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Sparse word representations

• motivation
• focus on most salient parts of word representations

(Faruqui et al., 2015; Berend, 2017; Subramanian et al., 2018)
• increase separability, interpretability (Olshausen and Field, 1997) and

stability against noise
• Non-negative sparse coding
• for interpretability

(Faruqui et al., 2015; Fyshe et al., 2015; Arora et al., 2016)
to describe the city of Pittsburgh, one might talk about phenomena

typical of the city, like erratic weather and large bridges. It is redundant
and inefficient to list negative properties, like the absence of the Statue of
Liberty

(Subramanian et al., 2018)
• in word translation (Berend, 2018)
• sparse word vectors for the two languages such that

coding bases correspond to each other

Formal concept analysis (FCA)

• FCA is the mathematization of a conceptual hierarchy
• a set of objects, now words w ∈ O,
• a set of attributes, now word vector indices i ∈ A, and
• a binary incidence relation I ⊆ O ×A, now
〈w, i〉 ∈ iff the ith coordinate in the sparse code of w is non-zero

• FCA finds formal concepts, pairs 〈O,A〉, O ⊆ O, A ⊆ A,
such that
• A consists of the shared attributes of objects in O (and no more), and
• O consists of the objects in O that have all the attributes in A (and

no more)
• O and A are closed sets iff 〈O,A〉 is a concept

• O is called the extent and A is the intent of the concept
• order defined in the context: if 〈Oi, Ai〉 are concepts in C,
〈O1, A1〉 is a subconcept of 〈O2, A2〉
if O1 ⊆ O2 which is equivalent to A1 ⊇ A2
• lattice
• Adding attributes to A, the original concepts will be
embedded as a substructure
• The smallest node in the concept lattice n(w) whose extent
contains a word w is said to introduce the object
• h should be a hypernym of q iff n(q) ≤ n(h)
• tools: Endres et al. (2010); Cimiano et al. (2005)
• features in the next column:
• n(w) is the concept that introduces w, i.e. the most specific location

within the DAG for w
• n1 ≺ n2 denotes that n1 is an immediate predecessor of n2
• Parents, and even the inverse relation, proved to be more predictive

than the conceptually motivated q ≤ h
• not useful (see post-evaluation ablation experiments)

The task and our results

• extract hypernyms for query words
Camacho-Collados et al. (2018)
• (3languages + 2)× 3 subtasks
• three languages, English, Italian, and Spanish
• + two domains, medical and music
• queries types: concepts, entities, or all

• Our system took first place in subtasks
• (1B) Italian (all and entities)
• (1C) Spanish entities and
• (2B) music entities

Sparse vectors

• for each subtask, we solve for
min

D∈C,α∈Rk×|V |
≥0

‖Dα−Wx‖F + λ‖α‖1,

• C is the convex set of Rd×k matrices
with column norms ≤ 1, and
• α contains the sparse coefficients for the words
• akin to Berend (2017) + new non-negativity constraint over
the elements of α
• To keep the size of the FCA tree manageable, we only
included the query words and the training hypernyms. This
restriction turns out to be very useful.
• dense embedding W unit-normed, λ = .3

Features summarized

for query q and its hypernym candidate h

dense vectors Wx skip-gram in d = 100-dimensions
cosine qᵀh

‖q‖2‖h‖2

difference ‖q − h‖2
normRatio ‖q‖2

‖h‖2
word strings
qureyBeginsWith Q[0] = h
queryEndsWith Q[−1] = h
hasCommonWord Q ∩H 6= ∅
sameFirstWord Q[0] = H [0]
sameLastWord Q[−1] = H [−1]
logFrequencyRatio log10

count(q)
count(h)

isFrequentHypernym1 c ∈MF50(q.type)
FCA see previous column
sameConcept n(h) = n(q)
parent n(q) ≺ n(h)
child n(h) ≺ n(q)
sparse vectors φ(w): set of non-zero coordinates, k = 200
overlappingBasis φ(q) ∩ φ(h) 6= ∅
sparseDifferenceq\h |φ(q)− φ(h)|
sparseDifferenceh\q |φ(h)− φ(q)|
attributePairij 〈i, j〉 ∈ φ(q)× φ(h)

• MF50(q.type): 50 most frequent hypernyms for the query
type (i.e. concept or entity). Debugged after submission.
• attributePairijs are the most important features
• indicator features for the interaction terms between the sparse

coefficients in α
• This feature template induces k2 features, with k being the number of

basis vectors introduced in the dictionary matrix D according to Eq. 1
• the role of these features is similar to interaction terms in regression

Two submissions

• one of our submissions involved attribute pairs, the other not
• both submissions used the FCA-based features
• conceptually motivated but practically harmful

Implementation and tricks

• dense vectors: skip-gram (Mikolov et al. 2013, d = 100)
trained for each sub-corpus provided by the organizers
• multi-token phrases with the word2phrase software
accompanying w2v
• top 15 selected by logistic regression trained for concepts
and entities
• sklearn (Pedregosa et al., 2011),regularization parameter set to the

default 1.0
• For each training pair (q, h), we generated a number of
negative samples (i.e. the training data does not include h′
as a valid hypernym for q)
• h′ sampled from the valid training hypernyms in the query type

(concept or entity)
• post-ranking heuristic
• re-ranking according to background frequency in the training corpus
• motivation: more frequent words refer to more general concepts and

more general hypernymy relations may be more easily to detect
• OOV backoff by query type

Post-evaluation analysis (without FCA)

Features derived with sparse attribute pairs and/or FCA:
MAP MRR P@1 P@3 P@5 P@15

off off 10.3 21.3 15.0 10.6 10.1 9.6
off on 10.1 21.1 14.9 10.5 9.9 9.5
on off 12.1 25.4 18.9 12.9 11.6 10.9
on on 12.1 25.3 18.7 13.0 11.6 11.0

• number of basis vectors in sparse coding
(k ∈ {200, 300, 1000}),
• number of negative training samples per positive sample
• submissions: 50 negative samples generated per query q
• post evaluation: all hypernyms in the training set

except for the proper hypernyms for q
• candidates filtered to those present in the training data
• Historically, applied to speed up the FCA algorithm (smaller concept

lattice)
• boldface font above: submission settings

1A

candidate filtering off candidate filtering on
k ns MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15
200 50 6.5 14.9 13.1 7.4 6.1 5.5 12.1 25.4 18.9 12.9 11.6 10.9
200 all 6.9 15.8 14.1 7.6 6.3 5.8 13.0 27.1 19.9 14.2 12.5 11.8
300 50 6.9 15.8 13.9 7.6 6.4 5.9 12.1 25.7 19.5 13.0 11.5 11.0
300 all 8.0 17.8 15.4 8.9 7.4 6.8 13.5 28.0 21.1 14.5 12.9 12.3
1000 50 9.0 20.0 17.2 9.8 8.3 7.7 13.3 28.1 21.3 13.8 12.6 12.3
1000 all 11.6 26.1 22.5 12.5 10.8 10.0 13.6 27.2 19.4 13.9 13.2 12.8

https://github.com/begab/fca_hypernymy
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(Post-evaluation conted:) All the subtasks

MAP MRR P@1 P@3 P@10 P@15
1A 13.3 28.1 21.3 13.8 12.6 12.3
1A 19.8 36.1 29.7 21.1 19.0 18.3
1B 12.5 24.2 14.5 13.4 12.5 12.0
1B 12.1 25.1 17.6 12.9 11.7 11.2
1C 21.8 43.8 33.7 22.9 21.4 19.9
1C 20.0 28.3 21.4 20.9 21.0 19.4
2A 21.9 39.5 34.2 25.5 22.6 18.5
2A 34.0 54.6 49.2 40.1 36.8 27.1
2B 31.5 43.6 29.8 30.3 30.3 31.5
2B 41.0 60.9 48.2 44.9 41.3 38.0

• upper: our system, (k = 1000, ns = 50, hypernym
candidate filtering on, FCA off)
• lower: subtask winner, official scores

Future work: hierarchical sparse coding

• trees describe the order in which variables “enter the model”
(i.e., take non-zero values, Zhao et al. (2009))
• a node may enter only if its ancestors also do
• top level nodes should focus on general meaning components
• efficient implementation (Yogatama et al., 2015)
• correspondence between the variable tree and the hypernym
hierarchy

References

S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. Linear algebraic structure of word senses,
with applications to polysemy. arXiv:1601.03764v1, 2016.

G. Berend. Sparse coding of neural word embeddings for multilingual sequence labeling. Trans-
actions of the Association for Computational Linguistics, 5:247–261, 2017. ISSN 2307-387X.
URL https://transacl.org/ojs/index.php/tacl/article/view/1063.

G. Berend. Towards cross-lingual utilization of sparse word representations. In V. Vincze, editor,
XIV. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2018), pages 272–280. Szegedi
Tudományegyetem Informatikai Tanszékcsoport, 2018.

J. Camacho-Collados, C. Delli Bovi, L. Espinosa-Anke, S. Oramas, T. Pasini, E. Santus,
V. Shwartz, R. Navigli, and H. Saggion. SemEval-2018 Task 9: Hypernym Discovery. In
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, United States, 2018. Association for Computational Linguistics.

P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text corpora using
formal concept analysis. Journal Artificial Intelligence Research (JAIR), 24:305–339, 7 2005.

D. Endres, P. Földiák, and U. Priss. An Application of Formal Concept Analysis to Semantic
Neural Decoding. Annals of Mathematics and Artificial Intelligence, 57(3-4):233–248, 07
2010. doi: 10.1007/s10472-010-9196-8. reviewed.

M. Faruqui, J. Dodge, S. Jauhar, C. Dyer, E. Hovy, and N. Smith. Retrofitting word vectors
to semantic lexicons. In Proceedings of NAACL 2015, 2015. Best Student Paper Award.

A. Fyshe, L. Wehbe, P. P. Talukdar, B. Murphy, and T. M. Mitchell. A compositional and
interpretable semantic space. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 32–41, 2015.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in
vector space. In Y. Bengio and Y. LeCun, editors, 1st International Conference on Learning
Representations, ICLR 2013, Workshop Track Proceedings, 05 2013. URL http://arxiv.
org/abs/1301.3781.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

A. Subramanian, D. Pruthi, H. Jhamtani, T. Berg-Kirkpatrick, and E. Hovy. Spine: Sparse
interpretable neural embeddings. AAAI, 2018.

D. Yogatama, M. Faruqui, C. Dyer, and N. A. Smith. Learning word representations with
hierarchical sparse coding. In ICML, 2015. Previous version in NIPS Deep Learning and
Representation Learning Workshop 2014.

P. Zhao, G. Rocha, and B. Yu. The composite and absolute penalties for grouped and hierar-
chical variable selection. The Annals of Statistics, 37(6A):3468–3497, 2009.

berendg@inf.u-szeged.hu
makrai.marton@nytud.mta.hu
Peter.Foldiak@gmail.com
https://github.com/begab/fca_hypernymy
https://transacl.org/ojs/index.php/tacl/article/view/1063
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

	Results
	References

