
Studying feature selection methods applied to classification tasks

in natural language processing

by

Katalin Pajkossy

A Thesis Submitted to the Graduate Faculty

of Eötvös Loránd University of Sciences in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Budapest, Hungary

2013

c© 2013

Katalin Pajkossy

All Rights Reserved

Studying feature selection methods applied to classification tasks

in natural language processing

by

Katalin Pajkossy

Approved:

Major Professor: Dr. András Kornai

Committee:

Electronic Version Approved:

Dean of the Graduate School
Eötvös Loránd University of Sciences
January 2013

Table of Contents

Page

Introduction . 1

1 Preliminaries . 3

1.1 Classification based on a probabilistic model 3

1.2 Logistic regression . 4

1.3 Feature selection methods . 5

1.4 Evaluating classifiers . 6

1.5 Evaluating feature selection methods 7

1.6 The software used . 7

2 Classification to part-of-speech categories . 8

2.1 The task . 8

2.2 The feature set . 8

2.3 Collecting appropriate training data . 10

2.4 Results of binary classification . 11

2.5 Results of multinomial classification . 16

2.6 Testing different regularization methods 18

2.7 Summary of results . 21

3 Elision in Hungarian nouns . 23

3.1 The task . 23

3.2 Results of χ2 selection . 24

3.3 Results of brain damage selection . 25

3.4 Results of LASSO selection . 26

3.5 Summary of the results . 27

4 Noun phrase chunking . 28

4.1 The task . 28

4.2 The HunTag sequential tagger . 28

4.3 Training data . 29

4.4 Feature set . 29

ii

iii

4.5 Results of χ2 selection . 30

4.6 Results of L1 selection . 30

4.7 Comparison of different methods with identical number of features . . . 32

4.8 Summary of results . 33

Bibliography . 34

Introduction

In this thesis we discuss the problem of feature selection in machine learning (ML) on algo-

rithms which solve certain tasks of basic importance in natural language processing (NLP).

Machine learning algorithms operate by making generalizations based on a set of examples,

called training data. We study supervised learning, which is the most important ML method

of NLP. Here the training data set contains labeled data points characterized by a set of

features, and the task is to construct a function which predicts the appropriate label. In the

statistical approach both the features and the labels are treated as random variables. For the

vast majority of NLP tasks the currently best working algorithms are based on statistical

models.

The feature selection problem, also known as the problem of variable (subset) selection,

arises when the number of attributes that can be measured for a single data point is very

large. Important examples in the field of NLP include document classification, where the

appearance of any word in a document can be considered a feature, and speech recognition,

where speech records consisting of typically 3-5 sounds (phonemes) per second are digitized

typically with 16 bits resolution and with a sampling rate of 44.1 kHz, yielding about ten

thousand 16-bit features per phoneme, while linguistic theory requires only about twenty

1-bit features (called phonological features, see Chapter 3). In general, the feature set is

to be narrowed for three main reasons. First, to reduce computational resources (time and

memory). Second, to improve the accuracy of the predictive model by dimensionality reduc-

tion and the removal of irrelevant features. Third, to find the relevant features and thereby

constructing a more interpretable model.

In this work we study the use of feature selection methods for several classification prob-

lems. In these problems the data points are words, and the classes are categories of linguistics.

The feature sets reflect certain properties of the words and their context within the actual

texts. The problem of the very large number of irrelevant features emerges naturally in these

tasks.

The thesis is structured as follows. Chapter 1 contains a brief overview of the notions

regarding the problem studied in this work. In Section 1.1 we start with the basic notions of

Statistical Learning Theory following [20]. Afterwards we summarize the principles of prac-

tical machine learning algorithms. In Sect.1.2 the method of logistic regression is described.

1

2

In Sect. 1.3 we review the main feature selection methods, based on [6], [8] and [4] and also

discuss the techniques used in this work in more detail. In Sections 1.4-1.6 we review the

methodology and software used in this work. We do not define the linguistic notions that we

rely on precisely, but we add references as we go along.

In Chapter 2 we discuss a part-of-speech (POS) classification task, where originally there

have been about 2,100 features. As we show, it is sufficient to use only about 200 features

to obtain comparable or even better results.

In Chapter 3 a binary classification problem is discussed, that of distinguishing cer-

tain Hungarian stems like piszok, which undergo elision under certain conditions, e.g. in

accusative form, (consider piszkot, *piszokot – ungrammatical forms are denoted by a

prepended asterisk) from those which do not (e.g. billog, cf. billogot, *billgot). A logistic

regression model, trained to solve this task ([16],[17]) relies on over a million features. We

conclude that a small portion, only 1,500 features, are sufficient to train high accuracy

classifiers.

In Chapter 4 we discuss the so-called shallow parsing or noun phrase-chunking task,

where we start with 2.4 million features, and succeed in reducing this by 95%.

Acknowledgments

The help and advice of my advisor, Dr. András Kornai, and of all members of the Human

Language Technology group (MTA SZTAKI) are highly appreciated.

Chapter 1

Preliminaries

1.1 Classification based on a probabilistic model

The classification task is defined as follows. Let S be a set of data points, with each data

point being characterized by a vector x ∈ X and by a value y ∈ −1, 1. The task is to

construct a function g : X → Y predicting the label of future data points. In the current

work we assume X to be Rm, and we restrict our attention to functions of the form

g = sign(wTx). (1.1)

Here fw = wTx is called a predictor function. The algorithms studied here are based on a

probabilistic model; Px,y is an unknown probability distribution overX×Y and S =
{
x, y
}N
i=1

is a sample drawn from Px,y. For given risk function V : R2 → R the task is to find a predictor

fw minimizing the expected risk

Ifw =

∫
X×Y

V (fw(x, y), Px,y) dx dy. (1.2)

The minimizer f0 is called the target function. Since Px,y is unknown, the target function

can not be found in practice. An estimation of the expected risk is provided by the empirical

risk

Iemp[fw, N] =
1

N

∑
x,y∈S

V (fw(x, y), y). (1.3)

For the estimation error Errfw,N − Iemp[fw, N], several probabilistic upper bounds apply.

The classical result is the following:

Errfw,N <

√
(m+ 1) ln 2eN

m+1
− ln ν

4

N
(1.4)

with probability at least 1− ν. This is an instance of a class of more general bounds, called

Vapnik - Chervonenkis bounds (see [20]).

We now briefly review the terminology used in this work. S is called the training data,

containing training instances. Components of x are called features, y is called the label. A

3

4

learner or learning algorithm is a triple L =
〈
F, V,MV,F : S → F

〉
; where F is the set of

possible predictors called the hypothesis space, V is a risk function, and the domain of L

contains the possible sets of training data. The process of finding

M(S) = argmin
f∈F

∑
x,y∈S

V (f(x), y) (1.5)

is called training. The output of the whole process (which corresponds to Eq.1.1) is called a

classifier. Classifiers using a linear predictor function are called linear classifiers. In practical

applications large estimation error (called overfitting) emerges as one of the central problems.

As Eq. (1.4) suggests, it is most likely to occur when the dimensionality of x is large compared

to the size of the available data. The learner using a subset I of features is
〈
F ′, V,M ′〉, where

the change is obtained by the hypothesis space containing predictors of the form

f =
∑
xi∈I

wixi. (1.6)

The regularized version of learner L is
〈
F, V ′,M ′〉. Here the change is obtained by adding a

regularization term to the risk function. The resulting risk function is of the form

V ′(fw(x), y) = λp(w) +
∑
x,y∈S

(V (fw(x), y)), (1.7)

where p is called the penalty function, with parameter λ. The use of regularization to avoid

overfitting is common when training linear classifiers [21]. In this work we use ‖.‖22 (L2) and

‖.‖1 (L1) as penalty functions.

1.2 Logistic regression

In this work we use linear classifiers obtained by regularized logistic regression. Logistic

regression is characterized by the use of risk function

V (xTw, y) =
1

1 + e−yxTw
(1.8)

For practical reasons we minimize the logarithm of this function, as it will have the same

minimum point, so we are looking at

argmin
w

∑
x,y∈S

− log(1 + e−yx
Tw). (1.9)

The case of n > 2 classes can be dealt with using a combination of binary classifiers. A

method for this, called one-versus-the-rest (OVR), is the use of n classifiers, each separating

5

one of the classes from the union of the other classes. Let wi denote the normal vector of

the hyperplane corresponding the ith class. A new point x is assigned to the class for which

the value xTw is maximal. Another method, called one-versus-one (OVO), is the use of
(
n
2

)
classifiers, one for each pair of classes. A new data point x will be assigned to the class having

the most votes.

For an arbitrary data point x, based on the value of f(x) a probability value of x belonging

to either of the classes can be assigned thus:

p(y = 1|x) =
e−x

Tw

1 + e−xTw
(1.10)

p(y = −1|x) =
1

1 + e−xTw
(1.11)

With n classes, the use of multiple logistic regression according to the OVR method

provides the following probability values:

p(y = i|x) =

e−xTwi

1+e−xTwi∑n
j=1

e−xTwj

1+e−xTwj

(1.12)

1.3 Feature selection methods

For a particular learning algorithm the feature subset selection task is to find a feature subset

I minimizing the expected risk of the classifier trained with the use of I. Feature selection

algorithms solving this task can be classified according to how they interact with the chosen

learning algorithm.

1. Wrappers use the learning algorithm as a black box to evaluate feature sets while

performing a heuristic search in the space of all possible subsets. At each step of the search

the classifier trained using the current set is evaluated, which yields the evaluation of the

current subset. Several widely used methods for evaluating classifiers will be discussed in

Sect.1.4. Wrapper methods vary in the search strategy used [9].

2. Embedded methods perform variable selection as part of the training process. A class

of embedded methods perform a search procedure in the space of feature subsets. The search

is guided by the estimated change in the value of the risk function. In this work we use a

simple version of such a technique, called brain damage or brain surgery [4]. We start with

the whole feature set, train a classifier using it, and retain the features which have large

parameter weights. Another way of embedded feature selection is the addition of a sparsity

6

term to the risk function, which enforces a subset of parameters to be exactly zero at the

optimum. An important example for sparsity term, also used in this work is λ‖.‖1. The

feature selection technique obtained with it is called LASSO, for “Least Absolute Shrinkage

And Selection Operator” [19]. The optimal value of λ, which controls the number of selected

features, can be determined using cross-validation.

3. Filter methods work prior to the learning phase itself, independent of the chosen

learning algorithm. A class of filter methods searches for a small subset of features which

determine the labels on the training instances [9]. Other, more simple filter methods score

features according to their individual relevance, estimated from the training sample with the

use of some statistical test. The selected subset is the union of the features with the highest

scores. In this work we use filters based on χ2 values as a baseline in order to evaluate

embedded methods.

1.4 Evaluating classifiers

Classifiers are usually evaluated by their performance on a held out test data set, which has

not been used for training. We use two percentage quantities for measuring performance.

For evaluating multinomial classifiers and for evaluating binary classifiers on a test data set

containing similar number of instances from the two classes (Sect.2), we use accuracy, defined

as
C

N
· 100%, (1.13)

where C denotes the number of correctly classified instances, and N denotes the number of

all instances in the test set. For evaluating binary classifiers on a test data set containing

sharply different number of training instances from the two classes (Sect.3), we use F-score,

defined as the harmonic mean of two quantities. The first quantity is recall, defined as

TP

TP + FN
· 100, (1.14)

where TP , for “true positive” denotes the number of instances correctly classified into class

1, and FN , for “false negative” denotes the number of instances incorrectly classified into

class 0. The second quantity is precision, defined as

TP

TP + FP
· 100, (1.15)

where TP denotes the same quantity as above, and FP , for “false positive” denotes the

number of training instances incorrectly classified into class 1.

7

If there are only a few labeled training data points available, the usual process of evalua-

tion, called cross-validation ([1]) is to perform several splits on the training data to distinct

training and test sets, train and evaluate a classifier on these, and average the results in the

end. An important variant for this technique is called n-fold cross-validation, which is the

case when the training data is divided into n parts, and the results are obtained by training

n models on n−1
n

of the data and evaluated on the remaining 1
n

part. In this work we use

this method with n = 10.

1.5 Evaluating feature selection methods

A feature selection algorithm is evaluated by evaluating the classifier which was trained using

its output. When evaluating the classifier, at each validation step the training and test sets

are separated and only the training part is used as input for the feature selection method.

All feature selection methods used in this work have a parameter which determines the size

of the feature set retained. For the version of brain damage used here it is simply the number

of features retained after the first training, for L1 regularization it is the parameter λ, and

for χ2 test it is the critical value for rejecting the null hypothesis of independence.

In Chapter 2 our main concern is to evaluate feature sets of identical sizes provided by

different feature selection methods, and we disregard the question of finding the optimal

parameter of the method in focus. In Chapter 3 we use distinct development and evaluation

sets for setting the parameter of the feature selection method and for evaluating the resulting

model.

1.6 The software used

The binary logistic regression models were trained using the Python interface of the LIB-

LINEAR Library. LIBLINEAR is an open source library for large scale classification [5].

Multinomial feature selection with the OVO method and χ2 feature selection were imple-

mented using the Scikit Python module.[11].

Chapter 2

Classification to part-of-speech categories

2.1 The task

In this chapter we review the process of classifying word forms to different word categories

(parts-of-speech, POS). We considered two types of POS categorization. The first is the

adjective/adverb/noun/verb POS system of traditional English grammar.

The second is a more detailed POS system containing 36 categories. A subset of these is

the refinement of the traditional categories, (e.g. noun and noun in plural are distinct cat-

egories), the remaining are linguistic classes of function words (e.g. preposition, pronoun).

This feature set was used when annotating the the Penn Treebank [10]. Treebanks are large

sets of texts (called corpora by linguists), with linguistic annotation for each sentence, con-

taining also the POS category of each word. The Penn Treebank is the most widely used

English treebank, containing approximately 7 million POS-tagged words.

2.2 The feature set

The features used in this work to characterize words reflect their typical environments in

English sentences. The idea behind using this feature set for POS-classification rests on the

structuralists’ concept of POS-categories. In structuralist theory, POS classes are equivalence

classes of the distributional equivalence in the set of all sentences of a given language [7].

In other words, two words belong to the same POS category if they appear in the same

environments. As information source on typical environments of words we used the Google

NGram data set [2].

This data set contains frequency counts of word token sequences generated from text

collected from public web pages. Word tokens are the result of the segmentation of a contin-

uous text stream by means of tokenization: words, punctuation signs, and in some application

sentence boundaries, or even expressions (‘New York’) count as distinct tokens. From the

Google NGram data set we used the frequency counts of word tokens (unigrams) and word

token sequences of length two (bigrams).

8

9

As environments, we considered the (immediate) left and right neighborhood of the 350

most frequent words in the Google statistics. These will be referred to as diagnostic words.

The diagnostic words contain most of the English function words, punctuation signs, sentence

boundaries, some numbers, dates, and several words related to the use of the web such as

‘page’ or ‘search’.

For each diagnostic word we used two distinct feature sets for its proportion in the left and

in the right environments of the word in focus. Let Fb(w1, w2) denote the relative frequency

of the sequence ‘w1w2’ in the bigram data, and Fu(w3) the unigram relative frequency of w3.

Let wd denote the given diagnostic word, we the word examined. Based upon the value of

ratioleft =
Fb(wd, we)

Fu(wd) · Fu(we)
(2.1)

or

ratioright =
Fb(we, wd)

Fu(wd) · Fu(we)
(2.2)

we assigned we one of three binary features, which indicate whether the word sequence

composed of wd and we (in one or the other order) is typical/not typical/unlikely in English.

The upper and lower limits of ‘not typical’ were set to 5 and 0.2 manually (i.e. based on the

author’s subjective judgment). This method creates 6 · 350 = 2100 binary features.

Table 2.1: Some features assigned to they

left right

typical not typical unlikely typical not typical unlikely

before could Web did list ’

did not ! know who same

what – 16 do then 24

as us 8 are support 3

do have 5 could first We

10

Table 2.2: Some features assigned to went

left right

typical not typical unlikely typical not typical unlikely

which one be to just days

We has e back one or

they There 4 into here information

she line to before where International

he back ’s off ’ “

Since Google NGram does not contain bigram frequencies under 40, Eqs. 2.1 and 2.2 are

not informative in cases when the frequency of the word in focus is low. That is why training

instances of low frequencies were not always assigned one of the ‘unlikely/likely/typical’ triple

for each diagnostic word. This also causes the feature set not to be completely redundant.

We experimented with two different feature sets: the wide set specified above, and a narrow

set that was obtained by omitting the ‘typical’ values, so that only 1400 features are left. As

we shall see in Sect. 2.4, neither of the two proved to be clearly superior to the other, and

when not stated otherwise, the test result reviewed refer to using the broad set.

2.3 Collecting appropriate training data

To avoid having training instances without any features, we considered word forms of large

frequencies only; in the top 100 thousand unigram frequency in the Google NGram data set.

Since our goal was not to develop a practical POS-labeling algorithm, we did not use word

forms with more than one possible POS label (outside of a few experiments not reported

here). These two factors heavily restricted the size of available training data for each used

word class, although not uniformly. For the adverb/adjective/noun/verbs task the training

data were taken from the central part of the vocabulary entries of the Longman Dictionary

of Contemporary English, called the Longman Defining Vocabulary (LDV). We used word

forms labeled here as having unambiguous POS - category. For the task of the Penn categories

the training data were collected from the Penn Treebank, so that for a certain class we only

used word forms having all instances annotated with the same POS - label. For readers not

familiar with NLP we note that these issues do not arise when developing practical POS-

labeling algorithms, which use all instances of word forms in a text as training instances.

11

2.4 Results of binary classification

We started our experiments by training binary models for separating each pair of the

adverb/adjective/noun/verbs classes, and also for separating each word class from its com-

plement. We used L2 regularized logistic regression for training. At first we used the whole

feature set, and evaluated the classifiers obtained with the use of the LDV training data. We

used 3600 adjectives, 1000 nouns, 1000 verbs and 800 adverbs. The cross-validation results

were between the limits 95.33% and 99.2%, and those classifiers performed slightly better

which separated two distinct classes (between 97.8% and 99.2%), than those separating a

class from its complement (between 95.33% and 97.81%). Next we performed the brain

damage procedure (or BD, as defined in Sect.1.3,1.), while varying the size of the feature set

retained. As Figs. 2.1 and 2.2 show, the cross-validation accuracy of the classifiers trained

with 150 - 200 features was near the optimum (see panel (a) of Fig.2.1), reached the optimum

(see panel (a) of Fig.2.1, and panel (b) of Fig.2.2), or even surpassed the crossvalidation accu-

racy of the classifier using the whole feature set (see panel (b) of Fig.2.2). The two figures

also exemplify the slightly higher test accuracies of classifiers separating two distinct classes

(see rightmost results in Fig.2.1), than those separating a class from its complement (see

rightmost results in Fig.2.2). As a baseline we also performed χ2 based feature selection on

the same sets of training data. Classifiers trained using feature sets selected by BD performed

on average 2-3% better than those trained using feature sets selected according to their high

χ2 values.

Figure 2.1: Results of BD and χ2 selection

(a) Adverb classifier (b) Noun classifier

12

Figure 2.2: Results of BD and χ2 selection

(a) Adverb - Noun classifier (b) Adverb - Verb classifier

We repeated the same experiments with the use of the narrow feature set. Contrary to

our expectations using the narrow set did not lead to a better result in all cases. Figure 2.3

shows examples of cases when the broad (see panel (a)), and when the narrow (see panel

(b)) set proved to be more useful.

Figure 2.3: Results of using the broad and narrow sets prior to BD

(a) Adverb classifier (b) Noun classifier

We compared the two sets when using few training data points. For these experiments

we used 70 adjectives, 17 adverbials, 22 nouns and 20 verbs only. In order to achieve a more

reliable evaluation of the methods, the experiments were performed with the use of distinct

training samples (obtained by splitting the original training data into 16 parts), and in the

13

end the results were averaged. Again we found that neither of the two sets proved better for

all cases. Figure 2.5 shows examples of this (as above, the red curve denotes the wide set

and the blue the narrow set). As Figure 2.5 also shows, when using small training samples,

classifiers trained on less features tested better, indicating overfitting.

Figure 2.4: Results of using broad and narrow sets prior to BD, using few training data

(a) Noun classifier (b) Adjective-Noun classifier

We evaluated another embedded feature selection method, L1 regularization (as defined

in 1.3,2.) on our whole LDV training data. Among the training data sets the L1 selection

proved superior on the adjective - non-adjective data sets to BD procedure. On the other pairs

of data sets the two methods proved similar. We then evaluated the methods on smaller sets

of adjective training data in order to test whether the difference is due to the different size of

these data sets (originally we used 2·3600 training instances for adjective classification and

cca. 2·1000 training instances for the other classes). On two subsets of the original adjective

set (of sizes 1200) the L1 method proved better. We found that the L1 method was superior

when having the value of the λ parameter between the limits when evaluated on larger

training sets, see Fig 2.5 where the order (a-d) follows the increasing size of training sets

(800, 1000, 1100, 3600).

14

Figure 2.5: Results of L1 based feature selection and BD

(a) Adverb classifier (b) Verb classifier

(c) Noun classifier (d) Adjective classifier

In the Google n-gram data we had a sample of at least 10 items for 21 from the 36 categories.

For training classifiers separating two POS categories we used these samples. For training

classifiers separating POS-categories and their complements, the words in the complement

set were taken from the Treebank’s vocabulary, so that no instance of it is tagged with the

corresponding POS-tag. For certain categories there were fewer training instances than 100

(Modal 30; Foreign 73; Determiner 10; Adjective,comparative 30; Preposition 40; Verb,non-

3rd.person,singular present -30; Personal pronoun 24; Interjection 19; Proper noun, plural

15). For these we used all instances we had, for the other categories we used a training sample

of size 100. For all complement classes we used a training sample of size 100. The figures

below show some results of this procedure.

15

Figure 2.6: Separating Common nouns and Proper nouns

Some of these tasks are much harder than the basic POS classification tasks. This is

clear from the results, which were in the 95-98% range for the basic tasks (see Fig. 2.5),

but are 10% lower in Fig. 2.6. Often there is very little in the context that can help us

distinguish common nouns from proper names, and humans performing the classification

rely on information, real world knowledge, that is not encoded in the features. (A practical

system would also use capitalization and other word-internal features.)

In other cases, such as singular vs. plural, word-internal features (e.g. whether the final

character is s) would be very useful, but given the broad grammatical impact of plurality

(carried to the verb by subject-predicate agreement) context is again largely sufficient.

Figure 2.7: Separating Nouns in singular and plural form

16

Figure 2.8: Overfitting

Finally, Fig. 2.8 shows the overfitting effect we discussed earlier: the best results are

obtained when only 5% of the broad set (less than a 100 of 2,100 features) are used.

2.5 Results of multinomial classification

In this section we review our results by training multinomial models on the same data sets.

We used multiple logistic regression. For multinomial feature selections we tested several

simple heuristics of combining the scores which came from the binary models. In one exper-

iment (Fig. 2.9, top left panel) we compared the features obtained from brain surgery to the

‘balanced’ feature set obtained by taking an equal number of the best features from each

classifier. Since the difference is noticeable only when the number of features is low (less than

50), in the other two experiments (top right and bottom left panels) we used balancing as

the baseline.

17

These two experiments, which differ only in the basic data sets, used the following

feature selection algorithm: take the top k features in each pairwise classifiers (k =

100, 300, 500, 1000), and use only those that appear in at least n of these sets. Again,

the differences are most noticeable when the overall number of features is low, compare

e.g. the first yellow dot on the bottom panel to the second red dot: for the same absolute

number of features selecting from the ‘cream of the cream’, the top 100 features of pairwise

classifiers, is 2% better than selecting from the broad sets (top 1000 features).

Figure 2.9: Testing feature sets containing features selected by many binary models

Another set of experiments used the absolute values, rather than the ranking, of the

feature values in the pairwise classifiers. Let feature i obtain the weight wij in pairwise

classifier j. Three strategies were tried: in the ‘average’ strategy (blue curves) we used
∑

j wij

as the figure of merit for feature i, in the ‘maximum’ strategy we used maxjwij (red curve),

and in the ‘minimum’ strategy we used minjwij. In all cases, all 2100 features were ranked by

18

their figure of merit, and the final multinomial classifier kept the r highest ranked according

to this figure.

Figure 2.10: Testing feature selection based on scores provided by logistic regression models

(a) Longman words, OVR method (b) Longman words, OVO method

(c) Penn words, OVR method (d) Penn words, OVO method

In the region of interest (200 features or fewer) it is the ‘minimum’ method that appears

to work best, and the ‘average’ method, somewhat surprisingly, is the worst.

2.6 Testing different regularization methods

In this section we review results about testing different regularization methods. First we

trained OVR classifiers for separating Nouns, using training samples of 5000 Nouns and

5000 words from other categories. The classifiers were tested with 10-fold cross-validation.

19

In the ‘A’ condition (Fig 2.11, blue curves) the classifier was trained with all features and

no regularization – this yielded 97.4% accuracy.

In the ‘B’ condition (Fig 2.11, red curves) the classifier was trained using L2 regulariza-

tion. Performance improved slightly, to 97.5%, see the right asymptotes in Fig. 2.11. The left

panel gives the results for the wide, the right panel for the narrow feature set.

Figure 2.11: Testing the brain damage procedure

We performed the brain damage procedure based on the weights of model ‘A’, with

different sizes of feature sets retained, and tested the classifiers obtained by using these

feature sets. As Fig. 2.11 shows, retaining 200 features proved enough for reaching near

optimum test accuracies, with or without regularization.

We tested other regularization methods and their combinations as well, while training

models on feature sets reduced with the use of the brain damage procedure. The first reg-

ularization method we study, parameter averaging, is the following. The training data was

divided into ten slices. Ten models, using all features, were trained on the union of all pos-

sible nine-tenths, and tested on the tenth slice. Then the parameter values of the five highest

test accuracies were averaged to yield the parameter vector of the final model. The second

method, Gaussian smoothing, is the addition of the square of the L2 norm as a regularization

term to the objective function used at training.

20

Figure 2.12: Accuracy of the models constructed by averaging parameter values

The effect of the above methods on the performance of the model was measured on

the same binary classification task of Noun vs. Other. The left panel of Fig. 2.12 shows

results with no regularization (blue curve) vs. parameter averaging (green curve), but with

no L2 regularization. The right panel shows L2 regularization by itself (red curve) and in

combination with parameter averaging (yellow curve). As can be seen, parameter averaging

adds very little to the results, but makes them more robust.

Next we tested models which were trained in an extreme data-starved condition, only

20 samples, using feature sets of different sizes selected by the brain damage procedure. All

models were tested on the same data set containing 5000 Nouns and 3500 non-Nouns. For

each training data size the plots show the average test accuracy of models trained on distinct

samples; 16 sets of size 2 · 20 were used.

Figure 2.13: Regularization in extreme data-starved condition

21

In the left panel of Figure 2.13 we see compare the same regularization methods as in

Figure 2.12, except we restrict the training set to 20 samples. When the number of features

is not unrealistically large compared to the number of data points (200 features, the same

number as in the full data condition), parameter averaging is helpful, but as the number of

features begins to significantly exceed what the data would warrant, Gaussian smoothing

becomes more advantageous. In the right panel of Figure 2.13 we see the same effect, but

performance declines even more rapidly once more than 10% of the features are used.

In a slightly less data starved condition (80 vectors, tested on 10 different sets and

results averaged), we find similar results, see Figure 2.14: parameter averaging improved the

test accuracy for small number of features. For a large number of features averaging the

parameters (in particular parameters gained by Gaussian smoothing) made the performance

decline, while Gaussian smoothing (without averaging) still improved test accuracy. The

use of the different initial samples resulted in different size of optimum feature numbers;

when using the wider initial set the results improved with the extension all along (with

having reached the near-optimum at 250-300 features), while when using the narrower set the

optimum is reached at 150 features, and with the addition of more features the performance

declines. The use of the narrower initial feature set resulted in higher test accuracies.

Figure 2.14: Regularization in data-starved condition

2.7 Summary of results

The picture emerging from the above experiments is not uniform. In data-starved conditions,

we find parameter averaging a reasonable approach, but if there is sufficient training data,

Gaussian smoothing makes more sense.

22

Unsurprisingly, the use of larger training samples resulted in higher overall test accuracies,

in particular in case of the narrow feature set where the addition of more features improved

performance all along (overfitting avoided). The effect of the regularization methods on the

test accuracy had similar characteristics.

Chapter 3

Elision in Hungarian nouns

3.1 The task

In this chapter we discuss a binary classification task of separating noun stems according

to whether they exhibit elision under certain conditions, e.g. in accusative form (the phe-

nomenon is discussed in [17]). We study the restriction of a feature set containing binary

features which characterize phoneme sequences of the suffix of the word stem in focus. The

set of features corresponding to a sequence an−ian−i+1 . . . an−j equals

n−j⊕
k=n−i

Sk (3.1)

where Sk is a set of phonological features characterizing ak. This feature set, and certain

variations of it were used when training classifiers with the use of logistic regression, using

a training set of 1075 syncopic and 48392 non-syncopic noun stems. Details on choosing

the set of phonological features and the collection of the training data are discussed in

[17]. The resulting classifiers were evaluated with tenfold cross-validation, using the F-score

measure. The best cross-validation result was obtained when using a feature set containing

only features corresponding to indices i = 1, 2 . . . 7 and j = 0 . . . n− i+1 [16]. feature set will

be referred to here as the short set. There where over a million (1,057,667) features having

value 1 on some instance of the training data, omitting those that were 0 everywhere filters

this feature set down to 1,043,945 features.

In this work we use the original feature set as basis to feature selection. We compare

L1 feature selection, the brain damage procedure, and feature selection based on high χ2

values. As a first step we held out 1
4

of the training data, on which we later validated our

classifiers, trained on the other 3
4

part of the training data. The parts obtained by this split

will be called validation and development data. For each method the parameter determining

the size of the feature set was set using only the development set, with the use of ten-fold

crossvalidation. After setting the parameter, we evaluated the classifier trained on the whole

23

24

development set, using a feature set obtained by the feature selection method parametrized

with the optimal value.

We compared the results to those obtained by the use of the whole, and the short feature

set. On this split of the data there was no difference between the performance of the two

classifiers trained on the whole and the short set, (97.7), and the cross validation score on

the development data did not vary either (97.43).

3.2 Results of χ2 selection

We started with critical values between the limits 0.001 and 0.3. As the right panel of Fig.3.1

shows, commonly used critical values for rejecting the independence hypothesis resulted in

feature sets of sizes around 45-50 thousand. As left panel of Fig.3.1 shows, the best F-score

results were obtained when using p=0.001 as critical value.

Figure 3.1: Cross-validation results on the development data

(a) F-score results (b) Sizes of selected sets

We proceeded with the use of critical values between the limits 0.00001 and 0.001. As the

right panel of Fig.3.2 shows, the size of the selected feature set did not shrink considerably,

nor did the cross-validation result change (as the left panel of Fig.3.2 shows).

25

Figure 3.2: Following cross-validation results on the development data

Based upon these results we chose the critical value to be 0.008. The classifier trained

on the whole development data, using the feature set obtained by a χ2 selection with this

parameter value evaluated with F-score 97.41 on the validation data.

3.3 Results of brain damage selection

We started with feature sets of sizes between and 500 and 500,000. The left panel of Figure

shows the resulting cross-validation results. Based on these, we continued with testing the

retaining of feature sets of sizes between the limits 12,000 and 55,000. These results are

shown in the right panel of Fig. 3.3.

Figure 3.3: Cross-validation results on the development data

(a) Retaining 500 to 500k features (b) Retaining 12k to 55k features

26

Based upon these results we trained a classifier on the whole development data, with the

use of a feature set of size 20,000, selected by BD. The classifier evaluated with F-score 97.41

on the validation data.

3.4 Results of LASSO selection

In the case of LASSO selection the parameter is the weight of the penalty term. The software

package used in this work (see [5]) implements the minimalization of the objective function

gw = ‖w‖1 + C ·
∑
~x,y∈S

(V (fw(x), y)). (3.2)

We started with C parameters between the limit and 100. Based upon the first results,

(top left panel of Figure 3.4), we tested parameter values between the limits 3 and 30 (bottom

left panel). As the right side panels show, the optimal results were obtained with the use of

2-3000 features only. For the final validation we chose the value of parameter C to be 4.

Figure 3.4: Cross-validation results on the development data

27

The classifier trained on the development data with the feature set selected by L1 selection

using parameter 4 (which corresponds to λ = 1
4

according to what defined in Sect.1.3)

evaluated with F-score 97.7.

3.5 Summary of the results

Table 4.1 summarizes our results. On this task, L1 selection proved clearly superior to the

other methods, providing as good classification results with 1/600th of the original features

as the full set. Brain damage was second best, but it required an order of magnitude more

features, and lost something in accuracy. χ2, requiring twice as many features to reach the

same accuracy as BD, was the worst.

While BD and χ2 provided about as much reduction here (2-5% of the original set size)

as in the POS task discussed in Chapter 2, L1 normalization did much better on this task,

possibly because the positive (syncopic) set is so much smaller than the negative set. We

note that the methods of Recski and Rung obtain 97.5% on this problem.

Table 3.1: All results

Method F on dev.data #feat Ft on val.data

no selection 97.43 960,000 97.70

χ2 97.30 46,000 97.41

BD 97.08 20,000 97.41

L1 sel. 97.67 1500 97.70

Chapter 4

Noun phrase chunking

4.1 The task

In this chapter we discuss the task of identifying maximal noun phrases in Hungarian text.

A noun phrase is a group of words, containing a head noun which determines the behavior

of the group as a unit in the sentence. Noun phrases can be embedded in each other, for

instance both ‘Pali öltönye’ and ‘a Pali öltönye mellett lévő kabát’ are noun phrases. A noun

phrase is called maximal if there is no other noun phrase containing it.

This is an instance of a more general task, called text chunking. Chunking is the task of

dividing text into non-overlapping phrases so that syntactically related words are assigned

to the same phrase [18]. Since the chunks are non-overlapping, the task is equivalent to the

proper distribution of three labels, corresponding to ‘beginning of chunk’, ‘inside of chunk’

and ‘not in chunk’. Some chunker methods use a refinement of this label system, either by

differentiating/refining chunk types, or using a separate label for ‘end of chunk’. In our work,

we used the 8 labels that are present in the HunTag system [15]. The performance of the

chunkers is evaluated using the F-score.

4.2 The HunTag sequential tagger

We use a software package developed for general sentence labeling tasks [15]. These appli-

cations are also called sequential taggers. HunTag is a stochastic tagger, that is, it works by

assigning a probability value to the possible labelings of the input sentence, and choosing the

label sequence with the highest probability value assigned. For assigning probability values

a combination of multiple logistic regression and Hidden Markov Modeling or HMM [12]

is used for modeling the language. Given an input sequence w1w2...wn, the label sequence

l1l2...ln is assigned the probability value∏
i∈1...n

p(li|wi−k . . . wi+k) ·
P ′(li−1, li)

λ

P (li)λ
. (4.1)

28

29

The optimal labeling of a sequence is determined using the Viterbi algorithm. For more

detail, see [15]. The parameters of the tagger - distributions P , P ′ and p, the integer k,

and the value λ are to be determined with optimizing them using labeled training data.

The P and P ′ distributions are obtained by frequency counts of labels and label pairs in

the training data. The p distribution is obtained as a result of a classifier trained with the

use of multiple logistic regression (as defined in Sect1.2). This classifier, assigning labels to

words, uses features corresponding to the properties of words surrounding the word in focus,

within the radius k. As we will see, this feature set can be large in practice and so the feature

selection can improve the speed of the tagger. We measure the quality of the feature selection

by the F-score of the classifier.

4.3 Training data

The training data for chunking was created using the Szeged Treebank [3], a corpus of

Hungarian texts with manually verified syntactic and morphological annotation. For each

token we extracted the available morphological analysis and converted it to KR-codes [13],

a formalism that allows us to represent grammatical features of a word in a hierarchical

structure. The corpus contains texts of various genres (journal articles, literature, essays

written by high school students, etc.), all of which were included in both train and test

datasets.

4.4 Feature set

When converting the chunking task to a supervised learning problem, each word will be

represented by features based on word form and morphological analysis. The structure of the

KR-formalism makes it possible to represent each grammatical feature in a straightforward

manner. A word with the KR-code NOUN<CAS<ACC>><POSS>, for example, will receive the

features kr=NOUN, kr=CAS ACC, and kr=POSS. Character trigrams of a word are also added

to the representation. Finally, [14] also defines a feature that encodes information about the

sequence of part-of-speech tags near a given word: “if a word in position i of a sentence is

denoted by wi and its POS-tag by pi then the values for the POS pattern feature for wi will

be all subintervals of the series pi−r . . . pi+r.”

30

4.5 Results of χ2 selection

We started with selecting feature sets according to high χ2 value. We started testing the

selection defined by critical χ2 values within the limits 5 and 75. After calculating the χ2

values for each pair of features and labels, we retained all features which were assigned high

chi2 value indicating strong correlation with any of the labels.

Figure 4.1: Results of using χ2 selection

(a) Number of features selected (b) F-score results

4.6 Results of L1 selection

Next we selected feature sets with the use of L1 regularization, for several C values. As

in Sect.3.4 the parameter value C corresponds to λ = 1
C

according to the definition in

Sect.1.3. After the first multiple logistic regression training, we selected all features which

were assigned nonzero parameter value by any of the resulting binary classifiers. We evaluated

the taggers trained with the use of these feature sets. Fig. 4.2 shows the result of this

experiment, obtained by tenfold cross-validation on our whole training data.

31

Figure 4.2: Results of using L1 selection

(a) Average number of features selected (b) Cross-validation F-score results

We evaluated a tagger on the test data, which was trained on the whole training data. The

feature set was selected by the same method, based on a multiple logistic regression model

trained with L1 regularization, using the parameter value C = 8. We chose this parameter

value based on the previous results. The tagger, using 40100 features only evaluated with an

F-score of 88.86.

We investigated whether using accuracy or F-score as our main figure of merit makes

any difference in the dynamics of feature selection, and concluded that only the absolute

numbers change, the relative performances show the same dynamics (see the left panel of

Fig. 4.3).

32

Figure 4.3: The impact of language modeling

(a) Accuracy and F-score as a function of C (b) Effect of language model

The chunker used in these tests also has an option for combining the scores with an

external HMM language model. Whether we turn this model on makes a noticeable difference

in the absolute numbers, but again the relative performances are unaffected (see the right

panel of Fig. 4.3).

4.7 Comparison of different methods with identical number of features

In the final set of experiments, we used the brain damage procedure (again using the average,

maximum, and minimum figures of merit (see 2.5), this time for the 8 binary classifiers

corresponding to the 8 tags used in HunTag. Note that neither choice leads a classifier as

good as provided by L1 selection.

Table 4.1: BD results with identical number of features (140k)

Method F-score on test data

brain damage, average 88.46

brain damage, minimum 88.58

bran damage, maximum 88.37

L1 sel at C = 1 89.01

33

4.8 Summary of results

Of the three feature selection methods tested, again L1 normalization was the best, but the

results from the brain damage procedure are comparable. χ2 selection, while much easier to

compute, provides inferior results. In term of CPU time, the best taggers improved by about

20%, from 114.3 to 91.5 seconds.

Bibliography

[1] S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.

Statistics Surveys, 4:40–79, 2010.

[2] T. Brants and A. Franz. Web 1t 5-gram version 1. 2006.

[3] D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor. The Szeged Treebank. In Lecture

Notes in Computer Science: Text, Speech and Dialogue, pages 123–131, 2005.

[4] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances

in Neural Information Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

[5] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9:1871–1874,

June 2008.

[6] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.

J. Mach. Learn. Res., 3:1157–1182, March 2003.

[7] Zellig S. Harris. Structural linguistics / by Zellig S. Harris. University of Chicago Press,

Chicago :, 1960.

[8] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of statistical

learning: data mining, inference, and prediction: with 200 full-color illustrations. New

York: Springer-Verlag, 2001.

[9] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif. Intell.,

97(1-2):273–324, December 1997.

[10] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large

annotated corpus of english: the penn treebank. Comput. Linguist., 19(2):313–330, June

1993.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

34

35

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .

Journal of Machine Learning Research, 12:2825–2830, 2011.

[12] R. Lawrence Rabiner. A tutorial on Hidden Markov Models and selected applications

in speech recognition. In Proceedings of the IEEE, volume 77, pages 257–286, 1989.

[13] P. Rebrus, A. Kornai, and D. Varga. Egy általános célú morfológiai annotáció [a general-

purpose annotation of morphology]. Általános Nyelvészeti Tanulmányok, to appear.

[14] G. Recski. NP-chunking in Hungarian, 2010. M.A. thesis, Eötvös Loránd University.

[15] G. Recski, D. Varga, A. Zséder, and A. Kornai. Fonevi csoportok azonośıtása magyar-

angol párhuzamos korpuszban [Identifying noun phrases in a parallel corpus of English

and Hungarian]. VI. Magyar Számitógépes Nyelvészeti Konferencia [6th Hungarian

Conference on Computational Linguistics], 2009.

[16] Gábor Recski and András Rung. Identifying epenthetic nouns using maximum entropy

classification. To be published, 2013.

[17] András Rung. Magyar főnévi alaktani jelenségek analógiás megközeĺıtésben. Phd disser-

tation, Eötvös Loránd University, 2012.

[18] Erik F. Tjong Kim Sang and Jorn Veenstra. Representing text chunks. In Henry S.

Thompson and Alex Lascarides, editors, Proceedings of the Ninth conference of the

European chapter of the Association for Computational Linguistics (EACL ’99), pages

173–179. Association for Computational Linguistics, 1999.

[19] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), pages 267–288, 1996.

[20] V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural

Networks, 10(5):988 –999, sep 1999.

[21] Jian Zhang and Yiming Yang. Robustness of regularized linear classification methods

in text categorization. In Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval, SIGIR ’03, pages 190–

197, New York, NY, USA, 2003. ACM.

	Introduction
	Preliminaries
	Classification based on a probabilistic model
	Logistic regression
	Feature selection methods
	Evaluating classifiers
	Evaluating feature selection methods
	The software used

	Classification to part-of-speech categories
	The task
	The feature set
	Collecting appropriate training data
	Results of binary classification
	Results of multinomial classification
	Testing different regularization methods
	Summary of results

	Elision in Hungarian nouns
	The task
	Results of 2 selection
	Results of brain damage selection
	Results of LASSO selection
	Summary of the results

	Noun phrase chunking
	The task
	The HunTag sequential tagger
	Training data
	Feature set
	Results of 2 selection
	Results of L1 selection
	Comparison of different methods with identical number of features
	Summary of results

	Bibliography

