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1 Introduction

Phonological hesitation of suffixes in Hungarian has been studied for a long time.
Traditional linguistics treats this matter as a binary phenomenon – a suffix either
vacillates or not, and traditional theories do not explain the degree of vacillation.
We aim to explain the degree of hesitation based on a frequentivist approach (Bybee
and Hopper, 2001).

It is a well known fact that the category of nouns and adjectives overlap in
Hungarian (Elekfi, 2000; Moravcsik, 2001), and while we have a basic idea of what
constitutes the former or the latter, rigorous classification of words can be chal-
lenging. There are markers which can help, such as the existence of comparative
or plural forms, but it is easy to see that these kinds of explanations can lead to
context-dependent classes.

There are other differentiating markers of which the speakers are not consciously
aware of, such as the vowel height harmony in case marker suffixes. Nouns prefer
mid vowels, adjectives prefer low vowels, but these are only tendencies, since there
is no clear distinction between categories.

In the present thesis, we take an analogy and frequency-based approach to quan-
tify these tendencies. Considering the behavior of a typical noun and adjective, we
can hypothesize that if an ‘adjectival’ word is used as a ‘nouny’ word, be in a syn-
tactic or semantic way, it shall behave as a noun in a phonological sense, and vice
versa. In this manner, with the help of the tools of computational linguistics, we
analyze the interaction of phonology, syntax and semantics and attempt to show
the interconnectivity between these linguistic modules through this particular phe-
nomenon.

In section 2, we introduce the vowel harmony in Hungarian and the lowering/non-
lowering to be analyzed later. In section 3, we describe our methodology to extract
the vacillating forms from the corpus, then in section 4, we present our hypotheses
on the graduality of variation. sections 5 and 6, presents evidence for the hypothesis,
and afterwards, section 7, summarizes the results.
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2 Vowel harmony in Hungarian

This section will give an overview on the system of Hungarian vowels, the types of
harmony, and the problems in the domain of Hungarian vowel harmony.

2.1 Hungarian vowels

There are numerous papers on the vowel harmony in Hungarian, however, this sec-
tion follows the notation of Törkenczy (2011). The Hungarian vowel harmony is
rich in features: there is long distance effect, neutral vowel transparency, variation
of harmony, alternating and invariant suffixes, antiharmonic roots, backness and
roundness harmony. The system of Hungarian vowels is given in table 1.

front back

unrounded rounded unrounded rounded

high i <i>, i: <í> y <ü>, y: <ű> u <u>, u: <ú>
mid e: <é> ø <ö>, ø: <ő> o <o>, o: <ó>
low E <e> a: <á> 6 <a>

Table 1: The phonological classification of the Standard Hungarian vow-
els. The characters appearing in the angled brackets show the corre-
sponding letter in the Hungarian orthography.

As shown in table 1, Hungarian has a rich vowel system: there are 7 different
short-long pairs of vowels.

There is backness (palatal) and roundness (labial) harmony in Hungarian. Both
are controlled by the stem, i.e. the harmonic properties of the stem determine the
harmonic properties of the affixes. The direction of harmony is left-to-right, and the
(last) root forms a harmony domain with the succeeding affixes, e.g.: vas-pöröly-
ök-nek ‘iron-sledgehammer-pl-dat’. The vas ‘iron’ is back, low, unrounded, while
pöröly ‘sledgehammer’ is front, mid, rounded, but the latter is the last stem, thus
the affixes belong to the harmony domain of pöröly, taking the corresponding -ök-
nek form, instead of -ak-nak or -ok-nak. There are many interacting phenomena in
the Hungarian harmony, but due to the time and length constraints, we are only
focusing on backness harmony in this thesis. On other kinds of harmony, Törkenczy
(2011) gives a good overview on the matter.

Backness harmony requires that vowels should agree in backness within the har-
mony domain based on the following system:
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Back (B) u, u:, o, o:, 6, a:

Front rounded (Fr) y, y:, ø, ø:

Neutral: front unrounded (N) i, i:, E, e:

Table 2: Backness harmony domains in Hungarian. Note that neutral
vowels may behave in a transparent or opaque way.

2.2 Linking vowels

In Hungarian, the suffixes are mostly consonantal, but in most cases, there are
phonotactic restrictions which prohibit many types of consonant clusters. Moreover,
lexical traits of word forms plays also a role in the presence and/or the quality of
the linking vowels. The following examples are based on Kálmán, Rebrus, and
Törkenczy (2012), while prioritizing information relevant to this thesis.

The traditional definition of linking vowels depend on morphological segmen-
tation, i.e.: A linking vowel is a vowel that appears in certain word forms at the
boundary of a stem and a suffix, and which does not appear in some other word
forms containing the same suffix (but a different stem).

For example:

stem acc pl linking vowel presence gloss

a, hal hal-a-t hal-a-k in acc and in pl ‘fish’
b, lap lap-o-t lap-o-k in acc and in pl ‘sheet’
c, dal dal-t dal-o-k only in pl ‘song’
d, kocsi kocsi-t kocsi-k no linking vowel ‘car’

Table 3: Some examples of words containing linking vowels (written in
boldface).

In section 2.2, we can see the linking vowels for some words. The linking vowels,
as per the definition, occur at morpheme boundaries, like in case a, the stem is hal,
the accusative suffix is -t, and the linking vowel -a- is between these two morphemes.
The presence of linking vowels and phonotactic motivation correlates, yet there are
examples for each of the 4 possibilities (Kálmán, Rebrus, and Törkenczy, 2012,
p. 26).

There is a similar phenomenon concerning the quality of the linking vowels. The
quality is determined mostly by the stem and the suffix, however, other factors also
do affect the vowel quality, such as context, part-of-speech, dependency relation and
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semantics. We will examine only the nominal stems in this thesis.

group stem linking vowel gloss
height low-mid pl low-mid acc

1. hal halak halat ‘fish’
1. lassú lassúak lassút ‘slow’
1. őz őzek őzet ‘roe’
1. fűz fűzek fűzt ‘willow’

2. pap papok papot ‘priest’
2. dal dalok dalt ‘song’
2. adó adók adót ‘tax’
2. tök tökök tököt ‘pumpkin’
2. gőz gőzök gőzt ‘steam’
2. tető tetők tetőt ‘roof’

Table 4: Stems behaving as group 1. are the lowering stems, while
group 2. is called non-lowering stems.

As seen in table 4, there are two groups of nominals according to the quality of
the linking vowels they receive: group 1. is the lowering stems, group 2. is the non-
lowering stems. The linking vowel agrees in backness with the stem and the suffix,
only the vowel height changes. In group 1., the plural suffix takes the forms -ak,
-ek (low), while in group 2., it takes the forms -ok, -ök, -k (mid). The accusative
suffix shares (almost) the same linking vowels: -at, -et, -t (low) in group 1., -ot, -öt,
-t (mid) in group 2.

It can also be seen from table 4 that it is the vowel quality of the stem which
defines the vowel backness, while the vowel height is seemingly controlled by some
hidden lexical feature of the stem in the case of pl and acc.

2.3 Variation

It was shown in table 4 that the backness groups are established, and it is only
the vowel height which keeps on changing. The possible vowel pairs with the same
backness are the following1:

• Plural, nominative (pl)
1Hungarian orthography for the respective phonemes are written in angle brackets
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1. -back, low-mid: 6-o <a-o>, hangos-Vk ‘loud-pl’

2. -back, low-none: 6-∅ <a-∅>, alvó-Vk ‘sleeping-pl’

3. +back, low-mid: E-ø <e-ö>, pöttyös-Vk ‘polka dotted-pl’

4. +back, low-none: E-∅ <e-∅>, fekvő-Vk ‘laying-pl’

• Accusative, singular (acc)

1. -back, low-mid: 6-o <a-o>, passzív-Vt ‘passive-acc’

2. -back, low-none: 6-∅ <a-∅>, hangos-Vt ‘loud-acc’

3. +back, low-mid: E-ø <e-ö>, pörkölt-Vt ‘meat stew-acc’

4. +back, low-none: E-∅ <e-∅>, pöttyös-Vt ‘polka dotted-acc’

There are 4 different kinds of lowering variation we are analyzing in this thesis,
these are presented above. We can notice that the plural and accusative suffixes
behave differently, but have the same vowel pairs. Hungarian phonotactics does not
allow linking vowel for the accusative suffix if the stems ends with vowel, but it
permits to not use linking vowel after coronal sonorant consonant fájl-t ‘file-acc’,
var-t ‘scar-acc’, hangos-t ‘loud-acc’. In plural, linking vowel is always necessary
after consonant, and is optional after vowel.

In the later sections, we will refer to both plural-lowering and accusative-lowering
stems as lowering stems, since these are both governed by the same lowering mech-
anism.

2.4 Vacillating suffixes

Nouns and adjectives behave differently with respect to linking vowel lowering (Sip-
tár and Törkenczy, 2001, p. 227). There is a fixed set of nouns which undergo
lowering, the lowering is not productive, recent nouns cannot undergo lowering, for
example: hal-ak ‘fish-pl’, ár-ak ‘price-pl’, haj-ak ‘hair-pl’, but baj-ok ‘trouble-
acc’, sör-ök ‘beer-pl’, fájl-ok ‘file-pl’.

In the case of adjectives, the tendency is reverse: most adjectives prefer lowering,
although there is also a small number which are non-lowering. Some non-lowering
stems are: nagyok ‘big-pl’, gazdagok ‘rich-pl’, vakok ‘blind-pl’, but the typical
adjectives are lowering, such as pirosak ‘red-pl’, finomak ‘delicious-pl’, hűvösek
‘cool-pl’.
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Greek and Latinate loan adjectives, on the other hand, usually show high degree
of variation: okkult-ak, okkult-ok ‘occult-pl’, konkáv-ak, konkáv-ok ‘concave-pl’,
morbid-ak, morbid-ok ‘morbid-pl’.

2.5 Occasional nominalization

This section presents the main hypothesis of the thesis. In the previous sections, we
mentioned that adjectives and nouns behave differently when it comes to lowering
the linking vowel. Adjectives tend to lower the linking vowel, nouns tend not to.
But what if we have a language where these two groups are not separated by any
obvious marker or suffix?

Hungarian is exactly like that - there is no distinct boundary between these
two groups (Elekfi, 2000; Moravcsik, 2001). The language tends to treat adjectives
as attributes and nouns as things or entities, but adjectives can be used in posi-
tions where only nouns can appear - in which they behave as a noun, referring to
the (previously established) entities having that attribute. Consider the following
example:

(1) Vettem
Buy-past-1.sg

két-féle
two-types

almát,
apple-acc

pirosat
red-acc

és
and

zöldet
green-acc

‘I bought two kind of apples: red ones and green ones.’

(2) A
the

pirosak
red-pl

finomak
delicious-pl

voltak,
be-past-3.pl

a
the

zöldek
green-pl

pedig
but

nem.
no

‘The red ones were delicious, but the green ones weren’t.’

In example 1, we can see that the adjectives red and green agree in case with the
object of the sentence, the apple. In Hungarian, usually, there is no agreement of
modifier and head in NP, but there are certain constructions in which there is. In
example 2, however, the ‘red’ and ‘green’ refer to a previously mentioned group of
entities (apples), thus can replace it in subject position – in the sentence ‘The red
ones were delicious’, the red ones refer to the apples from the previous example.

The phenomenon where adjectives can behave as nouns in certain contexts is
called occasional nominalization. This can happen in almost any case, and
nominalized adjectives behave the same way as nouns.
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3 Variation in practice

3.1 Corpus

The corpus on which we conducted our measurements is the prepublished version of
the Webcorpus 2 (Nemeskey, 2020). It is based on the Common Crawl webcorpus,
which is a collection of pages downloaded each month from the Internet. The corpus
consists of documents, i.e. web pages, with HTML tags removed, in plain text
format, and it is deduplicated on document and paragraph level, thus practically
every page and paragraph is unique in the corpus. The version of the corpus we are
using measures around 10 billion word tokens and 27 million word types.

The corpus can be downloaded from the web page of the Human Language
Technology group of SZTAKI (direct link).

3.2 Extracting vacillating stems

Due to the size of the corpus, we were restricted to using simple searches, string
comparisons, and we needed to parallelize. To conduct the experiments, we used the
python2 programming language. We used the tokenized, morphologically annotated
and disambiguated version of the corpus, and created simple descriptive statistics
for each word: the number of occurrences, the different tags they have received, and
the different lemmata for the word form.

We only searched for the plural forms, since the sentences containing these words
had to be dependency parsed, costing a lot of processor time. As for the accusatives,
we needed to find the singular accusative form based on the stem of the plural, which
is an easy task.

First, we have to find pairs or triplets of words having the same morphological
analysis and the same lemma but different word forms, but it has proven to be
unreliable and slow due to the number of root variations produced by emMorph.
We had more success with a simpler, more straightforward method. We took the
list of words, and filtered those which have at least 10 occurrences in the whole
corpus. We marked the vowel of the suffix for each word and constructed three
rules:

2https://en.wikipedia.org/wiki/Python_(programming_language)
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variation class penult. check for example gloss

a-o variation a o túlsúlyosVk overweight-pl

a-∅ variation a ∅ állóVk standing-pl

e-ö variation e ö szőrösVk hairy-pl

e-∅ variation e ∅ fekvőVk laying-pl

Table 5: Only four rules and we acquire the vacillating words.

As table 5 shows, we have three rules, let us see the a-o rule for example. We
cycle through our list of word forms from the corpus, we check if the penultimate
letter is a, and if it is, we check if there is a word in the corpus with the same
letters as the first word, but the penultimate letter changed to o, for example, when
the word is Csokonay, we check for Csokonoy (which can appear in the corpus if
someone mistyped it, however, later steps will filter these out). The a-∅ and e-∅
rules find the words ending with the present participle suffix -ó/-ő, and we filtered
out the -ő ending due to the large number of pairs, halving the number of word
pairs.

However, this naive method introduces a lot of false positives, like *árnyékat-
árnyékot ‘shadow-acc’, weboldalakat-*weboldalakt ‘webpage-pl-acc’ (stop conso-
nant clusters are forbidden at the end of a word), hallak-hallok ‘fish-dwelling/hear-
1sg-2sg.acc, hear-1sg’ (only the first one could be noun, though highly improba-
ble), and hullámat-hullámot ‘corpse-1sg.poss-acc/wave-acc’ (different roots).

To reduce the number of these flaws, we introduced a number of checks to the
algorithm:

1. Must be in the same case

2. Must have the same lemma

3. Must not have a stop cluster at the end of the word

4. Must be similarly frequent, that is, the rarer word of the pair must have a
frequency of at least 0.01 times that of the more frequent word

5. Each word from the pair must have a frequency of at least 10

6. Must not contain symbols (!?%_-)

These additional checks reduced to number of pairs from 4313 to 3689. and
the number of tokens from 35.366.019 to 5.596.849, saving us a lot of time when
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dependency parsing the containing sentences. One additional step we added is that
we excluded sentences longer than 40 words – there were some (erroneously) very
long sentences, but that is usual with web-based corpora.

3.3 Grouping stems

We divided the word pairs into 3 groups based on their phonological forms and their
frequency. There are derivational suffixes which induce variation in a word form.
By far the two most frequent derivational suffixes are the present participle suffix
-ó, -ő (áll-ó ‘stand-ing’, ‘tör-ő’ ‘crack-ing’) and the adjectivizer suffix -s (rutin-os
‘experienced’, szőr-ös ‘hairy’).

From the two variants of the present participle suffixes, the -ő does not partake in
backness variation – words ending in -ő cannot be suffixed with -ö (fekvő-ek, fekvő-k,
*fekvő-ök, ‘laying-pl’), and e is already low, thus the e-∅ is not lowering. The -ó,
however, does induce lowering. After -ó, -o cannot occur, but -a and -∅ can (álló-
ak, álló-k, *álló-ok ‘standing-pl’) in case of the plural suffix. The a-∅ is a lowering
pair. The accusative suffix -t cannot take linking vowel with this derivational suffix
however, (álló-t, *álló-at, *álló-ot ‘standing-acc’). This group counts 1799 pairs
and has a cumulative frequency of 2072668.

The derivational suffix -s behaves differently than the present participle -ó.
Words with this suffix can receive both the mid and low variants of the plural suffix
(rutinos-ak, rutinos-ok, *rutinos-k ‘experienced-pl’ szőrös-ek, szőrös-ök, *szőrös-k
‘hairy-pl’), and linking vowel is mandatory for the plural suffix in this position. In
accusative case, the suffix -t can occur without linking vowel (rutinos-at, rutinos-t,
*rutinos-ot ‘experienced-acc’, szőrös-et, szőrös-t, *szőrös-öt ‘hairy-acc’), however,
the linking vowel cannot take mid height. This group counts 848 pairs and has a
cumulative frequency of 594513

The third group are the leftovers. There are pairs ending with vowels -ú, -i
(hosszú ‘long’, földalatti ‘underground’), and the consonant stems are -t (mainly
past participle), -n, -r, -sz, -v, (vasalt ‘ironed’, profán ‘profane’, bíbor ‘purple’,
gonosz ‘evil’, pozitív ‘positive’), but nearly every consonant can appear in word
ending position. This group counts 137 pairs and has a cumulative frequency of
144121.
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group id pl acc pairs freq

pr.part. -ó o a-∅ ∅ 1799 2072668
adj. -s s a-o, e-ö a-∅, e-∅ 848 594513
misc. m a-o, e-ö, a-∅, e-∅ a-∅, e-∅, ∅, ∅ 137 144121

Table 6: The 3 distinct groups of endings, based on phonology and con-
venience.

4 Hypotheses

Our hypothesis revolves around the interaction of the occasional nominalization,
mentioned in section 2.5 and the different lowering characteristics of the nouns and
adjectives, mentioned in section 2.4. We have already seen that there is a sharp
categorical difference between nouns and adjectives: the former prefers not to lower
the linking vowel, the latter prefers lowering the linking vowel. However, if a true
adjective undergoes occasional nominalization, these effects clash: from one side, it
should lower the linking vowel, since it is an adjective, but on the other side, it should
not, since it is in the typical position of a noun, and nouns do not undergo lowering.
Regarding the occasional nominalization, we only consider the prototypical cases3

of the lowering effect: the accusative suffix and the plural suffix.
We propose two different approaches to test the lowering: syntactic and semantic

test.

4.1 Syntactic hypothesis

First, we discuss the syntactic hypothesis: table 7 summarizes the syntactic positions
versus the cases in Hungarian.

The syntactic hypothesis is the following: If we count the ratio of lowering for
a certain stem4 in predicative position, plural, nominative case (R1), in NP-head
position, plural, nominative case (R2), in NP-head position, singular, accusative
case (R3), the ratio of lowering will be the highest in the first, followed by the
second, followed by the third case.

Table 7 shows the previously mentioned cases in table form. The syntactic
3Other suffixes do undergo lowering, but these behave either the same way as the accusative or

the plural
4It is really important to aggregate only by stem, not to create cumulative statistics for a group

of stems.
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position plural accusative

predicative
low : non-low

R1

×

NP-head
low : non-low

R2

low : non-low R3

Table 7: Different positions for nominals in Hungarian. Note that
accusative forms cannot appear in predicative position, predicative is
marked by the nominative case in Hungarian. R under the pairs marks
the ratio of lowering.

hypothesis can also be formulated as the following if we use the information shown
in table 7: in the case of vacillating stems, there is a general pattern regarding the
ratio of lowering per stem: R1 > R2 > R3 holds generally true for every stem.

To create an example, let us consider the stem mosolygós ‘smiley’, which has a
variation of -ak/-ok in plural and -at/-t in accusative. The hypothesis states that in
predicative position, the stem prefers lowering (mosolygós-ak instead of mosolygós-
ok) more than it does in NP-head position (so the lowering form is rarer in this
position), and the stem prefers lowering more in NP-head position than it does in
object position (mosolygós-at instead of mosolygós-t).

To test this hypothesis, we use the built-in dependency parser (emDep) of e-
magyar. We will analyze the syntactic positions of the lowering and the non-lowering
forms and aggregate by stem. See more in section 5.

4.2 Semantic hypothesis

The second hypothesis refers to the semantics. We suspect that there is a distinction
in meaning between the lowering and the non-lowering form of each stem.

Our hypothesis is the following:
Since the true adjectives are always lowering and the true nouns are always non-

lowering, the lowering form for each stem is more similar in meaning to the true
adjectives, while the non-lowering forms are more similar in meaning to the true
nouns. We cannot simply measure how noun-like of adjective-like these forms are
easily, hence we measure how coherent the lowering and non-lowering groups are.
If the lowering forms are similar in meaning to other lowering forms more than to
non-lowering forms, we can say that indeed, the lowering forms have some kind
of common attribute, and if the lowering and non-lowering forms are systematically

12



separated in semantic similarity, we prove that there is a semantic difference between
the lowering and non-lowering forms. As a result of the pairs being different in only
nouniness and adjectiveness, we could conclude that the semantic difference is caused
by that.

Let us give an example for what we expect to happen, let us take the stem
vallásos-ak ‘religious-pl’, with plural variation of -ak/-ok. The form vallásos-ak will
be close to other lowering forms, such as babonás-ak ‘superstitious-pl’, cinikus-ak
‘cynical-pl’, and the non-lowering form vallásos-ok will be more similar to non-
lowering forms, such as jobbos-ok ‘rightist-pl’, szkeptikus-ok ‘skeptics-pl’5.

To test this hypothesis, we use the modern neural embedding techniques (Mikolov
et al., 2013a; Mikolov et al., 2013b). We create a high-dimensional representation
for each word form (type), then we conduct similarity measurements in that high-
dimensional space. See more in section 6.

5These examples are extracted by the model we used, and are the mildest ones from the original
word’s neighborhood.
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5 Syntax

5.1 Dependency grammar

The two most influential grammatical theories in modern linguistics are the phrase
structure grammar and the dependency grammar. The phrase structure grammar
(PSG) is a term coined by Chomsky (1957), and every relation in this grammar ad-
heres to the constituency relation, thus these are also known as constituency gram-
mars. In this approach, clause is divided into a subject (noun phrase) and predicate
(verb phrase). This binary division creates one-to-one-or-more correspondence be-
tween the nodes in the tree structure and the words in the sentence. Theories devel-
oped from phrase structure grammar are government and binding (Chomsky, 1981),
head-driven phrase structure grammar (Pollard and Sag, 1994) or lexical-functional
grammar (Ford, Bresnan, and Kaplan, 1982).

In contrast to PSG, dependency relations are based on head and dependent
relations. The correspondence is one-to-one: for every element of the sentence, there
is only one node in the tree structure, thus dependency trees are always minimal
and of the same size for a sentence. Traditionally, the edges in a dependency tree
are marked with a predetermined inventory of primitive syntactic functions, e.g.
subject, object, oblique, determiner, attribute, predicative, . . .

The main advantage to dependency grammar is the easier handling of languages
with free word order (such as Hungarian), eliminating the need of transformations,
moving, or commanding. (Jurafsky and Martin, 2009)67

Let us take the sentence Megettem a burgeremet pénteken. ‘I ate my burger on
Friday’. This sentence consists of 3 elements: megettem ‘part-eat-past-1sg’, a
burgeremet ‘burger-poss.1sg-acc’, pénteken ‘friday-on’. But due to the free word
order in Hungarian, these 3 elements can appear in any8 order9: megettem a burg-
eremet pénteken, megettem pénteken a burgeremet, a burgeremet megettem pénteken,
a burgeremet pénteken megettem, pénteken a burgeremet megettem, pénteken meget-
tem a burgeremet. A phrase structure grammar would need two rules for the place
of the location (temporal) adjectival: one for when the object is before a such adver-

6Since the 2009 edition, a new one is being written by the same authors, featuring a section on
dependency relation, previously not present in the book

7https://web.stanford.edu/~jurafsky/slp3/
8note that there is a slight difference in topic and focus between these sentences
9n variable elements can appear in n! order, that is n times n-1 times n-2 times ... times 2 times

1, thus a sentence with 3 variable elements can have 6 different orderings
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bial, and one for after, whereas a dependency grammar encodes this information on
the edges of the syntactic tree, eliminating the need for word order-dependent rules.
An additional advantage of the dependency grammars is that the head-dependent
relations provide direct information on the semantic relationship between the pred-
icates and their arguments, while constituent-based approaches have to be further
parsed to distill semantic information.

To illustrate the differences on a specific case, we will take a simple English sen-
tence from Jurafsky and Martin (2009): I prefer the morning flight through Denver,
shown in fig. 1. As we can see, the dependency tree is more compact, however, it
really does only encode the head-dependent relation, while the phrase structure tree
is more abundant with information. To mark the type of relation on dependency
trees, we can name the edges. Moreover, it is a common practice to illustrate the
relations with arrows over the words, shown in fig. 2, allowing us space-efficient
dependency trees.

prefer

I flight

the morning Denver

through

S

NP

Pro

I

VP

V

prefer

NP

Det

the

Nom

Nom

Nom

Noun

morning

Noun

flight

PP

P

through

NP

Pro

Denver

Figure 1: Dependency grammar on the left, phrase structure grammar
on the right
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root I prefer the morning flight through Denver

nsubj

root

dobj

det

nmod

nmod

case

Figure 2: The dependency relations of the example

5.2 Eisner algorithm

There are 4 main algorithmic approaches to dependency parsing: dynamic pro-
gramming (Eisner, 1996), graph algorithms (McDonald et al., 2005)10, constraint
satisfaction (Karlsson, 1990), and greedy, deterministic parsing (Nivre, 2008)11.

The first approach is the dynamic programming-based methods. The idea is
similar to that of the constituent parsing (CKY) – some rules establish a tree during
the use of language, we only have to search for the steps to reproduce the same
structure. Graph algorithms are a natural choice to dependency parse a sentence
since a dependency tree is a directed, acyclic graph (tree, in graph theoretical sense).
The basic idea is that we can score arcs in a fully connected graph, and once they are
scored, the Chu–Liu/Edmond’s (Chu and Liu, 1965; Edmonds, 1967) algorithm can
be used to find the maximum scoring spanning tree in the graph. Another, nowadays
less popular method is constraint satisfaction. In this approach, we prune the arcs
in a fully connected graph by using constraints, i.e. eliminating the ones that do
not satisfy the hard constraints. The third main approach is greedy, deterministic
parsing. Here, the main idea is that the algorithms takes the words of the sentence
left-to-right, and at each step, the oracle decides between a few simple operations:
put the word in the stack, draw an edge in some direction, or pop the stack. The
oracle is a machine learning algorithm, pretrained on treebanks. This family of
algorithms is also called shift-reduce algorithms.

The approach that e-magyar uses by the Bohnet parser is a combination of the
maximum spanning tree algorithm and Eisner algorithm.

The Eisner algorithm searches for the highest scoring set of arcs. The algorithm
is recursive, it accumulates the sub-problems and solves the overall problem by
composing them. Using dynamic programming, the algorithm does not reparse the
sub-trees, it looks them up, and it looks up all possible sub-parses.

10MSTParser
11MaltParser
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Definition 5.2.1. Scoring function
Let G = (V,A) be an arbitrary graph over some sentence S, let {wi ∈ S} be the
words of the sentence, let r be the relation between two words, let ψ be an oracle,
telling the score of a single arc. The score ofG is the sum of the scores of the relations
in the graph, that is, the sum of individual (head, relation, modifier) triplets’ scores.

score(G) =
∑

(wi,r,wj)∈A

ψ(wi, r, wj)

We are not detailing the inner workings of the algorithm, but there great educa-
tional youtube videos which show the steps of the algorithm.

5.3 Methodology

To process the corpus, we used the state-of-the-art e-magyar12 (Indig et al., 2019;
Váradi et al., 2018) text processing system. The e-magyar is a modular toolchain,
with separate modules for tokenizing, morphological analysis, lemmatizing, part-
of-speech tagging, constituency and dependency parsing, NP-chunking and named
entity recognition. The newer version of the e-magyar toolchain is named emtsv13.
It can be used as a Python library or as a Docker image14, and it features an easy-
to-use command line interface and an even easier-to-use REST API web frontend.

The dependency parser we used is the built-in parser of e-magyar, called magyar-
lanc (Zsibrita, Vincze, and Farkas, 2013), which is based on the Mate (Bohnet, 2010)
parser. The magyarlanc, after being built into an e-magyar module, received the
emDep name.

The output of emDep can look intimidating at first, but it is easy to understand.
Note that we are not looking at the entirety of the output, only at the important
columns. The sample input is the sentence: A pirosak elvitték a magasakat autóval
Abonyba. ‘The red ones took the tall ones with car to Abony’. On fig. 3, we can
see the dependency relations in visual form, and table 8 represents the relations in
table form.

In Farkas, Vincze, and Schmid (2012), they elaborate on the methodology of
detecting the empty copulae. The Szeged Dependency Treebank (Vincze et al.,
2010) on which they have trained the algorithm introduces a virtual node for the
copula. The algorithm lacked compatibility with these virtual nodes, thus they

12https://e-magyar.hu/en
13https://github.com/dlt-rilmta/emtsv
14https://hub.docker.com/r/mtaril/emtsv
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root A pirosak elvitték a magasakat autóval Abonyba .
root det adj verb det adj noun propn punct

DET SUBJ

ROOT

DET
OBJ

OBL

OBL

PUNCT

Figure 3: The dependency relations of the example

form lemma xpostag upostag id deprel head

A a [/Det|Art.Def] DET 1 DET 2

pirosak piros [/Adj][Pl][Nom] ADJ 2 SUBJ 3

elvitték elvisz [/V][Pst.Def.3Pl] VERB 3 ROOT 0

a a [/Det|Art.Def] DET 4 DET 5

magasakat magas [/Adj][Pl][Acc] ADJ 5 OBJ 3

autóval autó [/N][Ins] NOUN 6 OBL 3

Abonyba Abony [/N][Subl] PROPN 7 OBL 3

. . [Punct] PUNCT 8 PUNCT 0

Table 8: The dependency relations of the example as a table

have removed these nodes and all of their dependents were attached to the head
of the original virtual node. This can be the reason why there is a large number
of uncertainty when predicting the dependency relation in the not-subject cases,
although they achieved 87.2% when predicting labels and relations simultaneously.
The sentence demonstrating this example is: A piros autók szépek ‘the red cars are
pretty‘, shown on fig. 4, table 9. Note that the root node points to an adjective,
indicating empty copula.
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root A piros autók szépek .
root det adj noun adj punct

DET
ATT ATT

ROOT

PUNCT

Figure 4: While the dependency parser is not perfect, it can show us
whether the target word is the subject of the sentence or not.

form lemma xpostag upostag id deprel head

A a [/Det|Art.Def] DET 1 DET 3

piros piros [/Adj][Nom] ADJ 2 ATT 3

autók autó [/N][Pl][Nom] NOUN 3 ATT 4

szépek szép [/Adj][Pl][Nom] ADJ 4 ROOT 0

. . [Punct] PUNCT 5 PUNCT 0

Table 9: In this case, it did manage to find that the adjective is indeed
in the place of the empty copula

5.4 Results

We calculated the ratios R1, R2 for every group, and also R3 for the s-stem group,
as explained in section 4.1. In the next paragraphs, we analyze the groups, starting
with the o-stems. In figs. 5 to 7, a point marks a stem, ρ marks the Spearman’s
rank correlation coefficient between the axes, and u marks the ratio of points where
x ≥ y, that is, the ratio of points under the dashed line.

In fig. 6, we can see the plot of the ratio of lowering in predicative position versus
in subject position. The colors are consistent between the three little plots, meaning
that the rightmost and center plot are filtered plots of the leftmost one.

The leftmost plot shows us a tendency that stems prefer to lower in predicative
position more than to lower in subject position, although with a rather weak evidence
of 0.633 ratio. Spearman’s ρ is 0.631, showing a strong evidence of rank correlation
between R1 and R2 – meaning that the more a stem tends to lower in predicative
position, the more it tends to lower in subject position. The center plot filters the
-ható ‘-ble’ adjectives, which proves to be its own subcategory inside the o-stems.
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Figure 5: Plots of o-stems. Due to the sharp difference between -ható
and the rest of the forms, we divided this group into two subcategories.

This group shows a weaker correlation between R1 and R2, but these stems prefer
to lower in subject position rather than in predicative position.

If we exclude the -ható adjectives, we get a more coherent adjectival group, with
very high correlation and high ratio of stems being lowering in attributive position
than in subject position. In this group, we can see a dense group of words in the
lower part of the plot, these are the (almost purely) nominal stems, with occasional
(but clear) adjectival use, such as látó-a-k ‘seer-pl’, zaklató-a-k ‘harasser-pl’, buzgó-
a-k ‘zealous-pl’, támogató-a-k ‘supporter-pl’. Overall, this group has a ρ of 0.811
and almost 80% of the points prefer to lower in predicative position rather than in
subject position.

Figure 6:
Plot of m-stems.

Figure 7:
Plot of pred vs subj in s-
stems.
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In fig. 6, we can see the plurals of the miscellaneous stems. This group counts
only a few elements. We can see the usual, strong correlation between R1 and R2

and that two thirds of the points are under the dashed line.
In fig. 7, we can see the plurals of the s-stems. Here, 94% of the points prefer

lowering in predicative position to in subject position, and the correlation is very
high, 0.809.

Figure 8:
Plot of subj vs obj in s-
stems.

Figure 9: Correlation of
lowering in different cases.

In fig. 8, we can see the ratio of lowering in subject position versus in object
position in s-stems. This is the first major contradiction to our hypothesis, since
there are significantly more points over the dashed line, meaning the majority of
the stems prefer lowering in subject position to lowering in object position. Despite
of this, the correlation is significant (ρ = 0.403, meaning the higher the lowering in
object position of the stem, the higher the lowering in subject position.

Figure 9 summarizes the correlation of lowering in the s-stems group. Note that
the correlations are different than in fig. 7 – we had to exclude some forms which
did not appear in both lowering and non-lowering forms in the corpus. The lowering
in predicative is the richest in information - it has the highest correlation with the
others, indicating that if a stem prefers lowering in predicative position, it strongly
prefers lowering in subject position (ρ = 0.75), and weaker, but prefers lowering in
object position (ρ = 0.44). The other forms present lower correlation coefficients,
indicating lesser information.
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6 Semantics

There are many ways to capture the meaning of words, but in this thesis, we are using
vector space models. Vector space models (VSM) extract knowledge automatically
from a corpus, requiring much less labor than manually creating onthologies and
knowledge bases. A vector space model is a model which assigns a vector (or multiple
vectors) for each word from the vocabulary of the corpus. Once a vector space
model is established, the powerful tools of mathematics can be used to explore
and manipulate the vector space. We can decompose vectors, search for similar
vectors, solve analogies using vector addition and subtraction, and even utilize them
to represent more complex structures, such as sentences, documents, texts.

In the following subsections, we are introducing the notion of ‘word embeddings’,
demonstrate how the embedding algorithm works, give a quick overview of the basic
mathematical definitions needed for our hypothesis, and at the end of the section,
we present the results of our analysis.

6.1 The basic idea of word embeddings

The idea of transforming text into vectors dates back to 1975 (Salton, Wong, and
Yang, 1975), when Salton decided to create a large occurrence dictionary from mul-
tiple documents, then characterizing each document by the occurrences of the words
from the vocabulary. The ‘statistical semantics hypothesis’ assumes that the word
frequencies describe the meaning of a document. One could then measure the sim-
ilarity of these document vectors by using their euclidean, cosine, Manhattan, or
Jacquard distance. A document about cats must contain the word ‘cat’ with high
frequency, another document about domestic animals also contains the word ‘cat’
with high frequency, so the respective coordinates for the two document vectors
should be similar. One can even organize these vectors into clusters, creating groups
of documents covering specific topics. Having document vectors enables querying a
document database, we can create queries for specific phrases, thus allowing index-
ing and searching through large libraries. The so-called ‘bag-of-words’ hypothesis
states exactly this phenomenon, a document’s word frequencies show the relevance
of the document to a query of the words. We can also calculate the ‘term frequency
– inverse document frequency’ (tf-idf) product for each word. If a word appears
frequently in one document, it has high ‘term frequency’ in that document, and
if that word appears only in a few documents, it has high ‘inverse document fre-
quency’, the tf-idf product is high, so that word is descriptive of that document in
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a document collection (Turney and Pantel, 2010). On the other hand, if a word is
present and frequent in every document (such as the determiner ‘the’), it has high
term frequency and very low inverse document frequency, thus is not descriptive of
any document, does not convey any information of that particular document.

Taking this one step further, we could imagine that the surrounding words for
each word is the document itself. For each word, we could count how many times the
other words from the vocabulary appear in a nearby window (in a certain length to
each direction, usually chosen between 2 and 5). That way, we create a list of words
and corresponding frequencies (context vectors) for every word in the vocabulary,
and as the quote says, the context of a word describes the word itself. Furthermore,
the ‘distributional hypothesis’ states that words in similar contexts have similar
meanings (Deerwester, Dumais, and Harshman, 1990; Harris, 1954). Spotting this
among the word vectors is quite easy – if two vectors are similar by some similarity
measure, the corresponding words have similar meaning.

While the counting of the surrounding words is easy and straightforward, there
is a newer method to create vectors: not simply counting the surrounding words,
but using neural networks to predict the words based on the context, then use the
error of the prediction to improve the algorithm. (Mikolov et al., 2013a; Mikolov
et al., 2013b; Pennington, Socher, and Manning, 2014; Bojanowski et al., 2016)

6.2 Mathematical background

Definition 6.2.1. Vector
A vector of dimension n over the set of real numbers R is a finite ordered list of n
real numbers.

v ∈ Rn = (v1, v2, . . . , vn), where ∀vi ∈ v : vi ∈ R

Definition 6.2.2. Norm
The norm ‖·‖ is a function that shows the length of a vector v in a vector space.

‖v‖ =

√√√√ n∑
i=1

v2i , where v ∈ Rn

Definition 6.2.3. Dot product
The dot product 〈·〉 of vectors u,v is the sum of the element-wise product of uandv.

u · v = 〈u,v〉 =
n∑

i=1

uivi, where u,v ∈ Rn
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Definition 6.2.4. Cosine similarity
The cosine similarity shows the cosine of the angle of two vectors, mapping the angle
in [−1, 1].

simcos(u,v) =
〈u,v〉
‖u‖2 ‖v‖2

, where u,v ∈ Rn

Definition 6.2.5. Euclidean distance
The Euclidean distance is a distance metric used in Euclidean spaces.

d(u,v) = ‖u− v‖ , where u,v ∈ Rn

Definition 6.2.6. Cosine distance
The cosine distance is a distance metric based on cosine similarity.

dcos(u,v) = 1− simcos(u,v), where u,v ∈ Rn

Definition 6.2.7. Softmax function
The softmax or exponential normalized function is a logistic function that enables
to interpret a series of values as a probabilistic variable. Let x ∈ Rn be a sample,
xi ∈ x a numerical observation. We can define the σ softmax function:

σ(xi) =
exi

n∑
j=1

exj

for i ∈ 1, . . . , n

6.3 Neural network-based word embedding

The idea of neural networks dates back to the 40s (McCulloch and Pitts, 1943),
when McCulloch created a computational network. The main idea is that our brain
is composed of neurons (nodes) and synapses (edges). We, as humans, learn and
memorize by creating and strengthening synapses, and an artificial neural network
– by analogy – should learn by strengthening and weakening weights on the edges
based on the sample it receives. Constructing and training a neural network is a
difficult task, because we do not have a strong idea how to interpret the weights of
the edges or the nodes themselves – a neural network is a black box, and we do not
always know how the architecture of the network should look like, or how we should
train a network.

The architecture in a neural word embedding consists of only a single hidden
layer of neurons and an output layer with a softmax classifier, shown in fig. 10, with
an example iteration. The task of the model is, for context in the corpus, to learn
the probabilities of vocabulary words being in that context.
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Figure 10: Network architecture

The example sentence is ‘Ubuntu is a free and open-source Linux distribution
based on Debian.’, we are using a windows size of 2 in each direction, and we are
guessing what word is in the context of the words ‘free’, ‘and’, ‘Linux’, ‘distribution’.
In the example, the target word is ‘open-source’, and the model will map probabili-
ties to the words of the vocabulary. Using these probabilities, we can backpropagate
the error and teach the model. In the example, the size of the vocabulary is N , and
the size of the hidden layer is D.

The input is a binary vector representing the context, and the output is a prob-
ability vector. First, we are creating a context vector by summing up the index
vectors for each word, marked wt±i in fig. 10. The context vector is classified by
the neurons, and then the softmax function creates an easily explainable probability
distribution for the target word.

To summarize, we create a model to do a fake task (predicting words based on
the contexts) only to learn the input weights which will be used as vectors. The
same way, the model also learns the output weights and the classification problem
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Figure 11: Classifying text with CBOW. The dimension are written be-
low the objects.

reduces to a matrix dot product and to a softmax classification problem.
In fig. 11, we can see the dimensionality of the mapping functions and the im-

portance of the softmax function.
A word’s index vector is a one-hot15 vector encoding its position in the vocab-

ulary. When we sum the index vectors up, we lose the order of the context, but
we get a context index vector, encoding the position of the words in context in the
vocabulary. After the context is represented by a sparse16 vector of dimension N , it
is mapped onto the hidden layer of dimension D by a linear transformation (Weight1
matrix) of dimension N×D, creating aD-dimensional dense17 representation vector.
The dense representation vector then is processed by another linear transformation
(Weight2 matrix) of dimension D × N , creating a vector of vocabulary dimension
N . The softmax function is then applied on this vector, providing us with a prob-
abilistic vector, where each coordinate means the probability of that word being in
the given context.

For adjusting the weights of the matrix, the model uses backpropagation, which
is a method for refreshing the weights by calculating the partial differentials of the
error caused by each weight.

As stated previously, predicting the target word based on the context is actually
15A vector, that has exactly one 1 value, and the rest are 0 values.
16Sparse, as in having lots of 0 values.
17Dense, as in not having 0 values.
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a fake task. We are not interested in guessing missing words from contexts, we are
interested in representing word forms in a compact and dense manner. That is why
the mapping function (matrices) are important. The first mapping function is of
dimension N ×D, that is, a vocabulary-tall and neuron layer-wide matrix. For the
word of index i in the vocabulary, this matrix encodes a dense representation in its
row i, and that is what we were after. The corresponding row of the Weight1 matrix
for a word is the word vector.

The main difference from the traditional methods are the subsampling, nega-
tive sampling, and lower dimensionality. Subsampling is a technique to reduce the
importance of the common words in the corpus. The intention behind the subsam-
pling is that the words like ‘the’, ‘a’, ‘have’ occur very frequently, yet encode little
semantic information about the context. The subsampling is probability based and
uses the following function to determine the probability that the word wi should be
taken into account when updating the weights of the neural network, where z is the
relative frequency function.

P(wi) =

(√
z(wi)

0.00001
+ 1

)
· 0.00001
z(wi)

Negative sampling is a technique to reduce calculation time. Without negative
sampling, for each word, we would need to increase the weight of the edges of the
correct guess (reward the specific edges for guessing the word right), and we would
need to decrease the weights which predicted the context wrong, so we would update
every weight for every item in the vocabulary each training step. With negative
sampling, we select a few noise words (5, in our case), and we update the network
only by the error produced by these noise words. Thus, for each training step, we
would update the network 1+5 times.

6.4 Obtaining word vectors

The software we are using to create word embeddings is Radim Řehůřek’s gensim.
(Řehůřek and Sojka, 2010) It is a Python package created in 2010 to ease text pro-
cessing, but ended up being one of the most robust, efficient and hassle-free softwares
to process plain text. While the software offers the possibility of fine-tuning every hy-
perparameter, by default it reduces noise, smooths vectors, and even removes words
with low frequency and low semantic distinguishing value. We used the followed
hyperparameters in the creation of our models: method of training is ‘continuous-
bag-of-words with negative sampling’, the dimension of the word embedding is 300,
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the window used is 5 words in both directions, and negative sampling is set to 5,
meaning that for every training iteration, 5 ‘noise words’ are drawn. The mini-
mal samples were set to 10, meaning that the model automatically cropped rare
words. The training consisted of 5 epochs, which was really fast, around 600000
words/second with an Intel Core i9-9920XE, it took around 20 hours for the whole
corpus.

6.5 Information encoded in word vectors

Word vectors mainly encode semantic information, but some syntactic information is
also present. One method to evaluate word embeddings are inspecting some words’
closest neighbors. We will take our model trained in the previous section and see
what words are the closest in cosine distance to the target word.

In table 10, we can see 7 examples for the relations extracted from the text
by the word embedding. In example 1 and 3, we can see hyponymy-hypernymy
relation, as ‘man’, ‘child, ‘woman’ are hyponyms of ‘human’, and ‘block of flats’ and
‘cottage’ are hyponyms of ‘house’. In example 2, we can see that the words belong
to the same category. The ‘dog’, ‘cat’, ‘doggy’, ‘kitten’ belong to the same category,
while the word ‘animal’ is a hypernym of ‘dog’. Example 4 shows that word vector
similarity also encodes antonymy relation. This is not surprising, since the model
learns from contexts – and antonyms usually share the same contexts, that is, if a
thing can be ‘good’, it can also be ‘bad’. Example 5 and 6 shows that similarly
spelled words can have entirely different meanings, and that it can be seen trivially
from the surrounding words. In fact, it is a very rare occurrence that a language has
word pairs with similar meaning and spelling (Blevins, Milin, and Ramscar, 2017,
p. 15). Example 7 shows an example of synonymy relation. Hatos ‘number six’,
written in letters, has a high degree of similarity with 6-os, written with a suffixed
number. The same relation can be seen with unit measures, abbreviations, and
words written in caps or with bad orthography.
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1. ember ember-nek, gyerek, férfi-ember, nő, férfi
gloss humana man-dat, child, male-human, woman, man

2. kutya macska, kutyus, cica, kiskutya, állat
gloss dog cat, doggy, kitty, puppy, animal

3. ház lakó-ház, ház-nak, ház-ikó, tömb-ház, panel-ház
gloss house apartment, house-dat, cottage, block of flats, panel house

4. jó rossz, remek, szuper, job, kellemes
gloss good bad, great, super, good, pleasant

5. vörös-ek c barná-k, piros-ak, sárgá-k, kék-ek, fehér-ek
gloss red-pl brown-pl, red-pl, yellow-pl, blue-pl, white-pl

6. vörös-ökd német-ek, franciá-k, bajor-ok, muszk-ák e, spanyol-ok
gloss red-pl German-pl, French-pl, Bavarian-pl, Russian-pl, Spanish-pl

7. hat-os kilenc-es, öt-ös, 8-as, tizenkett-es, 6-os
gloss number six number nine, number five, number 8, number twelve, number 6

aEmber means both man and human in Hungarian.
bWith bad orthography.
cIn Hungarian, there is different word for the red of the flag or the blood, but nowadays,

generally used as deeper red.
dAs a noun-lowering noun stem, red-pl means communist, Soviet.
ePejorative, derived from Moscow.

Table 10: Examples for the closest neighbor relation in our word embed-
ding. The gloss gives the translation in order.

The second important piece of information that vectors encode are analogy.
Word vectors allow us to do analogies, like France : Paris :: Germany : ____,
where we can fill in the blank using simple vector addition:

nearest neighbor(vParis − vFrance + vAustria) = vWien
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word1 : word2 :: word3 : _____

1. férfi fiú nő lány

gloss man boy woman girl

2. Franciaország Párizs Ausztria Bécs

gloss France Paris Austria Wien

3. Magyarország pörkölt India curry

gloss Hungary meat stew India curry

4. jó rossz magas alacsony

gloss good bad tall small

Table 11: Solving analogies using word embeddings. The last column is
the answer given by the embedding.

As you can see in table 11, we can extract general semantic relations (examples
1.-3.) and antonym relations (example 4.).

6.6 Methodology

Visualizing and processing 300 dimensions is a difficult task. The phenomenon of
the curse of dimensionality (Bellman, Corporation, and Collection, 1957) states that
many problems arise in high-dimensional space that are not present low dimensional
spaces. In our case, traditional distance functions between vectors is hard to inter-
pret since there are large gaps between points, thus it is very hard to densely populate
high-dimensional spaces. However, there are lots of methods to reduce dimensional-
ity while preserving local features of groups of points. The two most commonly used
modern methods are t-distributed stochastic neighbor embedding (t-SNE, Maaten
and Hinton (2008)) and uniform manifold approximation and projection (UMAP,
McInnes, Healy, and Melville (2018)). These methods predominantly preserve lo-
cal structure and are essential when visualizing data where dimensions are equally
important and hard to interpret.

The word vectors were normalized, since word vector length strongly correlates
with the relative frequency of the corresponding word (Arora et al., 2016). Both
UMAP and t-SNE have adjustable hyperparameters, thus for each plot in the next
section, these were tuned based on Wattenberg, Viégas, and Johnson (2016).

Our hypothesis in section 4.2 stated that lowering forms are generally more simi-
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lar to adjectives than to nouns and non-lowering forms are generally more similar to
nouns than to adjectives. Measuring the adjectival and nominal components of word
vectors is incredibly difficult. The most promising paper in this matter is Rothe,
Ebert, and Schütze (2016), but reproducing their results, even when reimplement-
ing their algorithm has proven difficult. Nevertheless, we do not have to resort to
orthogonal transformations, word vector distillation and ultradense reembedding to
prove this hypothesis. We know that the vacillating pairs of words are nearly iden-
tical in meaning (except for polysemy), and that if we separate the lowering forms
from the non-lowering forms, the systematic difference should be based on the pre-
ferred category of the word form. Thus, we are trying to show that the lowering and
non-lowering forms separately form coherent groups. To see the coherence in 300
dimensions, we are using a simple method based on the nearest neighbors in cosine
distance. For each word, we take some (depending on the stem’s type) odd number
of nearest neighbors. Among the nearest neighbors, some will be lowering and some
will be non-lowering, but one group will have a higher count than the other one. We
will call the ratio of the words of the same height to the size of the neighborhood
neighborhood score, marked with S. And if the original word has the same height
as most of its neighborhood (S > 0.5), then its neighborhood is descriptive of the
word. If most of the words have correct neighborhood, we can conclude that the
lowering and non-lowering words form coherent clusters. To measure this coherency,
we take the very simple accuracy measure:

Definition 6.6.1. Accuracy
Accuracy is the ratio of correctly classified items to the number of items.

accuracy =
number of correctly classified points

total number of points

If the accuracy is around 0.5, we can say that the points are randomly distributed.
The higher the accuracy is, the more descriptive neighborhoods are, therefore the
points form more coherent groups.

We do have to note that we cannot compare more inflected words with less
inflected words, thus we cannot use for example comparative suffixed words to enrich
our dataset. More inflection adds more syntactic information to the word vectors,
thus increasing the vector similarity between similarly inflected words (Lévai and
Kornai, 2019).
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6.7 Results

All of the plots are available in HTML format in this project’s thesis folder, an-
notated, in which you can zoom into after using the buttons in the upper right
corner.

We will first see the least coherent group, which is the group of plural miscel-
laneous stems, then the plural o-group, then the plurals of s-group, and lastly, the
accusatives, which are mainly s-stemmed18. On the plots, the blue points mark the
mid forms with similar neighborhood, the green ones mark the mid forms with dis-
similar neighborhood, the red ones mark the low forms with similar neighborhood
and the orange points mark the low forms with dissimilar neighborhood. The legend
is the same for all of the figures in this subsection, and the axes are abstract, due
to the nature of dense word embeddings and dimension reduction.

Figure 12: UMAP of the word forms in the m-group. Note that the
neighborhood relation is based on the 300-dimensional neighborhood,
not on the 2-dimensional, projected neighborhoods.

In fig. 12, we can see a UMAP reduction of the m-group word forms.
On the right hand side, we can see a dense core of red points with a few

green points surrounding. The words do not share an apparent common mean-
ing (examples include szinonim-ak ‘synonym-pl’, hazug-ak ‘liar-pl’, tudatalatti-ak

18o-stemmed cannot be lowering in accusative, seen in section 3.2
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‘subconscious-pl’, árnyalt-ak ‘shaded-pl’, bumfordi-ak ‘clumsy-pl’, . . . ). On the
left side, the little cluster is the suffixated numbers, like harmadik-ak/harmadik-
ok ‘third-pl’, hányadik-ak/hányadik-ok ‘which number-pl’, sokadik-ok/sokadik-ak
‘umpteenth-pl’. Both the lowering and non-lowering forms are in the same clus-
ter. In the top side, there are the words derived from place names, i.e. csány-i-ak
‘Csány-from-pl’, kanári-ak ‘Canary-from-pl’, somló-i-ak ‘Somló-from-pl. The
other dense areas show little system.

Generally speaking, we can see that the colors are not entirely randomly dis-
tributed – there is a red cluster on the right, and it is mainly surrounded by blue
points. The accuracy reflects this tendency – it is 0.610, not entirely convincing,
but higher than 0.5, showing us that there is a slight coherence in high dimension.

Figure 13: t-SNE of the o-stem group. One can immediately notice the
eye-catching circular shapes, that is an effect of the t-SNE.

In fig. 13, we can see a t-SNE reduction of the o-group word forms. We can imme-
diately see a dense blue core on the left, followed by mainly red clusters a bit right,
then a large, fuzzy area of blue-green-red-orange. The lackluster fuzzy area is mostly
populated by the -ható ‘-ble’ forms, with many word pairs being being almost in the
same position, indicating the lack of difference in meaning between the lowering and
non-lowering forms. Examples include: irányítható ‘controllable’, lebontható ‘decon-
structible’, bevállalható ‘bearable’, szabályozható ‘regularizable’. The blue cluster on
the left side are mainly human attributes, occupations, groups: gyógyulók ‘healing-
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pl’, vágyakozók ‘longing-pl’, provokálók ‘provoking-pl’, fontoskodók ‘officious-pl’,
ordítók ‘shouting’, mozgók ‘moving’. It is really interesting to see how coherent this
cluster is while not having high degree of semantic relatedness intracluster. The two
red clusters on the left side are also very hard to characterize. The words in those
two clusters are very similar in meaning to those in the blue cluster – they generally
mean human attributes, occupations, groups: provokálóak ‘provoking’, vendégcsalo-
gató ‘inviting’.

Prediction based on the neighborhood gives us a 0.626 accuracy in this case,
which is a bit better and means a bit more coherent clusters than the m-group.

Figure 14: UMAP of s-group.

In fig. 14, we can see the most coherent group, the group of the s-stemmed
forms. The non-lowering forms are on the left hand side, and the lowering forms
are on the right hand side. There are three little clusters on the top, we start by
describing those. The blue cluster in (6.5, -9) contains plant-related and geographical
words: diós-ok ‘walnuty-pl’, hínáros-ok ‘seaweedy-pl’, pozsgás-ok ‘succulent-pl’,
mocsaras-ok ‘marshy-pl’ szoros-ok ‘gorges-pl’. Their respective lowering pairs are
not so far away, they are in the lower-left direction from this group. This is the most
coherent small cluster, and we can definitely see the semantic relatedness here, and
this small cluster is also showing us that there is a distinct difference in the meaning
of lowering and non-lowering forms.
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The second cluster is located in (5, -7). These words are used to describe at-
tributes of buildings and apartments: konyhásak ‘kitchened-pl’, teraszosak ‘terraced-
pl’, egyágyasak ‘one-bedded-pl’, parkettásak ‘hardwood-floored-pl’, betonosak ‘concreted-
pl’. Most forms are lowering, with a few exceptions, like egyszobások ‘one-roomed-
pl’, egyágyasok ‘one-bedded-pl’. It seems that these words do not form distinct
pairs in meaning.

The upper, big cluster is also multi-colored. These are mainly derived from units,
such as szavasak ‘worded-long-pl’, kilogrammosok ‘kilogramm-heavy-pl’, órásak
‘hour-long-pl’, lóerősök ‘horse-power-strong-pl’, forintosak ‘forint-cost-pl’. Here,
the semantic relatedness is so strong that the lowering and non-lowering forms barely
separate.

Then there is the big cluster, with a dense blue core on the left, and a dense red
core on the right. In the case of this big cluster, we cannot really tell the reason of
the semantic similarity, but that is exactly why we are using the word embeddings.
The two clusters are coherent and we can indeed see that intragroup similarity is
way higher than the intergroup similarity.

Figure 15: UMAP of accusative words.

In fig. 15, we can see the UMAP of the accusative forms. We are not dividing
the accusatives into subcategories, since the o-stems cannot take accusatives, and
the m-stems are very low in number.

On the right side, there is an incoherent cluster very far from the dense area.
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These words are generally children’s games: doktorosat ‘playing doctor-acc’, papás-
mamást ‘playing house-acc’. These forms appear with their pairs close by, indicat-
ing the lack of semantic difference.

The upper right red cluster contains mainly attributional adjectives, aranyosat
‘cute-acc’, tudományosat ‘scientific-acc’, erőszakosat ‘violent-acc’. The blue clus-
ter at (-3, 3) contains words meaning people having that attribute: lovast ‘horseman-
acc’, kártyást ‘gambler-acc’, vallásost ‘religious-acc’. The colorful bottom cluster
are made up of words derived from unit measures, tonnást ‘ton.heavy-acc’, szavasat
‘word.long-acc’, órást ‘hour.long-acc’. Other than these 4 clusters, there is a dense
and fuzzy core.

The accuracy in this case is 0.711, showing that the words generally form coherent
neighborhoods, thus the lowering and non-lowering forms are usually distinct in
meaning.

36



7 Overall results

In this section, we are joining together the results shown in section 5.4 and in
section 6.7. In the following plots, Si marks the neighborhood score, defined in
section 6.6, that is, for each word, it shows ratio of points having the same suffix
height in its neighborhood, and S1 marks the score of the plural, lowering form, S2

marks the plural, non-lowering form. In case of the s-stems, S3 marks the accusative,
lowering form and S4 marks the accusative, non-lowering form. R1 marks the ratio of
lowering in predicative position, R2 marks the ratio of lowering in subject position,
and R3 marks the lowering in object position. We will analyze the correlation
between the ratio of lowering (Ri) and the neighborhood score (Si) per stem.

Figure 16: Plot of
-ható o-stems.

Figure 17: Plot of
non-ható o-stems.

In figs. 16 and 17, we can see the correlation of o-stems, divided as seen in
section 5.4. In case of the -ható words the correlation between the syntactic and
semantic data is weak (−0.40,−0.26, 0.19, 0.29), and R1 correlates slightly more
with S1 and S2 than R2. The meaning of this correlation is that if the stem prefers
prefers lowering in predicative position, the lowering form tends to be similar in
meaning to other lowering forms, while the non-lowering form of the same stem
tends not to be similar in meaning to other non-lowering forms. In case of the
non-ható o-stems, the tendency is similar to that of the -ható stems, but stronger.
(−0.73,−0.62, 0.23, 0.41). The high negative correlation between syntactic ratios
and S2 mark the abundance of words which are always in subject position (things,
occupations), such as: látó ‘seer’, zaklató ‘harasser’, vádlók ‘prosecutor, accuser’.

37



These words are very rarely lowering, but have high neighborhood score due to
being similar to other prototypical nouns.

Figure 18: Plot of m-stems.

In fig. 18, we can see the correlations of the miscellaneous-stems. The correlation
between the syntactic ratios and semantic scores are low, but this can be due to the
low quantity of the data or the highly varying stems.

Figure 19: Plot of s-stems. Note that there are accusative forms in this
figure.
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In fig. 19, we can see the s-stems, which are unique by having vacillation in object
position. This follows the general tendency shown in fig. 16, which is that if a stem
prefers lowering in predicative or subject position, the meaning of the lowering form
is in a lowering neighborhood (weakly, ρ = 0.21, 0.25), and the non-lowering form is
in a dissimilar neighborhood. The unique part in this figure is the relation between
R3 and S3, S4.

Seemingly, R3 can weakly (ρ = 0.2) explain S3, that is, the ratio of lowering
accusatives does not tell much about the semantics of the lowering form of the stem.
However, it has high negative correlation with S4, meaning that high R3 shows low
neighborhood score for the non-lowering form and low R3 shows high neighborhood
score for the non-lowering form.
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8 Conclusion

We have analyzed the interaction of phonology, syntax and semantics in lowering
nominal stems in this thesis. Our hypothesis stated that the degree of lowering in
nouns and adjectives, a seemingly morphophonological phenomenon, can be attested
in higher levels of the language. Our analysis has shown that there is a strong, sys-
tematical difference between the lowering and non-lowering forms, and even though
the tendencies are probabilistic, they are statistically significant. This difference can
be seen in a word’s syntactic and semantic attributes, and strongly correlates with
our intuition.

In syntax, the syntactic position of the word contributes to the quality of linking
vowel. The predicative position has a bigger influence on the quality of the linking
vowel, meanwhile the other positions are less influential. According to our analysis,
the form in the predicative position is the richest in information, although that is
an expected result since that form is the most frequent.

In semantics, the meaning influences the quality of the linking vowel. In case
of the majority of the stems, the difference between the lowering and non-lowering
variant is predictable, and correlates with our intuition – the non-lowering form is
‘nouny’, the non-lowering form is ‘adjectival’.

We have also seen that the syntactic and semantic attributes are tied together,
thus a word’s meaning and syntactic position affect the quality of the linking vowel.

This phenomenon would be difficult to explain if we treat the language as a
modular structure, with one-directional connections between the linguistic modules.
Alternatively, our hypothesis fits well into usage-based theories like Bybee and Hop-
per (2001), where frequency is a very important factor in the usage of the language.
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