessing steps.

First, sections that consist only of enumerations (e.g. Lásd még ‘See also’ or Források
‘Sources’) are not useful for language modeling. To filter them, we assembled a list of
section titles that 1. usually occur around the end of the document (last 1–2 paragraphs)
and 2. contain only a list 80% of the time. While the numbers are ad-hoc, the resulting
list seems to include most of the worst offenders. The listed sections were then removed
from all documents.

Second, low quality pages were also removed; the metric, once again, was length. Doc-
uments shorter than 100 words were deleted from the corpus; these mostly concerned one-
sentence descriptions of asteroids, probably autogenerated from an astronomical database.

As with the Common Crawl part, the filtered corpus was converted to tsv format, and
morphologically analyzed and lemmatized with emtsv. Since here we parsed the HTML
format directly (as opposed to having it done for us by Justext), we could give meaningful

31https://github.com/attardi/wikiextractor/issues/189
32https://www.mediawiki.org/wiki/Manual:MWDumper
33https://www.mirrorservice.org/sites/download.kiwix.org/zim/wikipedia/
34https://github.com/openzim/libzim
35http://jsonlines.org/

95

https://www.mediawiki.org/wiki/Manual:MWDumper
https://www.mirrorservice.org/sites/download.kiwix.org/zim/wikipedia/
https://github.com/openzim/libzim
http://jsonlines.org/
https://github.com/attardi/wikiextractor/issues/189
https://www.mediawiki.org/wiki/Manual:MWDumper
https://www.mirrorservice.org/sites/download.kiwix.org/zim/wikipedia/
https://github.com/openzim/libzim
http://jsonlines.org/

IDs to the paragraphs based on their location in the DOM. We use these IDs to convert the
tsvs into popular language modeling formats, such as BERT, which requires the removal
of lists and headers, and WT2.

Dataset Documents Paragraphs Sentences Words
Full data 418,673 8,197,320 13,952,709 169,541,528
Length filter 301,312 7,513,420 13,098,808 163,450,200
BERT 260,181 1,996,905 6,093,173 114,093,719

Table 4.5: Effects of the various filtering steps on corpus size (Hungarian Wikipedia)

The full WP contains 418,673 pages; as Table 4.5 shows, removing short documents
left us with about 72% of that, though we only lost 3.5% of tokens. Conversion to the
BERT format reduces the token count by another 30%.

4.6 huBERT

One of our main goals with the corpus was to train a Hungarian BERT model, nicknamed
huBERT. Unfortunately, at the time of writing, no results were available yet. In this section,
we present preliminary work based on the Wikipedia subcorpus.

4.6.1 Pretraining

As we have seen in 1.6.4, training of large Transformer models is prohibitively costly
for smaller research groups; and in Hungarian NLP, all groups can be considered small.
Luckily, the Wikipedia subcorpus is small enough that a BERT Base model can still be
pretrained on a single TPU. We had access to a small number v3 TPUs via Google’s
TensorFlow Research Cloud36 program, which allowed us to train the Wikipedia BERT
models in a couple of days.

BERT models usually come in two flavors: cased and uncased. The former operates on
unprocessed text; in the latter, tokens are lower cased and diacritical marks are removed.
In keeping with this practice, we also trained two variants. However, as diacritics are
distinctive in Hungarian, we could not afford to lose them, and replaced the uncased
model with a lower cased one.

As is the case with the English BERT, our models are all pretrained on sequences of
up to 512 wordpieces. Since the training configurations published in the literature are for

36https://www.tensorflow.org/tfrc

96

https://www.tensorflow.org/tfrc
https://www.tensorflow.org/tfrc

much larger corpora, they are not directly adaptable to our case. Hence, we experimented
with different training regimens for both the cased and lower cased variants:

1. Three models were trained with full-length sequences for 50,000, 100,000 and 200,000
steps. These roughly correspond to 90, 180 and 360 epochs, respectively;

2. Following the recommendation in the BERT repository, one model was trained with
a sequence length of 128 for 500,000 steps (600 epochs) and with a sequence length
of 512 for an additional 100,000 steps (or 180 epochs).

All models were trained with a maximum learning rate of 10−4 and the maximum possible
batch size: 1024 for the model with 128-long sequences and 384 for the rest.

Model Seq. length Steps Hours Masked LM Next sentence

Cased
512 50,000 13 0.5544961 0.97125
128 500,000 59 0.6669028 0.995
512 +100,000 25 0.6657926 0.99

Lower

512 50,000 13 0.5538445 0.9825
512 100,000 25 0.6100383 0.9975
512 200,000 50 0.6273391 0.9975
128 500,000 59 0.6425686 0.99125
512 +100,000 25 0.665879 0.9975

Table 4.6: Training times and accuracies of the different BERT models on the two training
tasks

Table 4.6 compares the different configurations. In the cased case, the TPU went down
for maintenance during the training, so the 100,000 and 200,000-step models are missing
from the results. Even without them, several observations can be made. First, the 50,000-
step models clearly underfit the data, even though they were trained for twice as many
epochs as the English BERT. On the other hand, the difference between the 100,000 and
200,000-step models is much smaller than between the 50,000 and 100,000-step models,
suggesting a performance peak around 300,000–400,000 steps.

Second, in line with the findings of Lan et al. (2019) and Liu et al. (2019), the next
sentence prediction task seems very easy, as all but the first models attain over 99%
accuracy. In contrast, the masked LM task proved much harder, and its accuracy seems
rather low. Unfortunately, the evaluation results for the English BERT are not published
anywhere, which makes it difficult to put the numbers in context. Based on the diminishing
returns, the longest-trained models are likely to be close to the maximum achievable on
the Wikipedia subcorpus.

97

Finally, our experiences confirmed that the two-stage training regiment recommended
in the BERT repository leads to better results. The rationale behind this method is that
the first phase trains most of the model weights and the second phase is “mostly needed to
learn positional embeddings, which can be learned fairly quickly”37. While this seems to be
the case for the cased model, the masked LM accuracy of the lower cased model improved
by more than 2% in the second phase, indicating that substantial learning still happens
at this stage.

4.6.2 Evaluation

BERT models are usually evaluated on high-level natural language understanding tasks,
such as question answering or textual entailment. Unfortunately, no Hungarian benchmark
datasets exist for these tasks. Because of this, we evaluate our models by contrasting their
performance to the multi-language version of BERT in three ways:

1. We compare their accuracy in the two training tasks on a held-out portion of the
Wikipedia subcorpus.

2. We include our models in the emBERT module (see Chapter 5) and measure their
performance on named entity recognition and NP chunking.

3. The quality of the tokenization vocabulary used by the models is also compared.

Table 4.7 presents the results of the first experiment. Both our cased and lower cased
models achieve similar accuracies on the held-out set as on the training data, allaying any
suspicion of overfitting. In addition, the cased model clearly outperforms multi-BERT on
both tasks (multi-BERT is only available in the cased configuration). In fact, the accuracy
of multi-BERT on masked LM is equivalent to a perplexity of about 50,000, which, given
its vocabulary of 120,000 wordpieces, is little better than random. As multi-BERT was
also trained on Wikipedia, this abysmal performance is especially surprising.

The other two experiments will be discussed in Chapter 5, but to summarize the results
briefly, our models outperform multi-BERT in both aspects, proving the effectiveness of
native Hungarian contextual embeddings over multi-language models and their necessity
for progress in Hungarian NLP.

The models can be downloaded from https://hlt.bme.hu/en/resources/hubert.
37https://github.com/google-research/BERT/#pre-training-tips-and-caveats

98

https://hlt.bme.hu/en/resources/hubert
https://github.com/google-research/BERT/#pre-training-tips-and-caveats

Model Masked LM Next sentence accuracy
accuracy loss accuracy

Cased 128–512 0.6414373 1.85 0.98625
multi-BERT 0.0857188 10.89 0.51625
Lower 128–512 0.6415611 1.84 0.99

Table 4.7: Performance of our best models and multi-language BERT in the two training
tasks on the held-out set.

4.7 Conclusion and future work
In this chapter, we presented our work on a Webcorpus 2.0, the largest Hungarian corpus
to date. The corpus is composed of the Hungarian pages in the Common Crawl archives
and a copy of the Hungarian Wikipedia. At around 10 billion tokens, the resulting corpus
is 3.5–4 times as large as the previous record holders huTenTen and OSCAR.

The main purpose of the new corpus is to provide training grounds for modern Transfor-
mer-based language models. As preliminary work to a Hungarian BERT, we experimented
with a model pretrained on the Wikipedia subcorpus. Our model outperformed the multi-
language version of BERT in all experiments we conducted.

The largest remaining task is a BERT model built on the whole Webcorpus 2.0. We
are working towards this goal, and intend to publish the results soon.

A key issue is that of training text quality. BERT training corpora exclude headers
and lists. We followed the convention in the bootstrap corpus that each extracted text
chunk is considered a paragraph, irrespective of its originating HTML tag. Since this gives
us no information on how the paragraphs should be interpreted, we cannot put a similar
filtering step in place. The exception is the Wikipedia subcorpus, which does feature typed
paragraphs. It turns out, however, that it is possible to extend this solution to the main
corpus as well, by using the xpath attribute of the paragraphs emitted by Justext. In the
next version of the corpus, we intend to make use of this feature to create a better quality
BERT training corpus. Filtering lists and tables will probably result in the downsampling
of domains like arukereso.hu as well.

We are grateful for Indig’s bootstrap corpus, which allowed us to start our work.
However, having to deal with a huge dataset not yet deduplicated, and without the original
WARC sources, meant we could not fully operate on a month-by-month basis. This made
the code more complex, and as mentioned above, prevented us from changing the output
of the boilerplate removal. In the next version of the corpus, we intend to re-download
the 2013–2017 archives and integrate them fully into our pipeline.

99

The next version of the corpus might also explore some of the issues raised in this
chapter, such as the compilation of a balanced subcorpus or the inclusion of Hungarian
pages from the Common Crawl archives of neighboring countries.

Lastly, the implementation also might need some overhaul. Python is a good language
for fast prototyping and due to its excellent third party library support. However, its pref-
erence of multiprocessing over multithreading results in reduced performance, increased
memory usage or the need to introduce a database (see Section 4.4.4) for tasks that need a
large shared resource (e.g. a URL index). Reimplementing the tasks affected in a language
that supports multithreading could speed them up considerably.

100

Chapter 5

emBERT: language modeling for NLP

In the previous chapters, we presented various ways in which “traditional” natural lan-
guage processing can be used to evaluate or improve certain aspects of language modeling.
Notably, modern language modeling depends on the existence of gigaword corpora, such
as the one introduced in Chapter 4 – which utilizes numerous NLP tools, from language
identification and boilerplate removal to tokenization and morphological analysis.

In this chapter, we give an example of the opposite direction, when language modeling
is used to improve an NLP system. Specifically, we train classifiers based on contextual
embeddings for two NLP tasks: NP chunking and named entity recognition. Our work is
certainly not without precedent (see Section 1.7.5); however, to our knowledge, it is the
first time such a study is conducted for Hungarian.

Most of the content of this chapter was published in Nemeskey (2020), which has won
Special Award at the XI. Conference on Hungarian Computational Linguistics.

5.1 Deep learning in NLP
We have already discussed how in the last couple of years deep, contextual embed-
dings superseded traditional, manually compiled feature sets in most NLP tasks (see
Section 1.7.5). In spite of this development, Hungarian text processing pipelines, namely
e-magyar (Váradi et al., 2017) and magyarlanc (Zsibrita et al., 2013), still operate on
manual features. In this chapter, we introduce the emBERT module, which enables the
integration of sequence classifiers based on contextual embeddings into emtsv, the new
version of e-magyar. We trained models for two tasks: NP chunking and named entity
recognition (NER). emBERT performs comparably to the best NER tagger for Hungarian,
while achieving state-of-the-art performance on NP chunking.

Another key aspect of the deep learning revolution is the retirement of off-the-shelf

101

classifiers in favor of custom, usually very large neural architectures. The exploration of
how much this development affects or will affect NLP is beyond the scope of this thesis; at
least for now, traditional machine learning models seem prevalent in NLP toolkits. While
the system described in this chapter uses a neural classifier, it is much simpler than the
maximum entropy Markov models or CRFs commonly used for token classification.

The results presented in Section 1.7.5 were all achieved by English-language models
on English benchmarks. Owing to the resource-hungry nature of training large contextual
embeddings, only a handful of languages have followed suit1. In this chapter, we investigate
if contextual embeddings are able to achieve similar results for Hungarian. Due to the
lack of evaluation datasets akin to SQuAD or GLUE, we assess model performance on
two token classification tasks: NP chunking and NER. The models are integrated into the
e-magyar text processing system as a new module.

5.2 BERT

5.2.1 Why BERT?

From the list of contextual embeddings introduced in Section 1.7.4, few are available in
languages other than English. In particular, only one of them has a Hungarian version,
although some of the models have configurations trained on multilingual text. ELMo (Che
et al., 2018) has individual models for 44 languages, trained on 20-million-word samples
of the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Depen-
dencies (Zeman et al., 2017). BERT, XLM and XLM-RoBERTa have joint multilingual
models, which have been trained on roughly 100 languages (BERT on 104). These models
have an extended vocabulary (120 thousand for BERT, 240 thousand for XLM) compared
to their single-language versions, but the number of parameters is the same; additionally,
the multi-language BERT is only available in the Base (110M) parameter configuration.
multi-BERT was trained on Wikipedia; XML-RoBERTa on 2.5TB of Common Crawl data.

In this study, we decided to focus on BERT. The main advantage over ELMo is that
BERT models can be fine-tuned on downstream tasks easily, whereas ELMo only replaces
the featurizer component. Secondly, the BERT family of models generally achieve better
performance on high-level tasks. NP chunking and NER are notable exceptions from this
rule, so replacing manual features with ELMo in emChunk and emNER is a possible future
avenue for research.

We include two BERT models in our study. The first one is multi-BERT; the second is
1https://huggingface.co/transformers/pretrained_models.html

102

https://huggingface.co/transformers/pretrained_models.html

Word Multilingual BERT Hungarian BPE English gloss
Nemzeti Nemzeti Nemzeti National
Andersen Andersen Andersen Andersen
labdarúgó labdarúgó labdarúgó footballer
zambiai za mbia i z amb iai of Zambia
megmaradt meg maradt megmaradt remained
hétfő hét f ő hétfő Monday
keddtől ke dd től kedd től from Tuesday
edényben ed ény ben edény ben in a pot
Hétfőn H ét f ő n Hétfőn On Monday
tájékoztatták tá j ék ozta tták tájékoztat ták have been notified
leggazdagabb leg ga zda gab b leggazdagabb wealthiest
elpártolt el pá rto lt el párt olt renounced

Table 5.1: Tokens generated from a few words by the dictionary of multilingual BERT
and a Hungarian BPE dictionary built from Webcorpus 2.0 (see Chapter 4)

the preliminary huBERT model introduced in Section 4.6. We use the cased huBERT model
in all experiments, as case information is important in named entity recognition.

5.2.2 Does multi-BERT speak Hungarian?

The multi-language BERT model was trained on 104 languages. This raises the question:
how well does it model Hungarian? More specifically, we can consider the following two
facets:

1. To what extend do wordpieces in a tokenized sentence correspond to (Hungarian)
morphemes?

2. Are wordpiece vectors semantically correct? This question is especially interesting
with regard to interlingual homographs; e.g. “leg” (the superlative prefix in Hun-
garian), “old” (Hungarian solve)?

A proper discussion of the second question would be beyond the scope of this chapter.
An implicit answer can be construed from the results presented in Section 5.5.

In order to answer the first, we tokenized all words in the Szeged NER corpus into word-
pieces in two ways. First with the tokenizer of multi-BERT; second, with a 30,000-token
BPE vocabulary trained on Webcorpus 2.0 that was introduced in Chapter 4. Table 5.1
lists a few select examples.

103

Word type Multilingual BERT Hungarian BPE Difference
lowercased 2.24 1.34 67%
capitalized 1.86 1.75 6%
all 2.14 1.44 49%
lowercased (type) 3.97 2.41 65%
capitalized (type) 4.65 4.27 9%
all (type) 4.12 2.83 45%

Table 5.2: Mean number of subwords per token (above) and type (below)

As seen in the table, words can be divided into roughly three groups. Words in the
first group are handled similarly by the two tokenizers; either because they are present
in both vocabularies (in other words, they are wordpieces themselves), or because neither
tokenizer can split them up into meaningful units. “zambiai” is an example for the latter.

In case of the second group, the Hungarian BPE tokenizer always splits words into
morphologically sound units, whereas multi-BERT’s tokenization also contains meaning-
less n-grams. Furthermore, the number of wordpieces on the multilingual side is always
greater than on the Hungarian side.

In the third group, the gap widens further. While the Hungarian BPE tokenization is
still semantic, multi-BERT’s wordpieces deteriorate into random n-grams. The latter also
needs 4–5 wordpieces to cover longer words, as opposed to the 1–2 needed by the Hungarian
tokenizer. Additionally, the fact that “hétfő” and “Hétfőn” are tokenized differently hints
at a difficulty in properly handling sentence-initial words and named entities.

Table 5.2 provides quantitative confirmation for the observations above. Multi-BERT
produces on average 50% more wordpieces than the Hungarian BPE. Since punctuation
marks and the most common function words, such as “a”, “az” (English the) and “és”
(English and), are included in both vocabularies, the effect on content words is likely even
more pronounced.

The disparity holds for words and types alike. Comparing the top and bottom half
of Table 5.2, however, reveals that the average number of subwords for types is about
78% higher than it is for downcased tokens. Since infrequent words account for a much
higher proportion, this hints at how much worse infrequent words are represented across
the board.

Interestingly, there is no significant (quantitative) difference in how capitalized words
are handled: both tokenizers split them up into 4–5 wordpieces. This can be explained by
the relative sparsity of capitalized words in the text. At the same time, it also suggests
that BERT (multi-language or otherwise) might not be the optimal choice for NER.

104

Inspecting huBERT’s vocabulary in a similar way, we find that it behaves very similarly
to the Hungarian BPE vocabulary. Minor differences include the morphologically valid
splitting of “hétfő” into tokens “hét” és “fő”, and a 1–8% increase in wordpieces, compared
to the numbers in Table 5.2. The differences, however, are insignificant compared to the
ones between multi-BERT and the two native Hungarian vocabularies.

5.3 The emBERT module
So that researchers and NLP practitioners may benefit from the models resulting from
this study, we decided to integrate them into the e-magyar pipeline. The new version of
e-magyar, emtsv (Indig et al., 2019), has greatly simplified the the extension of the core
system with new modules. Thus emBERT was born.

emBERT follows the same conventions as other emtsv modules. When installed, the tools
bert-base-chunk, bert-max-chunk and bert-ner are made available in emtsv. Like the
rest of the modules, the tools expect tokenized text as input. Since BERT operates on raw
text, in theory, emBERT could as well; however, in order to keep the tokenization consistent
with the rest of the pipeline, we delegate the task to emToken. In contrast with other
high-level modules (emChunk and emNER in particular) emBERT requires no morphological
information, rendering morphological analysis and lemmatization unnecessary2.

We used Huggingface’s transformers3 (Wolf et al., 2019) library to fine-tune and run
BERT. A considerable advantage of transformers is that it contains the implementations
of not only BERT, but other Transformer-based architectures (XLNet, RoBERTa) as well.
This makes it possible to later improve emBERT by integrating other embeddings into it.

As opposed to most other emtsv modules4, emBERT contains code for both training
and running BERT-based models, and it also works as a standalone Python package. We
chose to include the training code for two reasons: first, the complexity (or lack thereof) of
the code did not justify a segregation of the two functions; and second, it allows users to
freely experiment with the models and possibly tailor them to their own needs. Similarly
to the rest of the modules, the code lives in a GitHub repository5.

At around 700MB apiece, BERT models are sizable even in the Base configuration. In
order to keep the code manageable, the models have been moved into a separate GitHub
repository, emBERT-models6. As with the HunTag3 and parser modules, the models can

2Unless the user or other modules need that information, of course.
3https://github.com/huggingface/transformers
4HunTag3 is an exception
5https://github.com/DavidNemeskey/emBERT
6https://github.com/dlt-rilmta/emBERT-models

105

https://github.com/huggingface/transformers
https://github.com/DavidNemeskey/emBERT
https://github.com/dlt-rilmta/emBERT-models
https://github.com/huggingface/transformers
https://github.com/DavidNemeskey/emBERT
https://github.com/dlt-rilmta/emBERT-models

be acquired in two ways: on the one hand, the emBERT repository includes emBERT-models
as a submodule, so when cloned recursively, the models are downloaded as well. On the
other, we included our models in emtsv’s model downloader script to give users more
control over their emtsv setup, and to protect them from spurious downloads.

5.4 Experiments
The performance of the models was measured on two token classification tasks: NP chunk-
ing and named entity recognition. In order to facilitate comparison with previous work,
the models were trained and evaluated on standard benchmark corpora.

Similarly to all Hungarian statistical NP-chunkers (hunchunk (Recski, 2010) and its
successors), our chunker models were trained on the Szeged Treebank 2.0 (Csendes et al.,
2005). The corpus contains 82,099 sentences. These we split randomly into train, valida-
tion and test sets (80%–10%–10%). Both subtasks, minimal and maximal NP chunking,
were handled the same way: the models were fine-tuned for 4 epochs and evaluated on
the test set. We used a linear learning rate schedule with 10% warm-up, with no early
stopping.

The NER model was fine-tuned on the Szeged NER corpus (Szarvas et al., 2006), a
subset of the Szeged Treebank. Since the corpus is much smaller than the full Treebank
(with 8172–502–900 train/validation/test cuts), several different hyperparameter config-
urations were explored. The best model was trained for 30 epochs with a linear learning
rate schedule peaking at 10−5.

The experiments were implemented with the PyTorch version of the transformers
library. Training was run parallely on three GeForce RTX 2080 Ti cards, with a batch
size of 16. This configuration allowed us to train both the NER and chunking models
(the latter of which ran for far less epochs) in 3 hours. For chunking, the values of most
hyperparameters were left at their defaults. In case of NER, the hyperparameter settings
that performed the best were also using the default values, with the number of epochs and
the learning rate being the notable exceptions.

The exact values of all hyperparameters are recorded in the configuration files of the
downloaded models.

106

5.5 Results

5.5.1 Chunking

Table 5.3 compares the performance of emBERT and members of the hunchunk family.
Clearly, both emBERT models outperform all previous systems and achieve state-of-the-art
results in both minimal and maximal NPs chunking.

For minimal NPs, multi-BERT’s improvement over hunchunk, the only model trained
for recognizing them, is not significant. On the other hand, the maximal NP chunker
surpasses Huntag3, e-magyar’s tagger of choice, by a considerable 1.5% F1. huBERT
improves both scores by a further 1–1.5%, improving on the previous state of the art by
1.16% in minimal and 2.82% in maximal NP chunking.

System Minimal Maximal

hunchunk/HunTag (Recski, 2010) 95.48% 89.11%
HunTag3 (Endrédy and Indig, 2015) – 93.59%
emBERT w/ multi-BERT 95.58% 95.05%
emBERT w/ huBERT 96.64% 96,41%

Table 5.3: Comparison of Hungarian NP chunkers

5.5.2 Named entity recognition

The results for named entity recognition are more mixed (see Table 5.4). While emBERT
achieves 2% higher F1 score than Szarvas et al. (2006) and Varga and Simon (2007), it
falls shorts of Huntag3’s performance. Also, multi-BERT and huBERT perform virtually
identically in this task. This implies a bottleneck outside the main model, probably in the
simple feedforward classifier placed on top.

spaCy differs from the other systems in that its training data was augmented with the
hunNERwiki corpus (Nemeskey and Simon, 2012). As such, any comparison with it is
purely informal, and it is only listed for the sake of completeness.

During NER training, we ran into a typical problem that plagues most machine, and
especially deep, learning systems: while results depend heavily on hyper-parameter choice,
finding the optimal hyperparameters is extremely costly. This issue affects small corpora,
such as Szeged NER, even more, as the model has magnitudes more parameters than there
are training instances.

107

System F1

(Szarvas et al., 2006) 94,77%
hunner (Varga and Simon, 2007) 95.06%
HunTag3 (Endrédy and Indig, 2015) 97.87%
emBERT w/ multi-BERT 97,08%
emBERT w/ huBERT 97,03%

spaCy7 93,95%

Table 5.4: Comparison of Hungarian NER taggers

Compared to NER, chunker training was extremely stable: we experimented with
training regimens of various epoch length, with no discernible effect on the final result.
This indicates that the hyper-parameter problem can at least be mitigated with a large
enough training corpus. We believe NER training could also benefit from the availability
of a larger and more varied NER corpus; a possible option could be the inclusion of a
manually revised subset of hunNERwiki.

5.6 Future work
The emBERT module, while improves on the previous state-of-the-art in NP chunking,
must still be considered proof-of-concept. We review the outstanding issues, as well as the
corresponding lines of future research, below.

First, we have seen that basing the module on the multi-language BERT is undeniably
suboptimal. Apart from it being available only in the Base configuration, the capacities
of both the model and the vocabulary are divided among 104 languages. The fact that
huBERT outperforms multi-BERT by more than a full percent in both chunking tasks
suggests that a BERT model trained on the full Webcorpus 2.0, especially a Large one,
would presumably achieve further improvements. As mentioned in Chapter 4, we plan to
train and publish such models in the future.

Second, BERT is but one of the many contextual embeddings published in the last
two years. As we have seen, ELMo, RoBERTa or Flair surpass BERT in certain tasks;
and named entity recognition is one of them. We intend to include other embeddings in
emBERT as well, should a multi-language or Hungarian version become available.

Third, we should find out what language tasks, other than chunking and NER, can
benefit from BERT. The obvious candidate is morphological analysis, for which a deep

108

learning approach has already proven successful (Ugray, 2019). Provided that resources
similar to GLUE (Wang et al., 2018) or SQuAD (Rajpurkar et al., 2016) become available
for Hungarian, the model could also be adapted to higher-level tasks such as sentiment
analysis, paraphrase detection or question answering. In incorporating them, emBERT
would not only improve on functions already provided by e-magyar, but could bring new
capabilities to it as well.

5.7 Conclusion
In this chapter, we have have introduced emBERT, a new module of the e-magyar text
processing system. emBERT allows the integration of classifiers based on contextual em-
bedding into the pipeline. We fine-tuned both the multilingual BERT and the preliminary
huBERT models on the tasks of NP chunking and named entity recognition. Our models
perform comparably to previous NE recognizers, and achieve a new state-of-the-art in NP
chunking.

emBERT offers various opportunities for improvement. The module can easily be ex-
tended to support additional embeddings and tasks, as long as the necessary resources (a
training corpus and the embedding itself) are available.

109

Chapter 6

Conclusions

In this thesis we concentrated on two issues: how modern NLP (or traditional linguistic)
techniques can improve language modeling, and how to improve the state of the art for
Hungarian.

Chapter 2 highlighted the problems of word-based language modeling for Hungarian
and introduced the “gluten-free” format, a morphological segmentation algorithm that al-
leviates the adverse effects of the overabundance of word forms in the language. Chapter 3
proposed a novel method for evaluating multi-sense embeddings based on lexicographical
resources. Chapter 5 gave an example for the opposite direction, when language models
are used to improve the performance of an NLP system.

We improved on the state of the art in Hungarian language modeling in several ways.
First, we presented a set of language modeling benchmarks on three Hungarian corpora
in Chapter 2. A preprocessed version of the Hungarian Webcorpus has been released to
serve as a standard dataset for language model assessment. A new Hungarian corpus
has been created in Chapter 4. Webcorpus 2.0 was compiled from Hungarian pages in
the Common Crawl and the Hungarian Wikipedia. At 9 billion tokens, it is 3.5 times
the size of the previous largest (commercial) corpus, and can serve as training data for
large-scale language models. Finally, the emBERT module developed in Chapter 5 enables
the integration of modern contextualized embedding-based classifiers into the e-magyar
pipeline. Based on our preliminary Hungarian BERT model, the NP chunker outperforms
the previous best system by 2.8% in F1 score.

All resources (corpora, models and software alike) presented in the thesis are freely
downloadable under permissive licenses.

110

Összefoglalás

A disszertációban két kérdésre koncentráltunk. Egyfelől célnak tűztük ki a magyar nyelv-
modellezési eredmények javítását; másrészt azt vizsgáltuk, hogy alkalmasak-e erre a célra
a modern természetesnyelv-feldolgozás (vagy a hagyományos nyelvészet) módszerei.

A 2. fejezet bemutatta a problémákat, amivel a magyar nyelv szószintű modellezésekor
találkozunk. Itt mutattuk be a „gluténmentes” formátumot, egy morfológiai szegmen-
táló algoritmust, ami ha nem is orvosolja, de csökkenti a szóalakok túlburjánzása okozta
problémákat. A 3. fejezet egy értelmező szótárakon alapuló módszert javasolt többjelen-
tésű szóbeágyazások kiértékelésére. A 5. fejezet az ellenkező irányra ad példát, amikor
nyelvmodellek alkalmazása javítja egy nyelvfeldolgozó rendszer eredményét.

Kutatásunk keretében több módon is korszerűsítettük a magyar nyelvmodellezés ál-
lapotát. Egyrészt több nyelvmodellt is kimértünk három magyar korpuszon. Ezek közül
egyiket, a Magyar Webkorpusz előfeldolgozott változatát javasoltuk sztenderd nyelvmodell-
kiértékelő korpusznak a 2. fejezetben. A Webkorpusz 2.0 létrehozását mutatja be a
4. fejezet. Az új korpusz a Common Crawl webarchívumból és a magyar Wikipédiából
tevődik össze. Kilenc milliárd szavas méretével a legnagyobb magyar korpusz, mérete 3,5-
szörösen haladja meg a legnagyobb (kereskedelmi) korpuszét. Végül a 5. fejezet mutatja
be az emBERT modult, ami lehetővé teszi modern kontextualizált beágyazások integrálását
az e-magyar szövegfeldolgozó rendszerbe. A kísérleti magyar BERT modellünkre építő
főnévicsoport-felismerő 2,8% F1-ponttal múlja felül a korábbi legjobb rendszert.

Minden bemutatott erőforrás (korpuszok, modellek és szoftver) szabadon letölthető.

111

Appendices

112

Appendix A

Abbreviations used in the thesis

1B One Billion Word Benchmark ME maximum entropy
AR activation regularization MEMM maximum entropy Markov model

BERT
Bidirectional Encoder
Representations from Transformers

ML machine learning
MLE maximum likelihood estimation

BPTT backpropagation through time MLP multilayer perceptron
BPE byte-pair encoding MSE multi-sense embedding
CC Common Crawl NER named entity recognition
CLD2 Compact Language Detector 2 NFS network file system
CNN Convolutional neural network NLP natural language processing
CRF conditional random field NLU natural language understanding
DOM document object model (N)MT (neural) machine translation
ELMo Embeddings from Language Models NNLM neural net language model
FFNN feedforward neural network NP noun phrase (as in “NP chunking”)
FLM factored language model OOV out-of-vocabulary word
GLF gluten-free (form) POS part-of-speech
GPU graphics processing unit PTB Penn TreeBank
HMM hidden Markov model QA question answering
KN Kenser-Ney (n-gram model) SGD stochastic gradient descent
LAN local area network TPU tensor processing unit
LM language model(ing) tsv tab separated values
LOB Lancaster–Oslo/Bergen (corpus) w2v word2vec
LSH locality-sensitive hashing WP Wikipedia
LSTM long short-term memory WT2 WikiText-2

113

Appendix B

Sample texts generated by
Transformer models

There is little doubt how President Trump ...
views Russia’s invading of Ukraine and annexation of Crimea. He sees the actions of
Russian leader Vladimir Putin as evidence of Russian political subversion in Amer-
ica.
We may never know the extent to which Trump and his advisers also suspect that a
key feature of American politics is a ”deep state” that is working to subvert the will
of the American people at home and to promote Kremlin policies abroad. One sees
them attempting to prevent Trump’s nomination as a Republican candidate and
then to sabotage his presidency by publishing damaging articles about him from
inside his administration.
You want to know the best thing President Trump said that day? ”I won’t stand
up to Russia.”
That’s not such a bad thing. Trump

Chess great Magnus Carlsen made history Tuesday as he extended his un-
beaten run to 111 successive classical games, breaking the 110-game streak set
by Sergei Tiviakov in 2005.

Carlsen, who is ranked No. 1 on the world rankings, won a tense match against
fellow Norwegian Vassily Ivanchuk of Russia at the World Youth Championship
tournament held in Moscow, Russia. The 20-year-old has now broken the old mark
three times and tied it once. He also broke the previous record, which was established
when Vladimir Kramnik achieved 113 games last year.
”I think I am just getting started,” said Carlsen. ”This will be my ninth year playing
chess. I’ve been trying all these years but this time I’m really happy with how things
are going.”

114

A few weeks ago, Carlsen became only the second player since 1972—after Anatoly
Karpov —to reach 100 consecutive wins from one start in competition. But that
didn’t stop him from celebrating what would have been his 100th win Tuesday.

Bendable glass is the missing ingredient in today’s foldable phones. But what
if bendable screens were made from one of the hardest materials on Earth?

That’s exactly what’s being proposed by a team at Stanford University. The group
has developed an extremely hard and lightweight material that they say would be
ideal for making flexible displays. They call it ”diamond” glass. It’s not as strong
or durable as carbon fiber, but it’s still strong. In fact, this new composite will
bend like paper when squeezed with your fingers. If you can make something out of
diamond, then we might just have to start using these phones more often.
[Stanford’s Technology Review]

115

Bibliography

Abadi, Martı́n et al. (2016a). TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. arXiv: 1603.04467 [cs.DC].

Abadi, Martı́n et al. (2016b). TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. arXiv: 1603.04467 [cs.DC].

Ackley, David H; Hinton, Geoffrey E, and Sejnowski, Terrence J (1985). “A learning algorithm
for Boltzmann machines.” In: Cognitive science 9.1, pp. 147–169.

Afify, Mohamed; Sarikaya, Ruhi; Kuo, Hong-Kwang Jeff; Besacier, Laurent, and Gao, Yuqing
(2006). “On the use of morphological analysis for dialectal Arabic speech recognition.” In:
INTERSPEECH , pp. 277–280.

Akbik, Alan; Blythe, Duncan, and Vollgraf, Roland (Aug. 2018). “Contextual String Embeddings
for Sequence Labeling.” In: Proceedings of the 27th International Conference on Computa-
tional Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics,
pp. 1638–1649. url: https://www.aclweb.org/anthology/C18-1139.

Akbik, Alan; Bergmann, Tanja; Blythe, Duncan; Rasul, Kashif; Schweter, Stefan, and Voll-
graf, Roland (June 2019). “FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP.”
In: Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations). Minneapolis, Minnesota: Association
for Computational Linguistics, pp. 54–59. doi: 10 . 18653 / v1 / N19 - 4010. url: https :
//www.aclweb.org/anthology/N19-4010.

Akbik, Alan; Bergmann, Tanja, and Vollgraf, Roland (June 2019). “Pooled Contextualized Em-
beddings for Named Entity Recognition.” In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Associa-
tion for Computational Linguistics, pp. 724–728. doi: 10.18653/v1/N19-1078. url: https:
//www.aclweb.org/anthology/N19-1078.

Arora, Sanjeev; Li, Yuanzhi; Liang, Yingyu; Ma, Tengyu, and Risteski, Andrej (2016). “RAND-
WALK: A Latent Variable Model Approach to Word Embeddings.” In: Transactions of the
Association for Computational Linguistics (TACL) 4, pp. 385–399.

Baevski, Alexei; Edunov, Sergey; Liu, Yinhan; Zettlemoyer, Luke, and Auli, Michael (Nov. 2019).
“Cloze-driven Pretraining of Self-attention Networks.” In: Proceedings of the 2019 Confer-

116

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.18653/v1/N19-4010
https://www.aclweb.org/anthology/N19-4010
https://www.aclweb.org/anthology/N19-4010
https://doi.org/10.18653/v1/N19-1078
https://www.aclweb.org/anthology/N19-1078
https://www.aclweb.org/anthology/N19-1078

ence on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Asso-
ciation for Computational Linguistics, pp. 5360–5369. doi: 10.18653/v1/D19-1539. url:
https://www.aclweb.org/anthology/D19-1539.

Bahdanau, Dzmitry; Cho, Kyunghyun, and Bengio, Yoshua (2015). “Neural machine transla-
tion by jointly learning to align and translate.” In: International Conference on Learning
Representations (ICLR 2015).

Bahl, Lalit R.; Jelinek, Fred, and Mercer, Robert (1983). “A Maximum Likelihood Approach to
Continuous Speech Recognition.” In: IEEE Trans. PAMI 5.2, pp. 179–190.

Baker, James (1975). “The DRAGON system–An overview.” In: IEEE Transactions on Acoustics,
speech, and signal Processing 23.1, pp. 24–29.

Balázs, Kapitány (2013). “Kárpát-medencei népszámlálási körkép.” In: Demográfia 56.1, pp. 25–
64.

Baroni, M.; Dinu, G., and Kruszewski, G. (2014). “Don’t count, predict! A systematic comparison
of context-counting vs. context-predicting semantic vectors.” In: Proceedings of ACL 2014,
pp. 237–247.

Bartunov, Sergey; Kondrashkin, Dmitry; Osokin, Anton, and Vetrov, Dmitry (May 2016). “Break-
ing Sticks and Ambiguities with Adaptive Skip-gram.” In: Proceedings of Machine Learning
Research 51: Artificial Intelligence and Statistics, pp. 130–138.

Bengio, Yoshua; Simard, Patrice, and Frasconi, Paolo (1994). “Learning long-term dependencies
with gradient descent is difficult.” In: IEEE transactions on neural networks 5.2, pp. 157–166.

Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal, and Janvin, Christian (2003). “A Neural
Probabilistic Language Model.” In: Journal of Machine Learning Research 3, pp. 1137–1155.
url: http://www.jmlr.org/papers/v3/bengio03a.html.

Bengio, Yoshua and Senécal, Jean-Sébastien (2003). “Quick Training of Probabilistic Neural Nets
by Importance Sampling.” In: AISTATS.

Bengio, Yoshua and Senécal, Jean-Sébastien (2008). “Adaptive importance sampling to accelerate
training of a neural probabilistic language model.” In: IEEE Transactions on Neural Networks
19.4, pp. 713–722.

Bengio, Yoshua (2012). “Practical recommendations for gradient-based training of deep archi-
tectures.” In: Neural networks: Tricks of the trade. Springer, pp. 437–478.

Berger, A.L.; Pietra, S.A. Della, and Pietra, V.J. Della (1996). “A maximum entropy approach
to natural language processing.” In: Computational Linguistics 22.1.

Berger, Adam and Lafferty, John (1999). “Information Retrieval as Statistical Translation.” In:
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’99. Berkeley, California, USA: Association
for Computing Machinery, pp. 222–229. isbn: 1581130961. doi: 10.1145/312624.312681.
url: https://doi.org/10.1145/312624.312681.

117

https://doi.org/10.18653/v1/D19-1539
https://www.aclweb.org/anthology/D19-1539
http://www.jmlr.org/papers/v3/bengio03a.html
https://doi.org/10.1145/312624.312681
https://doi.org/10.1145/312624.312681

Biber, Douglas (1993). “Representativeness in corpus design.” In: Literary and linguistic com-
puting 8.4, pp. 243–257.

Bilmes, Jeff A. and Kirchhoff, Katrin (2003). “Factored Language Models and Generalized Par-
allel Backoff.” In: Proceedings of HLT/NACCL, pp. 4–6.

Blei, David M; Ng, Andrew Y, and Jordan, Michael I (2003). “Latent dirichlet allocation.” In:
Journal of machine Learning research 3.Jan, pp. 993–1022.

Boguraev, Branimir K. and Briscoe, Edward J. (1989). Computational Lexicography for Natural
Language Processing. Longman.

Bojanowski, Piotr; Grave, Edouard; Joulin, Armand, and Mikolov, Tomas (2017). “Enriching
Word Vectors with Subword Information.” In: Transactions of the Association for Compu-
tational Linguistics 5, pp. 135–146. issn: 2307-387X. url: https://transacl.org/ojs/
index.php/tacl/article/view/999.

Bojar, Ondřej; Federmann, Christian; Fishel, Mark; Graham, Yvette; Haddow, Barry; Koehn,
Philipp, and Monz, Christof (Oct. 2018). “Findings of the 2018 Conference on Machine
Translation (WMT18).” In: Proceedings of the Third Conference on Machine Translation:
Shared Task Papers. Belgium, Brussels: Association for Computational Linguistics, pp. 272–
303. doi: 10.18653/v1/W18-6401. url: https://www.aclweb.org/anthology/W18-6401.

Borbély, Gábor; Kornai, András; Nemeskey, Dávid, and Kracht, Marcus (2016). “Denoising com-
position in distributional semantics.” In: DSALT: Distributional Semantics and Linguistic
Theory. poster.

Borbély, Gábor; Makrai, Márton; Nemeskey, Dávid Márk, and Kornai, András (2016). “Evaluat-
ing multi-sense embeddings for semantic resolution monolingually and in word translation.”
In: Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP.
Berlin, Germany: Association for Computational Linguistics, pp. 83–89. doi: 10.18653/v1/
W16-2515. url: http://www.aclweb.org/anthology/W16-2515.

Botha, Jan A and Blunsom, Phil (2014). “Compositional Morphology for Word Representations
and Language Modelling.” In: ICML, pp. 1899–1907.

Brants, Thorsten; Popat, Ashok C.; Xu, Peng; Och, Franz J., and Dean, Jeffrey (June 2007).
“Large Language Models in Machine Translation.” In: Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computational
Linguistics, pp. 858–867. url: http://www.aclweb.org/anthology/D/D07/D07-1090.

Brébisson, Alexandre de and Vincent, Pascal (2015). “An Exploration of Softmax Alternatives
Belonging to the Spherical Loss Family.”

Breuel, Thomas M (1994). “A system for the off-line recognition of handwritten text.” In: Proceed-
ings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference
C: Signal Processing (Cat. No. 94CH3440-5). Vol. 2. IEEE, pp. 129–134.

118

https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.18653/v1/W18-6401
https://www.aclweb.org/anthology/W18-6401
https://doi.org/10.18653/v1/W16-2515
https://doi.org/10.18653/v1/W16-2515
http://www.aclweb.org/anthology/W16-2515
http://www.aclweb.org/anthology/D/D07/D07-1090

Broder, Andrei Z; Charikar, Moses; Frieze, Alan M, and Mitzenmacher, Michael (1998). “Min-
wise independent permutations.” In: Proceedings of the thirtieth annual ACM symposium on
Theory of Computing. ACM, pp. 327–336.

Brown, P.F.; Pietra, V.J. Della; Souza, P.V. de; Lai, J.C., and Mercer, R.L. (1992). “Class–based
n–gram models of natural language.” In: Computational Linguistics 18.4, pp. 467–480.

Brown, Peter; Cocke, John; Pietra, Stephen Della; Pietra, Vincent J. Della; Jelinek, Fredrick;
Lafferty, John D.; Mercer, Robert L., and Roossin, Paul S. (1990). “A statistical approach
to machine translation.” In: Computational Linguistics 16, pp. 79–85.

Brown, Peter F; Pietra, Vincent J Della; Pietra, Stephen A Della, and Mercer, Robert L (1993).
“The mathematics of statistical machine translation: Parameter estimation.” In: Computa-
tional linguistics 19.2, pp. 263–311.

Buck, Christian; Heafield, Kenneth, and Ooyen, Bas van (May 2014). “N-gram Counts and
Language Models from the Common Crawl.” In: Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14). Reykjavik, Iceland: Euro-
pean Language Resources Association (ELRA), pp. 3579–3584. url: http://www.lrec-
conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf.

Cauchy, Augustin (1847). “Méthode générale pour la résolution des systemes d’équations si-
multanées.” In: Comp. Rend. Sci. Paris 25.1847, pp. 536–538.

Charniak, Eugene (June 2001). “Immediate-Head Parsing for Language Models.” In: Proceedings
of the 39th Annual Meeting of the Association for Computational Linguistics. Toulouse,
France: Association for Computational Linguistics, pp. 124–131. url: https://www.aclweb.
org/anthology/P01-1017.

Che, Wanxiang; Liu, Yijia; Wang, Yuxuan; Zheng, Bo, and Liu, Ting (Oct. 2018). “Towards
Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Con-
catenation.” In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Brussels, Belgium: Association for Computational Linguis-
tics, pp. 55–64. url: http://www.aclweb.org/anthology/K18-2005.

Chelba, Ciprian and Jelinek, Frederick (Aug. 1998). “Exploiting Syntactic Structure for Language
Modeling.” In: 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1. Montreal, Quebec,
Canada: Association for Computational Linguistics, pp. 225–231. doi: 10.3115/980845.
980882. url: https://www.aclweb.org/anthology/P98-1035.

Chelba, Ciprian; Bikel, Dan; Shugrina, Maria; Nguyen, Patrick, and Kumar, Shankar (2012).
Large Scale Language Modeling in Automatic Speech Recognition. Tech. rep. Google. url:
https://research.google.com/pubs/pub40491.html.

Chelba, Ciprian; Mikolov, Tomas; Schuster, Mike; Ge, Qi; Brants, Thorsten; Koehn, Phillipp, and
Robinson, Tony (2014). “One billion word benchmark for measuring progress in statistical

119

http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
https://www.aclweb.org/anthology/P01-1017
https://www.aclweb.org/anthology/P01-1017
http://www.aclweb.org/anthology/K18-2005
https://doi.org/10.3115/980845.980882
https://doi.org/10.3115/980845.980882
https://www.aclweb.org/anthology/P98-1035
https://research.google.com/pubs/pub40491.html

language modeling.” In: INTERSPEECH 2014, 15th Annual Conference of the International
Speech Communication Association, Singapore, September 14-18, 2014, pp. 2635–2639.

Chen, Stanley; Beeferman, Douglas, and Rosenfeld, Ronald (1998). “Evaluation Metrics For
Language Models.” In: Proceedings of the DARPA Broadcast News Transcription and Un-
derstanding Workshop, pp. 275–280.

Chen, Stanley F and Goodman, Joshua (Oct. 1999). “An empirical study of smoothing techniques
for language modeling.” In: Computer Speech & Language 13.4, pp. 359–394.

Chen, Stanley F. and Rosenfeld, Ronald (1999). A Gaussian prior for smoothing maximum
entropy models. Tech. rep. CMU-CS-99-108. Computer Science Department, Carnegie Mellon
University.

Chen, Wenlin; Grangier, David, and Auli, Michael (Aug. 2016). “Strategies for Training Large
Vocabulary Neural Language Models.” In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: As-
sociation for Computational Linguistics, pp. 1975–1985. url: http://www.aclweb.org/
anthology/P16-1186.

Chiu, Billy; Korhonen, Anna, and Pyysalo, Sampo (2016). “Intrinsic Evaluation of Word Vectors
Fails to Predict Extrinsic Performance.” In: Proc. RepEval (this volume). Ed. by Omer Levy.
ACL.

Cho, Kyunghyun; Merriëenboer, Bart van; Gulcehre, Caglar; Bougares, Fethi; Schwenk, Holger,
and Bengio, Yoshua (2014). “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation.” In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar, pp. 1724–1734. url: http:
//www.aclweb.org/anthology/D14-1179.

Chomsky, Noam (1957). Syntactic Structures. The Hague: Mouton.
Church, Kenneth W. and Hanks, Patrick (1990). “Word association norms, mutual information,

and lexicography.” In: Computational Linguistics 16.1, pp. 22–29.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K., and Kuksa, P. (2011). “Nat-

ural Language Processing (Almost) from Scratch.” In: Journal of Machine Learning Research
(JMLR).

Collobert, Ronan and Weston, Jason (2008). “A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning.” In: Proceedings of the 25th
International Conference on Machine Learning. ICML ’08. Helsinki, Finland: ACM, pp. 160–
167.

Conneau, Alexis and Lample, Guillaume (2019). “Cross-lingual Language Model Pretraining.”
In: Advances in Neural Information Processing Systems, pp. 7057–7067.

Conneau, Alexis et al. (2019). “Unsupervised cross-lingual representation learning at scale.”
Corbı́-Bellot, Antonio M.; Forcada, Mikel L.; Ortiz-Rojas, Sergio; Pérez-Ortiz, Juan Antonio;

Ramı́rez-Sánchez, Gema; Sánchez-Martı́nez, Felipe; Alegria, Iñaki; Mayor, Aingeru, and Sara-

120

http://www.aclweb.org/anthology/P16-1186
http://www.aclweb.org/anthology/P16-1186
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179

sola, Kepa (May 2005). “An open-source shallow-transfer machine translation engine for the
romance languages of Spain.” In: Proceedings of the Tenth Conference of the European As-
sociation for Machine Translation. Budapest, Hungary, pp. 79–86.

Council of European Union (2016). “REGULATION (EU) 2016/679 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation).” In: Official
Journal L 119, pp. 1–88. url: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/
?uri=CELEX:32016R0679.

Csendes, Dóra; Hatvani, Csaba; Alexin, Zoltán; Csirik, János; Gyimóthy, Tibor; Prószéky, Gábor,
and Váradi, Tamás (Dec. 2003). “Kézzel annotált magyar nyelvi korpusz: a Szeged Korpusz.”
In: I. Magyar Számítógépes Nyelvészeti Konferencia előadásai: MSZNY 2003, pp. 238–245.

Csendes, Dóra; Csirik, János; Gyimóthy, Tibor, and Kocsor, András (2005). “The Szeged Treebank.”
In: Lecture Notes in Computer Science: Text, Speech and Dialogue. Springer, pp. 123–131.

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal function.” In: Math-
ematics of control, signals and systems 2.4, pp. 303–314.

Dai, Zihang; Yang, Zhilin; Yang, Yiming; Carbonell, Jaime; Le, Quoc, and Salakhutdinov, Ruslan
(July 2019). “Transformer-XL: Attentive Language Models beyond a Fixed-Length Context.”
In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, pp. 2978–2988. doi: 10.18653/
v1/P19-1285. url: https://www.aclweb.org/anthology/P19-1285.

Darroch, J.N. and Ratcliff, D. (1972). “Generalized iterative scaling for log-linear models.” In:
The Annals of Mathematical Statistics 43, pp. 1470–1480.

Deerwester, Scott C.; Dumais, Susan T, and Harshman, Richard A. (1990). “Indexing by latent
semantic analysis.” In: Journal of the American Society for Information Science 41.6, pp. 391–
407.

Della Pietra, S.; Della Pietra, V.; Mercer, R. L., and Roukos, S. (1992). “Adaptive Language
Modeling Using Minimum Discriminant Estimation.” In: Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New York, February 23-26, 1992. url: https:
//www.aclweb.org/anthology/H92-1020.

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton, and Toutanova, Kristina (Oct. 11, 2018). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.” Version 1. In:
arXiv preprint arXiv:1810.04805. arXiv: 1810.04805v1 [cs.CL]. url: http://arxiv.org/
abs/1810.04805v1.

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton, and Toutanova, Kristina (2019). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding.” In: Proc. of NAACL.

Dong, Li; Yang, Nan; Wang, Wenhui; Wei, Furu; Liu, Xiaodong; Wang, Yu; Gao, Jianfeng;
Zhou, Ming, and Hon, Hsiao-Wuen (2019). “Unified language model pre-training for natural

121

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/H92-1020
https://www.aclweb.org/anthology/H92-1020
https://arxiv.org/abs/1810.04805v1
http://arxiv.org/abs/1810.04805v1
http://arxiv.org/abs/1810.04805v1

language understanding and generation.” In: Advances in Neural Information Processing
Systems, pp. 13042–13054.

Dostert, Leon E (1955). “The georgetown-ibm experiment.” In: Machine Translation of Lan-
guages: Fourteen Essays. MIT Press, pp. 124–135.

Dyer, Chris; Kuncoro, Adhiguna; Ballesteros, Miguel, and Smith, Noah A. (June 2016). “Recur-
rent Neural Network Grammars.” In: Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies. San Diego, California: Association for Computational Linguistics, pp. 199–209. arXiv:
1602.07776 [cs.CL]. url: http://www.aclweb.org/anthology/N16-1024.

Emami, Ahmad and Jelinek, Frederick (2005). “Random Clusterings for Language Modeling.”
In: ICASSP (1), pp. 581–584.

Endrédy, István and Indig, Balázs (2015). “HunTag3, a General-purpose, Modular Sequential
Tagger –Chunking Phrases in English and Maximal NPs and NER for Hungarian.” In: 7th
Language & Technology Conference. Poznan: Uniwersytet im. Adama Mickiewicza w Pozna-
niu, pp. 213–218.

Faruqui, Manaal; Tsvetkov, Yulia; Rastogi, Pushpendre, and Dyer, Chris (2016). “Problems With
Evaluation of Word Embeddings Using Word Similarity Tasks.”

Filimonov, Denis and Harper, Mary (2009). “A joint language model with fine-grain syntactic
tags.” In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 3-Volume 3. Association for Computational Linguistics, pp. 1114–1123.

Finkelstein, Lev; Gabrilovich, Evgeniy; Matias, Yossi; Rivlin, Ehud; Solan, Zach; Wolfman, Gadi,
and Ruppin, Eytan (2002). “Placing Search in Context: The Concept Revisited.” In: ACM
Transactions on Information Systems 20(1), pp. 116–131.

Firth, John R. (1957). “A synopsis of linguistic theory.” In: Studies in linguistic analysis. Black-
well, pp. 1–32.

Forcada, Mikel L; Ginestí-Rosell, Mireia; Nordfalk, Jacob; O’Regan, Jim; Ortiz-Rojas, Sergio;
Pérez-Ortiz, Juan Antonio; Sánchez-Martínez, Felipe; Ramírez-Sánchez, Gema, and Tyers,
Francis M (2011). “Apertium: a free/open-source platform for rule-based machine transla-
tion.” In: Machine translation 25.2, pp. 127–144.

Francis, W Nelson and Kucera, Henry (1979). Brown Corpus manual: Manual of information
to accompany a standard corpus of present-day edited American English for use with digital
computers. Providence, Rhode Island, USA: Brown University.

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position.” In: Biological cybernetics 36.4,
pp. 193–202.

Gal, Yarin and Ghahramani, Zoubin (2016). “A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks.” In: Advances in Neural Information Processing Systems 29.
Ed. by D. D. Lee; M. Sugiyama; U. V. Luxburg; I. Guyon, and R. Garnett. Curran Associates,

122

https://arxiv.org/abs/1602.07776
http://www.aclweb.org/anthology/N16-1024

Inc., pp. 1019–1027. arXiv: 1512.05287 [stat.ML]. url: http://papers.nips.cc/paper/
6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-
networks.pdf.

Gers, Felix A; Schmidhuber, Jürgen, and Cummins, Fred (2000). “Learning to forget: Continual
prediction with LSTM.” In: Neural computation 12.10, pp. 2451–2471.

Gionis, Aristides; Indyk, Piotr; Motwani, Rajeev, et al. (1999). “Similarity search in high dimen-
sions via hashing.” In: VLDB. 6, pp. 518–529.

Gladkova, Anna and Drozd, Aleksandr (2016). “Intrinsic Evaluations of Word Embeddings: What
Can We Do Better?” In: Proc. RepEval (this volume). Ed. by Omer Levy. ACL.

Glorot, Xavier and Bengio, Yoshua (May 2010). “Understanding the difficulty of training deep
feedforward neural networks.” In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR,
pp. 249–256. url: http://proceedings.mlr.press/v9/glorot10a.html.

Gong, Chengyue; He, Di; Tan, Xu; Qin, Tao; Wang, Liwei, and Liu, Tie-Yan (2018). “FRAGE:
Frequency-Agnostic Word Representation.” In: Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio; H. Wallach; H. Larochelle; K. Grauman; N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., pp. 1334–1345. url: http://papers.nips.cc/paper/
7408-frage-frequency-agnostic-word-representation.pdf.

Good, I.J. (1953). “The population frequencies of species and the estimation of population pa-
rameters.” In: Biometrika 40, pp. 237–264.

Goodfellow, Ian; Bengio, Yoshua, and Courville, Aaron (2016). Deep Learning. MIT Press. url:
http://www.deeplearningbook.org.

Goodman, Joshua and Gao, Jianfeng (2000). “Language Model Size Reduction By Pruning And
Clustering.” In: In ICSLP’00, pp. 110–113.

Goodman, Joshua T. (2001). “A Bit of Progress in Language Modeling.” In: Computer Speech
& Language 15.4, pp. 403–434.

Grave, Edouard; Joulin, Armand, and Usunier, Nicolas (2017). “Improving neural language
models with a continuous cache.” In: International Conference on Learning Representations
(ICLR 2017). url: https://openreview.net/pdf?id=B184E5qee.

Grave, Edouard; Bojanowski, Piotr; Gupta, Prakhar; Joulin, Armand, and Mikolov, Tomas
(2018). “Learning Word Vectors for 157 Languages.” In: Proc. of LREC . url: https://
www.aclweb.org/anthology/L18-1550.

Graves, Alex and Schmidhuber, Jürgen (2009). “Offline handwriting recognition with multidi-
mensional recurrent neural networks.” In: Advances in neural information processing systems,
pp. 545–552.

Graves, Alex (2012). “Sequence transduction with recurrent neural networks.” In: Representation
Learning Workshop, ICML 2012. Edinburgh, Scotland. arXiv: 1211.3711 [cs.NE].

123

https://arxiv.org/abs/1512.05287
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://proceedings.mlr.press/v9/glorot10a.html
http://papers.nips.cc/paper/7408-frage-frequency-agnostic-word-representation.pdf
http://papers.nips.cc/paper/7408-frage-frequency-agnostic-word-representation.pdf
http://www.deeplearningbook.org
https://openreview.net/pdf?id=B184E5qee
https://www.aclweb.org/anthology/L18-1550
https://www.aclweb.org/anthology/L18-1550
https://arxiv.org/abs/1211.3711

Graves, Alex; Mohamed, Abdel-rahman, and Hinton, Geoffrey (2013). “Speech recognition with
deep recurrent neural networks.” In: 2013 IEEE international conference on acoustics, speech
and signal processing. IEEE, pp. 6645–6649.

Graves, Alex; Wayne, Greg, and Danihelka, Ivo (2014). Neural turing machines. Tech. rep. arXiv:
1410.5401 [cs.NE].

Greff, Klaus; Srivastava, Rupesh Kumar; Koutník, Jan; Steunebrink, Bas R, and Schmidhuber,
Jürgen (2015). “LSTM: A search space odyssey.” In: arXiv: 1503.04069 [cs.NE].

Gutmann, Michael and Hyvärinen, Aapo (2010). In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics.

Hahnloser, Richard HR; Sarpeshkar, Rahul; Mahowald, Misha A; Douglas, Rodney J, and Seung,
H Sebastian (2000). “Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit.” In: Nature 405.6789, pp. 947–951.

Halácsy, Péter; Kornai, András; Németh, László; Rung, András; Szakadát, István, and Trón, Vik-
tor (2004). “Creating open language resources for Hungarian.” In: Proceedings of the Fourth
International Conference on Language Resources and Evaluation (LREC 2004). ELRA,
pp. 203–210.

Han, Lushan; Kashyap, Abhay L.; Finin, Tim; Mayfield, James, and Weese, Jonathan (June
2013). “UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems.” In: Second Joint
Conference on Lexical and Computational Semantics (*SEM). Atlanta, Georgia, USA: Asso-
ciation for Computational Linguistics, pp. 44–52.

Harris, Zellig S. (1954). “Distributional structure.” In: Word 10.23, pp. 146–162.
He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing, and Sun, Jian (2016). “Deep residual learning for

image recognition.” In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

Hewitt, John and Manning, Christopher D (2019). “A structural probe for finding syntax in word
representations.” In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4129–4138.

Hill, Felix; Reichart, Roi, and Korhonen, Anna (2014). “Simlex-999: Evaluating semantic models
with (genuine) similarity estimation.” In: Computational Linguistics 41.4, pp. 665–695.

Hinton, Geoffrey; Vinyals, Oriol, and Dean, Jeff (2015). “Distilling the knowledge in a neural
network.”

Hirsimäki, Teemu; Creutz, Mathias; Siivola, Vesa, and Kurimo, Mikko (June 2005). “Morpho-
logically Motivated Language Models in Speech Recognition.” In: Proceedings of AKRR’05,
International and Interdisciplinary Conference on Adaptive Knowledge Representation and
Reasoning. Ed. by Timo Honkela; Ville Könönen; Matti Pöllä, and Olli Simula. Espoo, Fin-
land: Helsinki University of Technology, Laboratory of Computer and Information Science,
pp. 121–126. url: http://www.cis.hut.fi/AKRR05/papers/akrr05tuulos.pdf.

124

https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1503.04069
http://www.cis.hut.fi/AKRR05/papers/akrr05tuulos.pdf

Hochreiter, Sepp (1991). “Untersuchungen zu dynamischen neuronalen Netzen.” Diplomarbeit.
Munich: Josef Hochreiter Institut für Informatik, Technische Universität München.

Hochreiter, Sepp and Schmidhuber, Jürgen (Nov. 1997). “Long Short-Term Memory.” In: Neural
Computation 9.8, pp. 1735–1780.

Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert, et al. (1989). “Multilayer feedforward
networks are universal approximators.” In: Neural networks 2.5, pp. 359–366.

Huang, Eric; Socher, Richard; Manning, Christopher, and Ng, Andrew (2012). “Improving Word
Representations via Global Context and Multiple Word Prototypes.” In: Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics (ACL 2012). Jeju
Island, Korea: Association for Computational Linguistics, pp. 873–882.

Huang, Xuedong; Alleva, Fileno; Hon, Hsiao-Wuen; Hwang, Mei-Yuh; Lee, Kai-Fu, and Rosen-
feld, Ronald (1993). “The SPHINX-II speech recognition system: an overview.” In: Com-
puter Speech & Language 7.2, pp. 137–148. issn: 0885-2308. doi: https://doi.org/10.
1006/csla.1993.1007. url: http://www.sciencedirect.com/science/article/pii/
S0885230883710077.

Hutchins, John (May 1995). “”The whisky was invisible”, or Persistent myths of MT.” In: MT
News International (11), pp. 32–34.

Inan, Hakan; Khosravi, Khashayar, and Socher, Richard (2017). “Tying Word Vectors and Word
Classifiers: A Loss Framework for Language Modeling.” In: International Conference on
Learning Representations (ICLR 2017). arXiv: 1611.01462 [cs.LG].

Indig, Balázs (2018). “Közös crawlnak is egy korpusz a vége – Korpuszépítés a CommonCrawl
.hu domainjából.” In: XIV. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2018).
Ed. by Veronika Vincze. Szegedi Tudományegyetem Informatikai Intézet. Szeged: Szegedi
Tudományegyetem Informatikai Tanszékcsoport, pp. 125–134.

Indig, Balázs; Sass, Bálint; Simon, Eszter; Mittelholcz, Iván; Kundráth, Péter, and Vadász, Noémi
(2019). “emtsv –Egy formátum mind felett [emtsv – One format to rule them all].” In: XV.
Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2019). Ed. by Gábor Berend; Gábor
Gosztolya, and Veronika Vincze. Szegedi Tudományegyetem Informatikai Tanszékcsoport,
pp. 235–247.

Indyk, Piotr and Motwani, Rajeev (1998). “Approximate nearest neighbors: towards removing
the curse of dimensionality.” In: Proceedings of the thirtieth annual ACM symposium on
Theory of computing. ACM, pp. 604–613.

Ittzés, Nóra, ed. (2011). A magyar nyelv nagyszótára III-IV . Akadémiai Kiadó.
Jakubı́ček, Miloš; Kilgarriff, Adam; Kovář, Vojtěch; Rychlỳ, Pavel, and Suchomel, Vı́t (2013).

“The tenten corpus family.” In: 7th International Corpus Linguistics Conference CL, pp. 125–
127.

125

https://doi.org/https://doi.org/10.1006/csla.1993.1007
https://doi.org/https://doi.org/10.1006/csla.1993.1007
http://www.sciencedirect.com/science/article/pii/S0885230883710077
http://www.sciencedirect.com/science/article/pii/S0885230883710077
https://arxiv.org/abs/1611.01462

Jarrett, Kevin; Kavukcuoglu, Koray; Ranzato, Marc’Aurelio, and LeCun, Yann (2009). “What is
the best multi-stage architecture for object recognition?” In: 2009 IEEE 12th international
conference on computer vision. IEEE, pp. 2146–2153.

Jelinek, F.; Bahl, L.R., and Mercer, R.L. (1975). “Design of a linguistic statistical decoder for the
recognition of continuous speech.” In: IEEE Transactions on Acoustics, Speech and Signal
Processing IT-21, pp. 250–256.

Jelinek, Frederick; Mercer, Robert L.; Bahl, Lalit R., and Baker, James K. (Nov. 1977). “Per-
plexity – a measure of the difficulty of speech recognition tasks.” In: Journal of the Acoustical
Society of America 62. Supplement 1, S63.

Jelinek, Frederick and Mercer, Robert (1980). “Interpolated estimation of Markov source param-
eters from sparse data.” In: Proceedings of the Workshop on Pattern Recognition in Practice.
Ed. by E. S. Geltsema and L. N. Kanal. Amsterdam: North-Holland.

Johansson, Stig; Leech, Geoffrey N, and Goodluck, Helen (1978). Manual of information to ac-
company the Lancaster-Oslo/Bergen Corpus of British English, for use with digital computer.
Department of English, University of Oslo.

Jordan, Michael I. (May 1986). Serial order: a parallel distributed processing approach. Tech. rep.
ICS 8604. San Diego, California: Institute for Cognitive Science, University of California.

Joshi, Mandar; Chen, Danqi; Liu, Yinhan; Weld, Daniel S; Zettlemoyer, Luke, and Levy, Omer
(2020). “SpanBERT: Improving pre-training by representing and predicting spans.” In: Trans-
actions of the Association for Computational Linguistics 8, pp. 64–77.

Jozefowicz, Rafal; Zaremba, Wojciech, and Sutskever, Ilya (2015). “An empirical exploration of
recurrent network architectures.” In: Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pp. 2342–2350.

Jozefowicz, Rafal; Vinyals, Oriol; Schuster, Mike; Shazeer, Noam, and Wu, Yonghui (2016).
“Exploring the limits of language modeling.” In: arXiv preprint arXiv:1602.02410.

Jurafsky, Daniel and Martin, James H. (2009). Speech and Language Processing. 2nd edition.
Pearson.

Jurafsky, Daniel and Martin, James H. (n.d.). Speech and Language Processing. 3rd edition. url:
https://web.stanford.edu/~jurafsky/slp3/.

Katz, S. (1987). “Estimation of probabilities from sparse data for the language model component
of a speech recognizer.” In: IEEE Transactions on Acoustics, Speech and Signal processing
35.3, pp. 400–401.

Keskar, Nitish Shirish; McCann, Bryan; Varshney, Lav R; Xiong, Caiming, and Socher, Richard
(2019). “CTRL: A conditional transformer language model for controllable generation.”

Kim, Yoon; Jernite, Yacine; Sontag, David, and Rush, Alexander M (2016). “Character-Aware
Neural Language Models.” In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16). AAAI Press, pp. 2741–2749.

126

https://web.stanford.edu/~jurafsky/slp3/

Kirchhoff, Katrin; Bilmes, Jeff, and Duh, Kevin (2008). Factored Language Models Tutorial.
Tech. rep. UWEETR-2008-00048. https://www.ee.washington.edu/techsite/papers/
refer/UWEETR-2008-0004.html. University of Washington, Dept. of EE.

Kitaev, Nikita; Kaiser, Łukasz, and Levskaya, Anselm (2020). “Reformer: The Efficient Trans-
former.” In: International Conference on Learning Representations. url: https://openreview.
net/forum?id=rkgNKkHtvB.

Kneser, Reinhard and Ney, Hermann (1993). “Improved clustering techniques for class-based
statistical language modelling.” In: Eurospeech. Vol. 93, pp. 973–76.

Koehn, Philipp et al. (2007). “Moses: Open source toolkit for statistical machine translation.”
In: Proceedings of the 45th annual meeting of the ACL. Association for Computational Lin-
guistics, pp. 177–180.

Kohlschütter, Christian; Fankhauser, Peter, and Nejdl, Wolfgang (2010). “Boilerplate detection
using shallow text features.” In: Proceedings of the third ACM international conference on
Web search and data mining. ACM, pp. 441–450.

Kornai, András (1994). “Language models: where are the bottlenecks?” In: AISB Quarterly 88,
pp. 36–40.

Kuchaiev, Oleksii and Ginsburg, Boris (2017). “Factorization tricks for LSTM networks.” In:
International Conference on Learning Representations (ICLR 2017). arXiv: 1703 . 10722
[cs.CL]. url: https://openreview.net/forum?id=ByxWXyNFg.

Kudo, Taku (July 2018). “Subword Regularization: Improving Neural Network Translation Mod-
els with Multiple Subword Candidates.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 66–75. doi: 10.18653/v1/P18-1007. url:
https://www.aclweb.org/anthology/P18-1007.

Kuhn, Roland and De Mori, Renato (1990). “A cache-based natural language model for speech
recognition.” In: IEEE transactions on pattern analysis and machine intelligence 12.6, pp. 570–
583.

Lan, Zhenzhong; Chen, Mingda; Goodman, Sebastian; Gimpel, Kevin; Sharma, Piyush, and
Soricut, Radu (2019). “ALBERT: A lite bert for self-supervised learning of language repre-
sentations.”

Lau, Raymond; Rosenfeld, Ronald, and Roukos, Salim (1993). “Trigger-Based Language Models:
A Maximum Entropy Approach.” In: Proceedings of the 1993 IEEE International Conference
on Acoustics, Speech, and Signal Processing: Speech Processing - Volume II . ICASSP’93.
Minneapolis, Minnesota, USA: IEEE Computer Society, pp. 45–48. isbn: 0780309464.

Le Cun, Yann (June 1989). Generalization and Network Design Strategies. Tech. rep. CRG-TR-
89-4. Department of Computer Science, University of Toronto.

LeCun, Yann; Bottou, Léon; Bengio, Yoshua, and Haffner, Patrick (1998). “Gradient-based learn-
ing applied to document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–2324.

127

https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2008-0004.html
https://www.ee.washington.edu/techsite/papers/refer/UWEETR-2008-0004.html
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://arxiv.org/abs/1703.10722
https://arxiv.org/abs/1703.10722
https://openreview.net/forum?id=ByxWXyNFg
https://doi.org/10.18653/v1/P18-1007
https://www.aclweb.org/anthology/P18-1007

Leskovec, Jure; Rajaraman, Anand, and Ullman, Jeffrey David (2014). Mining of Massive Datasets.
2nd. USA: Cambridge University Press. isbn: 1107077230.

Levesque, Hector J; Davis, Ernest, and Morgenstern, Leora (2011). “The Winograd schema
challenge.” In: AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.
Vol. 46, p. 47.

Levy, Omer and Goldberg, Yoav (June 2014a). “Dependency-Based Word Embeddings.” In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Baltimore, Maryland: Association for Computational Linguistics,
pp. 302–308. url: http://www.aclweb.org/anthology/P14-2050.

Levy, Omer and Goldberg, Yoav (2014b). “Neural Word Embedding as Implicit Matrix Factor-
ization.” In: Advances in Neural Information Processing Systems 27 . Ed. by Z. Ghahramani;
M. Welling; C. Cortes; N.D. Lawrence, and K.Q. Weinberger, pp. 2177–2185.

Levy, Omer; Goldberg, Yoav, and Dagan, Ido (2015). “Improving Distributional Similarity with
Lessons Learned from Word Embeddings.” In: Transactions of the Association for Compu-
tational Linguistics 3, pp. 211–225.

Lewis, Mike; Liu, Yinhan; Goyal, Naman; Ghazvininejad, Marjan; Mohamed, Abdelrahman;
Levy, Omer; Stoyanov, Ves, and Zettlemoyer, Luke (2019). “BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.”

Li, Jiwei and Jurafsky, Dan (Sept. 2015). “Do Multi-Sense Embeddings Improve Natural Lan-
guage Understanding?” In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics,
pp. 1722–1732. doi: 10.18653/v1/D15-1200. url: http://www.aclweb.org/anthology/
D15-1200.

Lidstone, G.J. (1920). “Note on the general case of the Bayes-Laplace formula for inductive or a
posteriori probabilities.” In:

Liu, Peter J.; Saleh, Mohammad; Pot, Etienne; Goodrich, Ben; Sepassi, Ryan; Kaiser, Lukasz,
and Shazeer, Noam (2018). “Generating Wikipedia by Summarizing Long Sequences.” In:
International Conference on Learning Representations. url: https://openreview.net/
forum?id=Hyg0vbWC-.

Liu, Yinhan et al. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv: 1907.
11692 [cs.CL].

Lui, Marco and Baldwin, Timothy (2012). “langid.py: An off-the-shelf language identification
tool.” In: Proceedings of the ACL 2012 system demonstrations. Association for Computational
Linguistics, pp. 25–30.

Luong, Minh-Thang; Pham, Hieu, and Manning, Christopher D (2015a). “Bilingual Word Rep-
resentations with Monolingual Quality in Mind.” In: Proceedings of NAACL-HLT , pp. 151–
159.

128

http://www.aclweb.org/anthology/P14-2050
https://doi.org/10.18653/v1/D15-1200
http://www.aclweb.org/anthology/D15-1200
http://www.aclweb.org/anthology/D15-1200
https://openreview.net/forum?id=Hyg0vbWC-
https://openreview.net/forum?id=Hyg0vbWC-
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Luong, Thang; Pham, Hieu, and Manning, Christopher D. (2015b). “Effective Approaches to
Attention-based Neural Machine Translation.” In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Com-
putational Linguistics, pp. 1412–1421. doi: 10.18653/v1/D15-1166. url: http://www.
aclweb.org/anthology/D15-1166.

Manin, Dmitrii Y. (2008). “Zipf’s Law and Avoidance of Excessive Synonymy.” In: Cognitive
Science 32 (7), pp. 1075–1098.

Marcus, Mitchell; Santorini, Beatrice, and Marcinkiewicz, Mary Ann (1993). “Building a Large
Annotated Corpus of English: The Penn Treebank.” In: Computational Linguistics 19, pp. 313–
330.

Markov, A. A. (1913). “Essai d’une recherche statistique sur le texte du roman “Eugene Onegin”
illustrant la liaison des epreuve en chain (‘Example of a statistical investigation of the text of
“Eugene Onegin” illustrating the dependence between samples in chain’).” In: Izvistia Imper-
atorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg).
6th ser. 7. English translation by Morris Halle, 1956., pp. 153–162.

Martin, Sven; Liermann, Jörg, and Ney, Hermann (1998). “Algorithms for bigram and trigram
word clustering.” In: Speech communication 24.1, pp. 19–37.

Melis, Gábor; Dyer, Chris, and Blunsom, Phil (2018). “On the State of the Art of Evaluation in
Neural Language Models.” In: International Conference on Learning Representations (ICLR
2018). arXiv: 1707.05589 [cs.CL]. url: https://openreview.net/forum?id=ByJHuTgA-.

Merity, Stephen; Xiong, Caiming; Bradbury, James, and Socher, Richard (2017). “Pointer Sen-
tinel Mixture Models.” In: International Conference on Learning Representations (ICLR
2017). arXiv: 1609.07843 [cs.LG].

Merity, Stephen; McCann, Bryan, and Socher, Richard (2017). Revisiting Activation Regulariza-
tion for Language RNNs. arXiv: 1708.01009 [cs.CL].

Merity, Stephen; Keskar, Nitish Shirish, and Socher, Richard (2018). “Regularizing and optimiz-
ing lstm language models.” In: International Conference on Learning Representations (ICLR
2018). arXiv: 1708.02182 [cs.LG].

Mihajlik, Péter; Tuske, Zoltán; Tarján, Balázs; Németh, Bottyán, and Fegyó, Tibor (2010). “Im-
proved recognition of spontaneous Hungarian speech—Morphological and acoustic modeling
techniques for a less resourced task.” In: IEEE Transactions on Audio, Speech, and Language
Processing 18.6, pp. 1588–1600.

Miháltz, Márton; Hatvani, Csaba; Kuti, Judit; Szarvas, György; Csirik, János; Prószéky, Gábor,
and Váradi, Tamás (2008). “Methods and results of the Hungarian WordNet project.” In:
Proceedings of the Fourth Global WordNet Conference (GWC-2008). Citeseer.

Miháltz, Márton (2010). “Semantic resources and their applications in Hungarian natural lan-
guage processing.” PhD thesis. Pázmány Péter Catholic University. url: https://itk.
ppke.hu/uploads/articles/163/file/Mihaltz_diss.pdf.

129

https://doi.org/10.18653/v1/D15-1166
http://www.aclweb.org/anthology/D15-1166
http://www.aclweb.org/anthology/D15-1166
https://arxiv.org/abs/1707.05589
https://openreview.net/forum?id=ByJHuTgA-
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1708.01009
https://arxiv.org/abs/1708.02182
https://itk.ppke.hu/uploads/articles/163/file/Mihaltz_diss.pdf
https://itk.ppke.hu/uploads/articles/163/file/Mihaltz_diss.pdf

Mikolov, Tomáš (2010). Recurrent neural network based language model. Presentation at Google.
Mikolov, Tomáš; Kombrink, Stefan; Burget, Lukáš; Černocký, Jan, and Khudanpur, Sanjeev

(2011). Extensions of recurrent neural network language model. Presentation at Google.
Mikolov, Tomáš; Deoras, Anoop; Povey, Daniel; Burget, Lukáš, and Černocký, Jan (2011).

“Strategies for training large scale neural network language models.” In: Automatic Speech
Recognition and Understanding (ASRU), 2011 IEEE Workshop on. IEEE, pp. 196–201.

Mikolov, Tomas and Zweig, Geoffrey (2012). “Context dependent recurrent neural network lan-
guage model.” In: SLT , pp. 234–239.

Mikolov, Tomas (2012). “Statistical Language Models Based On Neural Networks.” PhD thesis.
Faculty of Information Technology, Brno University of Technology.

Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S, and Dean, Jeff (2013). “Distributed
Representations of Words and Phrases and their Compositionality.” In: Advances in Neu-
ral Information Processing Systems 26. Ed. by C.J.C. Burges; L. Bottou; M. Welling; Z.
Ghahramani, and K.Q. Weinberger. Curran Associates, Inc., pp. 3111–3119. url: https:
//bit.ly/39HikH8.

Mikolov, Tomas; Chen, Kai; Corrado, G.s., and Dean, Jeffrey (May 2013). “Efficient Estimation
of Word Representations in Vector Space.” In: 1st International Conference on Learning
Representations, ICLR 2013, Workshop Track Proceedings. Ed. by Y. Bengio and Y. LeCun.
arXiv: 1301.3781 [cs.CL]. url: http://arxiv.org/abs/1301.3781.

Mikolov, Tomas; Le, Quoc V, and Sutskever, Ilya (2013). “Exploiting similarities among lan-
guages for machine translation.” arXiv preprint arXiv:1309.4168.

Mikolov, Tomas; Yih, Wen-tau, and Zweig, Geoffrey (2013). “Linguistic Regularities in Contin-
uous Space Word Representations.” In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT 2013). Atlanta, Georgia: Association for Computational Linguistics,
pp. 746–751.

Miller, George A. (1995). “WordNet: a lexical database for English.” In: Communications of the
ACM 38.11, pp. 39–41.

Mimno, Davidan and Thompson, Laure (2017). “The strange geometry of skip-gram with neg-
ative sampling.” In: Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing. Copenhagen, Denmark: Association for Computational Linguistics,
pp. 2873–2878. doi: 10.18653/v1/D17-1308. url: http://aclweb.org/anthology/D17-
1308.

Minsky, Marvin and Papert, Seymour (1969). “An introduction to computational geometry.” In:
Mittelholcz, Iván (2017). “emToken: Unicode-képes tokenizáló magyar nyelvre.” In: XIII. Magyar

Számítógépes Nyelvészeti Konferencia (MSZNY2017). Szeged, (this volume).

130

https://bit.ly/39HikH8
https://bit.ly/39HikH8
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/D17-1308
http://aclweb.org/anthology/D17-1308
http://aclweb.org/anthology/D17-1308

Mnih, Andriy and Teh, Yee Whye (2012). “A Fast and Simple Algorithm for Training Neural
Probabilistic Language Models.” In: Proceedings of the 29th International Coference on Ma-
chine Learning. ICML’12. Edinburgh, Scotland: Omnipress, pp. 419–426. isbn: 9781450312851.

Moore, Robert; Appelt, Douglas; Dowding, John; Gawron, J. Mark, and Moran, Douglas (1995).
“Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing
for ATIS.” In: In ARPA Spoken Language Technology Workshop.

Morin, Frederic and Bengio, Yoshua (2005). “Hierarchical Probabilistic Neural Network Language
Model.” In: Aistats. Vol. 5. Citeseer, pp. 246–252.

Mozer, Michael C (1992). “Induction of multiscale temporal structure.” In: Advances in neural
information processing systems, pp. 275–282.

Neelakantan, Arvind; Shankar, Jeevan; Passos, Alexandre, and McCallum, Andrew (2014). “Ef-
ficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space.” In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1059–1069. doi:
10.3115/v1/D14-1113. url: http://www.aclweb.org/anthology/D14-1113.

Nemeskey, Dávid Márk and Simon, Eszter (2012). “Automatically generated NE tagged corpora
for English and Hungarian.” In: Proceedings of the 4th Named Entity Workshop. Association
for Computational Linguistics, pp. 38–46.

Nemeskey, Dávid Márk (2017). “emLam – a Hungarian Language Modeling baseline.” In: XIII.
Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2017). Szeged, pp. 91–102. arXiv:
1701.07880 [cs.CL].

Nemeskey, Dávid Márk (2020). “Egy emBERT próbáló feladat.” In: XVI. Magyar Számítógépes
Nyelvészeti Konferencia (MSZNY2020). Szeged, pp. 409–418.

Németh, Bottyán; Mihajlik, Péter; Tikk, Domonkos, and Trón, Viktor (Nov. 2007). “Statisztikai
és szabály alapú morfológiai elemzők kombinációja beszédfelismerő alkalmazáshoz.” In: Pro-
ceedings of MSZNY 2007 . Ed. by Attila Tanács and Dóra Csendes. Szegedi Tudománye-
gyetem, pp. 95–105.

Ney, Hermann; Essen, Ute, and Kneser, Reinhard (1994). “On structuring probabilistic depen-
dences in stochastic language modelling.” In: Comput. Speech Lang. 8, pp. 1–38.

Ney, Hermann; Martin, Sven, and Wessel, Frank (1997). “Statistical language modeling using
leaving-one-out.” In: Corpus-based methods in Language and Speech processing. Springer,
pp. 174–207.

Niesler, Thomas R; Whittaker, Edward WD, and Woodland, Philip C (1998). “Comparison of
part-of-speech and automatically derived category-based language models for speech recog-
nition.” In: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference on. Vol. 1. IEEE, pp. 177–180.

Och, Franz Josef; Tillmann, Christoph, and Ney, Hermann (1999). “Improved Alignment Mod-
els for Statistical Machine Translation.” In: 1999 Joint SIGDAT Conference on Empirical

131

https://doi.org/10.3115/v1/D14-1113
http://www.aclweb.org/anthology/D14-1113
https://arxiv.org/abs/1701.07880

Methods in Natural Language Processing and Very Large Corpora, pp. 20–28. url: https:
//www.aclweb.org/anthology/W99-0604.

Oravecz, Csaba; Váradi, Tamás, and Sass, Bálint (2014). “The Hungarian Gigaword Corpus.”
In: Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC-2014). Reykjavik, Iceland: European Language Resources Association (ELRA). url:
http://www.aclweb.org/anthology/L14-1536.

Ortiz Suárez, Pedro Javier; Sagot, Benoît, and Romary, Laurent (July 2019). “Asynchronous
Pipeline for Processing Huge Corpora on Medium to Low Resource Infrastructures.” In: 7th
Workshop on the Challenges in the Management of Large Corpora (CMLC-7). Cardiff, United
Kingdom. url: https://hal.inria.fr/hal-02148693.

Panchenko, A; Ruppert, E; Faralli, S; Ponzetto, S.P, and Biemann, C (2018). “Building a Web-
Scale Dependency-Parsed Corpus from Common Crawl.” In: Proceedings of LREC 2018.
ELRA.

Parra Escartı́n, Carla; Reijers, Wessel; Lynn, Teresa; Moorkens, Joss; Way, Andy, and Liu,
Chao-Hong (Apr. 2017). “Ethical Considerations in NLP Shared Tasks.” In: Proceedings
of the First ACL Workshop on Ethics in Natural Language Processing. Valencia, Spain:
Association for Computational Linguistics, pp. 66–73. doi: 10.18653/v1/W17-1608. url:
https://www.aclweb.org/anthology/W17-1608.

Pascanu, Razvan; Mikolov, Tomas, and Bengio, Yoshua (2013). “On the difficulty of training
recurrent neural networks.” In: ICML (3) 28, pp. 1310–1318.

Paszke, Adam et al. (2017). “Automatic Differentiation in PyTorch.” In: NIPS Autodiff Workshop.
Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning

Library.” In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach;
H. Larochelle; A. Beygelzimer; F. d’Alché-Buc; E. Fox, and R. Garnett. Curran Associates,
Inc., pp. 8026–8037. url: http://papers.nips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

Pennington, Jeffrey; Socher, Richard, and Manning, Christopher (2014). “Glove: Global Vectors
for Word Representation.” In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, pp. 1532–1543. doi: 10.3115/v1/D14-1162. url: http://www.aclweb.org/
anthology/D14-1162.

Pereira, Fernando; Tishby, Naftali, and Lee, Lillian (1993). “Distributional clustering of En-
glish words.” In: Proceedings of the 31st annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics, pp. 183–190.

Peters, Matthew; Neumann, Mark; Iyyer, Mohit; Gardner, Matt; Clark, Christopher; Lee, Ken-
ton, and Zettlemoyer, Luke (2018). “Deep Contextualized Word Representations.” In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,

132

https://www.aclweb.org/anthology/W99-0604
https://www.aclweb.org/anthology/W99-0604
http://www.aclweb.org/anthology/L14-1536
https://hal.inria.fr/hal-02148693
https://doi.org/10.18653/v1/W17-1608
https://www.aclweb.org/anthology/W17-1608
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3115/v1/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Louisiana: Association for Computational Linguistics, pp. 2227–2237. doi: 10.18653/v1/
N18-1202. url: http://aclweb.org/anthology/N18-1202.

Pomikálek, Jan (2011). “Removing boilerplate and duplicate content from web corpora.” PhD
thesis. Brno, Czech Republic: Faculty of informatics, Masaryk university.

Ponte, Jay M. and Croft, W. Bruce (1998). “A language modeling approach to information
retrieval.” In: Proc SIGIR. ACM Press, pp. 275–281.

Press, Ofir and Wolf, Lior (Apr. 2017). “Using the Output Embedding to Improve Language
Models.” In: Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers. Valencia, Spain: Association for
Computational Linguistics, pp. 157–163. arXiv: 1608.05859 [cs.CL]. url: http://www.
aclweb.org/anthology/E17-2025.

Pusztai, Ferenc, ed. (2003). Magyar értelmező kéziszótár. Akadémiai Kiadó.
Radford, Alec; Narasimhan, Karthik; Salimans, Tim, and Sutskever, Ilya (2018). “Improving lan-

guage understanding by generative pre-training.” https://s3-us-west-2.amazonaws.com/
openai-assets/research-covers/language-unsupervised/language_understanding_
paper.pdf.

Radford, Alec; Wu, Jeffrey; Child, Rewon; Luan, David; Amodei, Dario, and Sutskever, Ilya
(2019). “Language Models are Unsupervised Multitask Learners.” https://github.com/
openai/gpt-2. url: https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf.

Radford, Alec; Wu, Jeffrey; Amodei, Dario; Amodei, Daniela; Clark, Jack; Brundage, Miles, and
Sutskever, Ilya (n.d.). Better Language Models and Their Implications. https://openai.
com/blog/better-language-models/. Accessed: 2020-03-18.

Rajpurkar, Pranav; Zhang, Jian; Lopyrev, Konstantin, and Liang, Percy (Nov. 2016). “SQuAD:
100,000+ Questions for Machine Comprehension of Text.” In: Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, pp. 2383–2392. doi: 10.18653/v1/D16-1264. url: https:
//www.aclweb.org/anthology/D16-1264.

Rajpurkar, Pranav; Jia, Robin, and Liang, Percy (July 2018). “Know What You Don’t Know:
Unanswerable Questions for SQuAD.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 784–789. doi: 10.18653/v1/P18-2124. url:
https://www.aclweb.org/anthology/P18-2124.

Recski, Gábor (2010). “Főnévi csoportok azonosítása szabályalapú és hibrid módszerekkel.” In:
VII. Magyar Számı́tógépes Nyelvészeti Konferencia. Ed. by Attila Tanács and Veronika
Vincze, pp. 333–341.

Recski, Gábor; Borbély, Gábor, and Bolevácz, Attila (2016). “Building definition graphs using
monolingual dictionaries of Hungarian.” In: XI. Magyar Számitógépes Nyelvészeti Konferencia

133

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://aclweb.org/anthology/N18-1202
https://arxiv.org/abs/1608.05859
http://www.aclweb.org/anthology/E17-2025
http://www.aclweb.org/anthology/E17-2025
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://doi.org/10.18653/v1/P18-2124
https://www.aclweb.org/anthology/P18-2124

[11th Hungarian Conference on Computational Linguistics. Ed. by Attila Tanács; Viktor
Varga, and Veronika Vincze.

Reisinger, Joseph and Mooney, Raymond J (2010). “Multi-prototype vector-space models of word
meaning.” In: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics, pp. 109–117.

Robbins, Herbert and Monro, Sutton (1951). “A stochastic approximation method.” In: The
annals of mathematical statistics, pp. 400–407.

Rogers, Anna (June 2019). How the Transformers broke NLP leaderboards. url: https : / /
hackingsemantics.xyz/2019/leaderboards/.

Rosenblatt, Frank (1957). The Perceptron: a perceiving and recognizing automaton. Tech. rep.
85-460-1.

Rosenfeld, R. (1994). “Adaptive Statistical Language Modeling: A Maximum Entropy Approach.”
PhD thesis. Carnegie Mellon University.

Rosenfeld, Ronald (Aug. 2000). “Two decades of Statistical Language Modeling: Where Do We
Go From Here?” In: Proceedings of the IEEE 88.8.

Rothe, Sascha; Ebert, Sebastian, and Schütze, Hinrich (June 2016). “Ultradense Word Em-
beddings by Orthogonal Transformation.” In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational Linguistics, pp. 767–777.
arXiv: 1602.07572 [cs.CL]. url: http://www.aclweb.org/anthology/N16-1091.

Rumelhart, David E; Hinton, Geoffrey E, and Williams, Ronald J (Sept. 1985). Learning internal
representations by error propagation. Tech. rep. ICS 8504. San Diego, California: Institute
for Cognitive Science, University of California.

Rumelhart, David E.; Hinton, Geoffrey E., and Williams, Ronald J (1986). “Learning represen-
tations by back-propagating errors.” In: Nature 323.6088, pp. 533–536.

Sak, Hasim; Senior, Andrew W, and Beaufays, Françoise (2014). “Long short-term memory re-
current neural network architectures for large scale acoustic modeling.” In: INTERSPEECH ,
pp. 338–342.

Sanh, Victor; Debut, Lysandre; Chaumond, Julien, and Wolf, Thomas (2019). “DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter.”

Schuster, Mike and Nakajima, Kaisuke (2012). “Japanese and korean voice search.” In: 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp. 5149–5152.

Schwenk, Holger and Gauvain, Jean-Luc (2005). “Training neural network language models on
very large corpora.” In: Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing. Association for Computational Linguis-
tics, pp. 201–208.

134

https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/
https://arxiv.org/abs/1602.07572
http://www.aclweb.org/anthology/N16-1091

Schwenk, Holger (July 2007). “Continuous Space Language Models.” In: Comput. Speech Lang.
21.3, pp. 492–518. issn: 0885-2308. doi: 10.1016/j.csl.2006.09.003. url: http://dx.
doi.org/10.1016/j.csl.2006.09.003.

Semeniuta, Stanislau; Severyn, Aliaksei, and Barth, Erhardt (2016). “Recurrent Dropout without
Memory Loss.” In: The 26th International Conference on Computational Linguistics (COL-
ING). Osaka, Japan, pp. 1757–1766. url: http://www.aclweb.org/anthology/C16-1165.

Sennrich, Rico; Haddow, Barry, and Birch, Alexandra (Aug. 2016). “Neural Machine Transla-
tion of Rare Words with Subword Units.” In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, pp. 1715–1725. doi: 10.18653/v1/P16-1162.
url: https://www.aclweb.org/anthology/P16-1162.

Shannon, Claude E. (1948). “A Mathematical Theory of Communication.” In: Bell System Tech-
nical Journal 27, pp. 379–423, 623–656.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree
search.” In: Nature 529, pp. 484–503. url: http://www.nature.com/nature/journal/
v529/n7587/full/nature16961.html.

Sinclair, John M. (1987). Looking up: an account of the COBUILD project in lexical computing.
Collins ELT.

Smolensky, Paul (1986). “Information Processing in Dynamical Systems: Foundations of Har-
mony Theory.” In: Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1: Foundations. Ed. by James Lloyd McClelland and David Everett Rumel-
hart. Cambridge, MA, USA: MIT Press, pp. 194–281. isbn: 026268053X.

Socher, Richard; Bauer, John; Manning, Christopher D., and Andrew Y., Ng (2013). “Pars-
ing with Compositional Vector Grammars.” In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (ACL 2013). Sofia, Bulgaria: Association for
Computational Linguistics, pp. 455–465.

Srivastava, Nitish; Hinton, Geoffrey E; Krizhevsky, Alex; Sutskever, Ilya, and Salakhutdinov,
Ruslan (2014). “Dropout: a simple way to prevent neural networks from overfitting.” In:
Journal of Machine Learning Research 15.1, pp. 1929–1958.

Srivastava, Rupesh K; Greff, Klaus, and Schmidhuber, Jürgen (2015). Training very deep net-
works, pp. 2377–2385.

Stolcke, Andreas; Zheng, Jing; Wang, Wen, and Abrash, Victor (2011). “SRILM at sixteen: Up-
date and outlook.” In: Proceedings of IEEE Automatic Speech Recognition and Understanding
Workshop. Vol. 5.

Suchomel, Vı́t; Pomikálek, Jan, et al. (2012). “Efficient web crawling for large text corpora.” In:
Proceedings of the seventh Web as Corpus Workshop (WAC7), pp. 39–43.

Sundermeyer, Martin; Schlüter, Ralf, and Ney, Hermann (2012). “LSTM Neural Networks for
Language Modeling.” In: INTERSPEECH , pp. 194–197.

135

https://doi.org/10.1016/j.csl.2006.09.003
http://dx.doi.org/10.1016/j.csl.2006.09.003
http://dx.doi.org/10.1016/j.csl.2006.09.003
http://www.aclweb.org/anthology/C16-1165
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P16-1162
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Sutskever, Ilya; Martens, James, and Hinton, Geoffrey E (2011). “Generating text with recurrent
neural networks.” In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 1017–1024.

Sutskever, Ilya; Vinyals, Oriol, and Le, Quoc V. (2014). “Sequence to Sequence Learning with
Neural Networks.” In: Proc. NIPS. Montreal, CA, pp. 3104–3112. url: http://arxiv.org/
abs/1409.3215.

Szarvas, György; Farkas, Richárd, and Kocsor, András (2006). “A Multilingual Named Entity
Recognition System Using Boosting and C4.5 Decision Tree Learning Algorithms.” In: Dis-
covery Science, 9th International Conference, DS 2006, Barcelona, Spain, October 8-10,
2006, Proceedings, pp. 268–278.

Tarján, Balázs; Varga, Ádám; Tobler, Zoltán; Szaszák, György; Fegyó, Tibor; Bordás, Csaba,
and Mihajlik, Péter (2016). “Magyar nyelvű, élő közéleti- és hírműsorok gépi feliratozása.”
In: Proc. MSZNY 2016. Ed. by Attila Tanács; Viktor Varga, and Veronika Vincze. Szegedi
Tudományegyetem, pp. 89–99.

Taylor, Wilson L. (1953). ““Cloze Procedure”: A New Tool for Measuring Readability.” In:
Journalism Quarterly 30.4, pp. 415–433. doi: 10.1177/107769905303000401.

Tesniére, Lucien (1959). Élements de syntaxe structurale. Paris: Klincksieck.
Tiedemann, Jörg (May 2012). “Parallel Data, Tools and Interfaces in OPUS.” In: LREC . Ed. by

Nicoletta Calzolari. Istanbul, Turkey: European Language Resources Association (ELRA).
isbn: 978-2-9517408-7-7. url: http : / / www . lrec - conf . org / proceedings / lrec2012 /
summaries/463.html.

Trinh, Trieu H and Le, Quoc V (2018). A simple method for commonsense reasoning. arXiv:
1806.02847 [cs.AI].

Trón, Viktor; Gyepesi, György; Halácsky, Péter; Kornai, András; Németh, László, and Varga,
Dániel (2005). “Hunmorph: Open Source Word Analysis.” In: Proceedings of the ACL Work-
shop on Software. Ann Arbor, Michigan: Association for Computational Linguistics, pp. 77–
85.

Turian, Joseph; Ratinov, Lev-Arie, and Bengio, Yoshua (2010). “Word Representations: A Simple
and General Method for Semi-Supervised Learning.” In: Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Uppsala, Sweden: Association for
Computational Linguistics, pp. 384–394.

Ugray, Gábor (2019). “PoS-tagging and lemmatization with a deep recurrent neural network.”
In: XV. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2019). Szeged, pp. 215–224.

Váradi, Tamás (2002). “The Hungarian National Corpus.” In: Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation, pp. 385–389.

Váradi, Tamás et al. (2017). “e-magyar: digitális nyelvfeldolgozó rendszer.” In: XIII. Magyar
Számítógépes Nyelvészeti Konferencia (MSZNY2017). Szeged.

136

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1177/107769905303000401
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
https://arxiv.org/abs/1806.02847

Varga, Dániel and Simon, Eszter (Feb. 2007). “Hungarian Named Entity Recognition with a
Maximum Entropy Approach.” In: Acta Cybern. 18.2, pp. 293–301.

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N;
Kaiser, Łukasz, and Polosukhin, Illia (2017). “Attention is All you Need.” In: Advances in
Neural Information Processing Systems 30. Ed. by I. Guyon; U. V. Luxburg; S. Bengio; H.
Wallach; R. Fergus; S. Vishwanathan, and R. Garnett. Curran Associates, Inc., pp. 5998–
6008. arXiv: 1706.03762 [cs.CL]. url: http://papers.nips.cc/paper/7181-attention-
is-all-you-need.pdf.

Vincent, Pascal; Brébisson, Alexandre de, and Bouthillier, Xavier (2015). “Efficient exact gradi-
ent update for training deep networks with very large sparse targets.” In: Advances in Neural
Information Processing Systems, pp. 1108–1116.

Vincze, Veronika; Varga, Viktor; Simkó, Katalin Ilona; Zsibrita, János; Nagy, Ágoston; Farkas,
Richárd, and Csirik, János (May 2014). “Szeged Corpus 2.5: Morphological Modifications in a
Manually POS-tagged Hungarian Corpus.” English. In: Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14). Ed. by Nicoletta Calzolari
(Conference Chair); Khalid Choukri; Thierry Declerck; Hrafn Loftsson; Bente Maegaard;
Joseph Mariani; Asuncion Moreno; Jan Odijk, and Stelios Piperidis. Reykjavik, Iceland:
European Language Resources Association (ELRA). isbn: 978-2-9517408-8-4.

Vinyals, Oriol; Fortunato, Meire, and Jaitly, Navdeep (2015). “Pointer networks.” In: Advances
in Neural Information Processing Systems, pp. 2692–2700.

Voita, Elena; Talbot, David; Moiseev, Fedor; Sennrich, Rico, and Titov, Ivan (July 2019). “Ana-
lyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned.” In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, pp. 5797–5808. doi:
10.18653/v1/P19-1580. url: https://www.aclweb.org/anthology/P19-1580.

Wang, Alex; Singh, Amanpreet; Michael, Julian; Hill, Felix; Levy, Omer, and Bowman, Samuel R
(2018). Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv: 1804.07461 [cs.CL].

Wendlandt, Laura; Kummerfeld, Jonathan K., and Mihalcea, Rada (June 2018). “Factors Influ-
encing the Surprising Instability of Word Embeddings.” In: Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Associ-
ation for Computational Linguistics, pp. 2092–2102. doi: 10.18653/v1/N18- 1190. url:
https://www.aclweb.org/anthology/N18-1190.

Werbos, Paul J (1988). “Generalization of backpropagation with application to a recurrent gas
market model.” In: Neural networks 1.4, pp. 339–356.

Weston, Jason; Chopra, Sumit, and Bordes, Antoine (2015). “Memory networks.” In: Interna-
tional Conference on Learning Representations (ICLR 2015). arXiv: 1410.3916 [cs.CL].

137

https://arxiv.org/abs/1706.03762
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://www.aclweb.org/anthology/P19-1580
https://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/N18-1190
https://www.aclweb.org/anthology/N18-1190
https://arxiv.org/abs/1410.3916

Williams, Ronald J and Peng, Jing (1990). “An efficient gradient-based algorithm for on-line
training of recurrent network trajectories.” In: Neural computation 2.4, pp. 490–501.

Williams, Ronald J and Zipser, David (Feb. 1995). “Gradient-based learning algorithms for re-
current networks and their computational complexity.” In: Back-propagation: Theory, archi-
tectures and applications. Ed. by Yves Chauvin and David E Rumelhart. Chap. 13, pp. 433–
486. isbn: 978-0-8058125-9-6.

Wolf, Thomas et al. (2019). HuggingFace’s Transformers: State-of-the-art Natural Language Pro-
cessing. arXiv: 1910.03771 [cs.CL].

Xu, Wei and Rudnicky, Alexander I (2000). “Can artificial neural networks learn language
models?” In: International Conference on Statistical Language Processing. Beijing, China,
pp. 202–205.

Yang, Zhilin; Dai, Zihang; Salakhutdinov, Ruslan, and Cohen, William W. (2018). “Breaking
The Softmax Bottleneck: A High-Rank RNN Language Model.” In: International Conference
on Learning Representations (ICLR 2018). arXiv: 1711.03953 [cs.LG].

Yang, Zhilin; Dai, Zihang; Yang, Yiming; Carbonell, Jaime; Salakhutdinov, Ruslan, and Le,
Quoc V (2019). “XLNet: Generalized Autoregressive Pretraining for Language Understand-
ing.” In: Advances in neural information processing systems, pp. 5754–5764. arXiv: 1906.
08237 [cs.CL]. url: https : / / papers . nips . cc / paper / 8812 - xlnet - generalized -
autoregressive-pretraining-for-language-understanding.pdf.

Youn, Hyejin; Sutton, Logan; Smith, Eric; Moore, Cristopher; Wilkins, Jon F.; Maddieson, Ian;
Croft, William, and Bhattacharya, Tanmoy (2016). “On the universal structure of human
lexical semantics.” In: PNAS 113.7, pp. 1766–1771.

Younger, Daniel H. (1967). “Recognition and Parsing of Context-Free Languages in Time n3.”
In: Information and Control 10, pp. 189–208.

Zaremba, Wojciech; Sutskever, Ilya, and Vinyals, Oriol (2014). “Recurrent neural network regu-
larization.” If you want to cite this paper, please cite Pham:2014 instead.

Zeiler, Matthew D and Fergus, Rob (2014). “Visualizing and understanding convolutional net-
works.” In: European conference on computer vision. Springer, pp. 818–833.

Zeman, Daniel et al. (Aug. 2017). “CoNLL 2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies.” In: Proceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies. Vancouver, Canada: Association for
Computational Linguistics, pp. 1–19.

Zgusta, Ladislav (1971). Manual of lexicography. Prague: Academia.
Zilly, Julian Georg; Srivastava, Rupesh Kumar; Koutník, Jan, and Schmidhuber, Jürgen (2017).

“Recurrent Highway Networks.” In: Proceedings of the 34th International Conference on
Machine Learning. arXiv: 1607.03474 [cs.LG].

138

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
https://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
https://arxiv.org/abs/1607.03474

Zoph, Barret and Le, Quoc (2017). “Neural Architecture Search with Reinforcement Learning.”
In: International Conference on Learning Representations (ICLR 2017). url: https://
openreview.net/forum?id=r1Ue8Hcxg.

Zsibrita, János; Vincze, Veronika, and Farkas, Richárd (2013). “magyarlanc: A Tool for Mor-
phological and Dependency Parsing of Hungarian.” In: Proceedings of the International Con-
ference Recent Advances in Natural Language Processing (RANLP 2013). Hissar, Bulgaria:
INCOMA Ltd. Shoumen, pp. 763–771.

139

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

1ADATLAP
a doktori értekezés nyilvánosságra hozatalához

I. A doktori értekezés adatai
A szerző neve: Nemeskey Dávid Márk
MTMT-azonosító: 10019809
A doktori értekezés címe és alcíme: Natural Language Processing Methods for Language Modeling
DOI-azonosító2: 10.15476/ELTE.2020.066
A doktori iskola neve: Informatika Doktori iskola
A doktori iskolán belüli doktori program neve: Az informatika alapjai és módszertana
A témavezető neve és tudományos fokozata: Benczúr András Ph.D. , Kornai András D.Sc.
A témavezető munkahelye: Számítástechnikai és Automatizálási Kutatóintézet

II. Nyilatkozatok
1. A doktori értekezés szerzőjeként3

a) hozzájárulok, hogy a doktori fokozat megszerzését követően a doktori értekezésem és a tézisek
nyilvánosságra kerüljenek az ELTE Digitális Intézményi Tudástárban. Felhatalmazom az Informatika
Doktori Iskola hivatalának ügyintézőjét, Kulcsár Adinát, hogy az értekezést és a téziseket feltöltse az
ELTE Digitális Intézményi Tudástárba, és ennek során kitöltse a feltöltéshez szükséges nyilatkozatokat.

b) kérem, hogy a mellékelt kérelemben részletezett szabadalmi, illetőleg oltalmi bejelentés
közzétételéig a doktori értekezést ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az ELTE
Digitális Intézményi Tudástárban;4

c) kérem, hogy a nemzetbiztonsági okból minősített adatot tartalmazó doktori értekezést a
minősítés (dátum)-ig tartó időtartama alatt ne bocsássák nyilvánosságra az Egyetemi Könyvtárban és az
ELTE Digitális Intézményi Tudástárban;5

d) kérem, hogy a mű kiadására vonatkozó mellékelt kiadó szerződésre tekintettel a doktori
értekezést a könyv megjelenéséig ne bocsássák nyilvánosságra az Egyetemi Könyvtárban, és az ELTE
Digitális Intézményi Tudástárban csak a könyv bibliográfiai adatait tegyék közzé. Ha a könyv a
fokozatszerzést követőn egy évig nem jelenik meg, hozzájárulok, hogy a doktori értekezésem és a
tézisek nyilvánosságra kerüljenek az Egyetemi Könyvtárban és az ELTE Digitális Intézményi
Tudástárban.6

2. A doktori értekezés szerzőjeként kijelentem, hogy
a) az ELTE Digitális Intézményi Tudástárba feltöltendő doktori értekezés és a tézisek saját eredeti,

önálló szellemi munkám és legjobb tudomásom szerint nem sértem vele senki szerzői jogait;
b) a doktori értekezés és a tézisek nyomtatott változatai és az elektronikus adathordozón benyújtott

tartalmak (szöveg és ábrák) mindenben megegyeznek.
3. A doktori értekezés szerzőjeként hozzájárulok a doktori értekezés és a tézisek szövegének
plágiumkereső adatbázisba helyezéséhez és plágiumellenőrző vizsgálatok lefuttatásához.

Kelt: Budaörs, 2020. május 11.

Nemeskey Dávid Márk

1 Beiktatta az Egyetemi Doktori Szabályzat módosításáról szóló CXXXIX/2014. (VI. 30.) Szen. sz. határozat.
Hatályos: 2014. VII.1. napjától.
2 A kari hivatal ügyintézője tölti ki.
3 A megfelelő szöveg aláhúzandó.
4 A doktori értekezés benyújtásával egyidejűleg be kell adni a tudományági doktori tanácshoz a szabadalmi,
illetőleg oltalmi bejelentést tanúsító okiratot és a nyilvánosságra hozatal elhalasztása iránti kérelmet.
5 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a minősített adatra vonatkozó közokiratot.
6 A doktori értekezés benyújtásával egyidejűleg be kell nyújtani a mű kiadásáról szóló kiadói szerződést.

	Introduction
	Theses
	Contributions
	Resources

	Language Modeling
	Natural language processing
	NLP tasks
	Machine learning

	Statistical language modeling
	Motivation
	Mathematical formulation
	Training
	Evaluation
	Discrete and continuous methods

	n-grams
	Training
	Smoothing
	Class-based models
	Outlook

	The first neural models
	Neural networks
	Training
	Bengio's model
	Performance

	Recurrent neural network language models
	Recurrent neural networks
	Gated architectures
	Language modeling advances

	Transformer-based language models
	Neural machine translation
	The Transformer
	Transformers in language modeling
	Performance considerations

	Embeddings
	Vector space semantics
	Static embeddings
	Multi-sense embeddings
	Contextual word embeddings
	Embeddings in NLP

	Language modeling and NLP

	emLam – a Hungarian Language Modeling baseline
	Introduction
	The Hungarian Datasets
	Preprocessing
	Corpus Statistics
	The Benchmark Corpus

	Language model evaluation
	Results
	n-grams
	Class-based n-grams
	Cross-evaluation
	RNN language models
	Pseudo-Hungarian
	Into the Unknown

	Conclusion
	Future work

	Evaluating multi-sense embeddings for semantic resolution
	Introduction
	Comparing lexical headwords to multiple sense vectors
	Resources to be evaluated
	Lexical resources
	Evaluation

	Parts of speech and word frequency
	Cross-linguistic treatment of concepts
	Conclusions

	Habeas Corpus
	Goals and design considerations
	Goals and constraints
	Design considerations

	Related work
	Preexisting corpora
	Common Crawl
	As a training corpus

	Architecture
	Computing environment
	The pipeline

	Running the pipeline
	Download
	Boilerplate removal
	Content-based filtering
	Deduplication
	Linguistic analysis
	Final statistics

	Wikipedia
	Wikihopping
	Processing

	huBERT
	Pretraining
	Evaluation

	Conclusion and future work

	emBERT: language modeling for NLP
	Deep learning in NLP
	BERT
	Why BERT?
	Does multi-BERT speak Hungarian?

	The emBERT module
	Experiments
	Results
	Chunking
	Named entity recognition

	Future work
	Conclusion

	Conclusions
	Appendices
	Abbreviations used in the thesis
	Sample texts generated by Transformer models

